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Abstract

Illumination variation remains a central challenge in object detection and recognition. Ex-
isting analyses of illumination variation typically pertain to convex, Lambertian objects, and
guarantee quality of approximation in an average case sense. We show that it is possible to
build V(vertex)-description convex cone models with worst-case performance guarantees, for
nonconvex Lambertian objects. Namely, a natural verification test based on the angle to the
constructed cone guarantees to accept any image which is sufficiently well-approximated by
an image of the object under some admissible lighting condition, and guarantees to reject any
image that does not have a sufficiently good approximation. The cone models are generated
by sampling point illuminations with sufficient density, which follows from a new perturbation
bound for point images in the Lambertian model. As the number of point images required for
guaranteed verification may be large, we introduce a new formulation for cone preserving di-
mensionality reduction, which leverages tools from sparse and low-rank decomposition to reduce
the complexity, while controlling the approximation error with respect to the original cone.

1 Introduction

Illumination variation remains a central challenge in object detection and recognition. Changes in
lighting can dramatically change the appearance of the object, rendering simple pattern recognition
techniques such as nearest neighbor ineffective. Various approaches have been proposed to mitigate
this problem, for example, using nonlinear features based on gradient orientation [Low04], using
quotient images [SRR01] or total variation regularization [CYZ+05]. These approaches are often
effective in practice, but can break down under extreme illumination. Moreover, because of the
nonlinearity of the feature extraction step, clearly characterizing their domain of applicability is
challenging.

An alternative approach is to attempt to explicitly characterize the set of images of the object
that can be generated under varying lighting. The seminal work [BK98] argues that images of a
given object with fixed pose and varying illumination should lie near a convex cone in the high-
dimensional image space. This conic structure arises as a consequence of nonnegativity of light and
linearity of light transport. Many subsequent works have attempted to capture the gross structure
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of this cone using low-dimensional convex cone or linear subspace models. Motivated by empirical
evidence of low-dimensional linear structure in image sets taken under varying illumination (e.g.,
[EHY95]), [BJ03] and [Ram02] used an elegant interpretation of the Lambertian reflectance as spher-
ical convolution to argue that for a convex, Lambertian object, a linear subspace of nine dimensions
may suffice to capture most of the variance due to lighting. These models have been used for recog-
nition in many subsequent works [GBK01, WZL+, WYG+09, WWG+12], and have been extended
in a number of directions [FSB04, RKB]. The promise of subspace or cone models, compared to
feature-based approaches described above, is that, by reasoning carefully about the image formation
process, it might be possible to guarantee to well-approximate all images of the object under clearly
delineated conditions.

It is worth asking, then, what approximation guarantees do current results afford us? For con-
vex, Lambertian objects, it can be shown that for one or more uniformly random point sources, a
nine dimensional spherical harmonic approximation captures on average about 98% of the energy
[BJ03, FSB04]. However, per discussion in [BJ03], low-dimensional linear models do not guarantee
quality of approximation for arbitrary extreme illumination conditions. Moreover, for more general
nonconvex objects, cast shadows bring in discontinuous changes in radiosity, which render spherical
harmonic approximations ineffective [RKB]. Strictly speaking, no rigorous guarantees on quality of
approximation are currently known for general nonconvex objects.

In this work, we ask whether it is possible to build models for illumination variation with the
following desirable characteristics:

(i) UNIFORM GUARANTEES: Guaranteed robustness to worst case lighting, over some clearly
specified class of admissible lighting conditions.

(ii) NONCONVEXITY: Work even for nonconvex objects, with a representation complexity that
is adaptive to the complexity of the object of interest.

(iii) EFFICIENCY: Low storage and computational complexity.

We study these questions in the context of a model problem in object instance verification, in which
one is given an object O at a fixed pose, and ask whether the input image is an image of this
object under some valid illumination condition. We develop rigorous guarantees for this problem,
for general (including nonconvex) Lambertian objects. Our results show how to build a model that
guarantees to accept every image that can be interpreted as an image of the object under some
lighting condition, and to reject every image that is sufficiently dissimilar to all images of the object
under valid lighting conditions.

Similar to [LHK05, MLJ09, WWG+12], and many other previous works, we construct a V-
approximation to the illumination cone, which approximates this cone with the conic hull of a finite
collection of images taken under point illuminations. Previous empirical work has suggested that
the number of images required for an accurate representation can be large [MLJ09]. However, again,
for this representation no quantitative results on quality of approximation are currently known. We
start from the goal of building a provably correct algorithm for instance verification, and show that
in this setting, this reduces to approximating the illumination cone in Hausdorff sense. We derive,
in terms of the properties of the object and the scene, sufficient sampling densities for this goal to be
met. Our bounds depend on properties of the scene and the object – in particular, they depend on
the level of ambient illumination, and a notion of convexity defect. They make precise the intuitions
that (i) it is more difficult to operate in low-light scenarios, and (ii) nonconvex objects are more
challenging than convex objects.
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The number of images required to guarantee performance can be large. To address this problem,
we introduce a new approach to cone preserving complexity reduction. This approach uses tools
from convex programming – in particular, sparse and low-rank decomposition [CLMW11, CSPW11]
– but introduces a new constrained formulation which guarantees that the conic hull of the output
will well-approximate the conic hull of the input. The low-rank and sparse decomposition leverages
our qualitative understanding of the physical properties of images (low-dimensionality, sparsity of
cast shadows) [BJ03, Ram02, WYG+09, CLMW11, WGS+10], while the constraint ensures that the
output of this algorithm is always a good approximation to the target cone. Empirically, we find
that the output is often of much lower complexity than the input. This suggests a methodology
for building instance verifiers that are both robust to worst case illumination, and computationally
efficient.

2 Problem Formulation and Methodology

Cone Models for Illumination. We consider images of size w×h, and let m = wh. Each image
can be treated as a vector y ∈ Rm. We are interested in the set of images of an object O that
can be generated under distant illumination. These images form a subset C0 ⊆ Rm. Each distant
illumination can be identified with a nonnegative function f : S2 → R+, whose value f(u) is the
intensity of light from direction u. We use the notation F for the set of nonnegative, Riemann
integrable functions on S2.1 Mathematically, F is a convex cone: sums of nonnegative, integrable
functions are again nonnegative and integrable.

We assume a linear sensor response: the image is a linear function of the incident irradiance.2

By linearity of light transport and linearity of the sensor response, the observed image y ∈ Rm is a
linear function y[f ] of the illumination f : if the object is subjected to the superposition f = f1 + f2

of two illuminations f1 and f2, we observe y[f1 + f2] = y[f1] + y[f2]. Since f resides in the convex
cone, the set C0

.
= y[F ] ⊂ Rm of possible images is also a convex cone. Note, however, that the fact

that C0 is a convex cone holds under very mild assumptions.
The detailed properties of C0 were first studied in [BK98], and a great deal of subsequent work

has been devoted to understanding its properties [Ram02, BJ03, FSB04]. Most of this body of work
has been devoted to simple, analytically tractable models such as convex, Lambertian objects. As
discussed above, for such simple models, interesting qualitative statements can be made about the
gross shape of C0.

The cone C0 can be interpreted as the set of all images of the object under different distant
lighting conditions. Intuitively speaking, we expect the problem of representing images y under
different illuminations to be more challenging when the light has a stronger directional component.
To capture the relative contribution of directional and ambient components of light, we introduce a
family of function classes Fα, indexed by parameter α ∈ [0,∞). Illuminations in Fα consist of an
ambient component αω, where ω(u) = 1/area(S2) is the constant function on the sphere, and an

1To be clear, we call f Riemann integrable iff it is integrable in spherical coordinates: writing W = [0, 2π]× [0, π]
and η : W → S2 via η(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ), f is Riemann integrable iff f ◦η sinφ is Riemann integrable
as a function on W ⊆ R2. We let

∫
u f(u)du =

∫
W f ◦ η sinφd(θ, φ), where the right hand side is a Riemann integral.

We reserve the related notation
∫
f(u)dσ(u) for the (Lebesgue) integral with respect to the spherical measure. When

f ∈ F , these two integrals coincide.
2This model neglects saturation and quantization.

3



  

  

Figure 1: Ambient level α. Left: typical images from the cone Cα, for ambient levels α = 0 up to
α = 5. In each example fd is an extreme directional illumination. Images rendered from [SSTB12].
Right: illumination cones Cα with varying ambient level α.

arbitrary (possibly directional) component fd:

Fα =
{
fd + αω | fd ∈ F , ‖fd‖L1

≤ 1
}
, (2.1)

For each ambient level α, we have a cone

Cα
.
= R+ · y[Fα]. (2.2)

For any α ≤ α′, Cα′ ⊆ Cα. In this sense, the choice of α induces a tradeoff: as α becomes smaller,
Cα becomes more complicated to compute with, but can represent broader illumination conditions.
Our complexity bounds in Section 5 will make this intuition precise. Figure 1 shows rendered images
of a face under various ambient levels α ≥ 0. Our methodology is compatible with any choice of
α > 0.

Verification using Convex Cones. Our methodology asks the system designer to select a target
level of ambient illumination α, and hence choose a target cone C = Cα. At test time, we are given
a new input image y ∈ Rm. The verification problem asks us to decide if y could be an image of
object O: Is y an element of C? Real images contain noise and other imperfections. Hence, in
practice, it is more appropriate to ask whether y is sufficiently close to C. The distance from y to
C in `2-norm is

d (y, C)
.
= inf {‖y − y′‖2 | y′ ∈ C} .

Any cone C is nonnegatively homogeneous: if z ∈ C, tz ∈ C for all t ≥ 0. To obtain a criterion
for verification which is scale invariant, rather than working directly with the distance d(y, C), we
work with the angle

∠ (y, C)
.
= asin

(
d (y, C)

‖y‖2

)
.

This leads to a simple, natural criterion for verification:
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Figure 2: Two detection rules. The angular detector accepts points based on their angle with
the cone C. An approximate angular detector guarantees to accept any point within angle τ of C,
and to reject any point with angle greater than (1 + η)τ . In the intermediate region (white) there
are no restrictions on its behavior.

Definition 2.1. The angular detector (AD) DC
τ : Rm+ → {ACCEPT, REJECT} with threshold

τ is the decision rule

DC
τ (y) =

{
ACCEPT ∠ (y, C) ≤ τ,
REJECT ∠ (y, C) > τ.

(2.3)

This rule has a simple interpretation: we accept y if and only if it can be interpreted as an image
of O plus a noise perturbation, and the signal-to-noise ratio is sufficiently large.

If C is a polyhedral cone, the decision rule (2.3) can be implemented via nonnegative least squares.
This is efficient if the number n of extreme rays of C is small. If O is a convex polyhedron with only a
few faces, this is the case. However, in general, the number of extreme rays in a V(vertex)-description
can be large or even unbounded.3 One remedy is to relax the definition slightly:

Definition 2.2. f : Rm+ → {ACCEPT, REJECT} is an η-approximate angular detector
(η−AAD) if

f(y) =

{
ACCEPT ∠ (y, C) ≤ τ,
REJECT ∠ (y, C) > (1 + η) τ.

(2.4)

We let D̂Cτ,η denote the set of all such f .

Figure 2 displays the AD and its η-relaxation. We can regard η-AAD as a relaxed version of
AD in the sense that when ∠ (y, C) ∈ (τ, (1 + η) τ ], no demands are placed on the output of

the algorithm. This buffer zone allows us to work with a surrogate cone Ĉ with much simpler
structure, enabling computationally tractable (even efficient!) verification. For example, if we

3For convex, Lambertian objects, in a point sampling model of image formation, the best known bound on the
number of extreme rays in a V-representation of C is quadratic in the number of image pixels: n = O(m2) [BK98].
For nonconvex objects or more realistic sampling models, C may not even be polyhedral.
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form a polyhedral approximation Ĉ = cone(Â), the distance to Ĉ is just the optimal value of the
nonnegative least squares problem

d(y, Ĉ) = min
x≥0
‖y − Âx‖22. (2.5)

To implement the angular detector DĈ
ξ for Ĉ, we just need to solve (2.5) and compare the optimal

value to a threshold.
It should come as no surprise that whenever Ĉ approximates C sufficiently well, we have detector

DĈ
ξ ∈ D̂Cτ,η, with ξ chosen appropriately. In words, applying the angular test with Ĉ gives an

approximate angular detector for the original cone C. To make this precise, we need a notion of
approximation. We will work with the following discrepancy δ:

δ
(
C, Ĉ

)
= max

{
sup

y∈C,‖y‖=1

d(y, Ĉ), sup
y∈Ĉ,‖y‖=1

d(y, C)

}
. (2.6)

This is just the Hausdorff distance between C ∩B(0, 1) and Ĉ ∩B(0, 1). It therefore satisfies the
triangle inequality: ∀ C̄,

δ(C, Ĉ) ≤ δ(C, C̄) + δ(C̄, Ĉ). (2.7)

If δ(C, Ĉ) is small, we indeed lose little in working with Ĉ:

Lemma 2.3. Given cone C, τ > 0 and η ≥ 0 with (1 + η) τ ∈
(
0, π2

)
, and another cone Ĉ, we have

DĈ
ξ ∈ D̂Cτ,η whenever

δ
(
C, Ĉ

)
≤ 1

2 (sin (τ + ητ)− sin τ) (2.8)

and
ξ ∈

[
asin

(
sin τ + δ

(
C, Ĉ

))
, asin

(
sin (τ + ητ)− δ

(
C, Ĉ

))]
. (2.9)

Proof. Please see Appendix A.

So, if δ(C, Ĉ) is small, we can simply apply an angular test with cone Ĉ, and this will implement an
approximate angular detector for C. Notice that whenever (2.8) is satisfied, we may satisfy (2.9) by
setting ξ = asin

(
1
2 sin τ + 1

2 sin(τ + ητ)
)
.

Goals and Methodology. From the above discussion, if we want to provide a detector that
guarantees to accept any image that has a valid interpretation as an image of the object under
some lighting f ∈ Fα, and reject any image that cannot be plausibly interpreted as an image
under f ∈ Fα, it is enough to build an approximation Ĉ to the cone Cα, and the correct notion of
approximation is the Hausdorff distance. The question, then, is how to build such an approximation:
how complicated does Ĉ have to be to guarantee δ(Ĉ, Cα) ≤ γ? This leads to a way of formalizing
several fundamental questions in illumination-robust detection and recognition: What information
do we need to guarantee robust verification performance? How does this sample complexity depend
on the complexity of the class of illuminations the system must handle? How does it depend on the
properties of the object?

In the sequel, we will show how to build a V-approximation C̄ = cone(Ā) to Cα, where Ā ∈ Rm×n
is a matrix whose columns are images under point illumination. The underlying question is how
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large n needs to be, in terms of ambient illumination level α and the desired quality of approximation
ε. We will show that for Lambertian objects,

n(α, ε) =
const(sensor, object)

α4ε4
(2.10)

examples suffice. The numerator depends only on physical properties of the object and of the imaging
system, which we will make precise below. It is worth remarking that the fact that a polynomial
dependence on ε−1 is possible at all can be considered remarkable here – this is certainly not the
case for general high-dimensional convex cones. The reason that such a result is possible at all is
that the extreme rays of our cone of interest will turn out to have much lower dimensional structure:
they are generated by point illuminations, which are indexed by the sphere. Turning this intuition
into a rigorous result will require a detailed analysis of the extreme rays of C, which we carry out
below.

Section 3 characterizes the extreme rays of the cone Cα. Section 4 describes our imaging model
in detail. Section 5 describes several new perturbation bounds which lead to the estimate of sample
complexity (2.10). In Section 6, by solving a convex optimization problem, we form cone Ĉ, a

γ-approximation to C̄, but with much lower complexity. From (2.7), our resulting cone Ĉ (ε + γ)-

approximates Cα: δ(Cα, Ĉ) ≤ ε+ γ. Finally, Section 7 presents several numerical experiments.

3 Extreme Rays of Cα

In the previous section, we saw that for guaranteed verification with a cone C, it was enough to
approximate that cone in Hausdorff sense. For computational purposes, perhaps the most natural
approximation is a V (vertex) approximation – we would like to write C̄ = cone

(
Ā
)

for some matrix
Ā. To this end, we need to characterize the extreme rays of Cα, for α ≥ 0. We will see below4 that
for our models of interest, the linear function y[f ] can be written as

y[f ] =

∫
u∈S2

ȳ[u] f(u) du, (3.1)

where ȳ : S2 → Rm is a continuous function. In this expression, we have used the natural extension
of the Riemann integral to vector-valued functions on the sphere, which simply integrates each of
the m coordinate functions.

We begin by characterizing the extreme rays of C0 = y[F ]. These turn out to simply be the
vectors ȳ[u]:

Lemma 3.1. Suppose that the imaging map y satisfies (3.1), with ȳ[·] : S2 → Rm continuous. Then
if C0 = y[F ],

δ
(
C0 , cone

({
ȳ[u] | u ∈ S2

}) )
= 0. (3.2)

Proof. Please see Appendix B.

In the physical imaging models we consider, the ȳ[u] can be considered images of O under point
illumination from direction u. With this interpretation, the previous lemma simply asserts that any
image y[f ] under distant, Riemann integrable illumination f can be arbitrarily well approximated

4For a rigorous argument, please see section 5.

7



using a conic combination of images under point illumination.5 The conic hull of these extreme
images is equal to the cone C0 of images of O under arbitrary Riemann integrable illumination, up
to a set of measure zero.

We would like a similar expression that works when the ambient level is larger than zero – we
would like to also approximate the extreme rays of Cα. The following lemma says that that we can
use images of the form y̆[u] = ȳ[u] + αya, where ya is the image of O under ambient illumination:

Lemma 3.2. Suppose that y[f ] satisfies (3.1) with ȳ[·] continuous. Set y̆[u] = ȳ[u] + αya, with

ya =
1

area(S2)

∫
u

ȳ[u] du, (3.3)

and C̆ = cone
({
y̆[u] | u ∈ S2

})
. Then, we have δ(Cα, C̆) = 0.

Proof. Please see Appendix B.

This lemma says that to work with Cα, we can simply work with a modified set of extreme images
y̆[u], which are sums of images under point illumination and the ambient image ya. We still need
to build a computationally tractable representation for Cα. A natural approach is to discretize the
set of illumination directions, by choosing a finite set u1, . . . ,uN . The following lemma asserts that
as long as the ȳ[ui] can approximate any point illumination ȳ[u] in an absolute sense, the cone
generated by the finite set and the cone Cα will not differ too much:

Lemma 3.3. Let C̄ = cone (y̆[u1], . . . , y̆[uN ],ya), and

δ(Cα, C̄) = δ(C̆, C̄) ≤
2 supu∈S2 mini ‖ȳ[u]− ȳ[ui]‖2

η?α ‖ya‖2
. (3.4)

here η? = sup‖w‖2≤1 infu

〈
w, y̆[u]
‖y̆[u]‖2

〉
≥ m−1/2 measures the angular spread of Cα.

Proof. Please see Appendix B.

This substantially simplifies the problem of approximating Cα: to control the error over all
possible images, it is enough to control the error over images under point illumination. Below,
we will see that this is possible, even for nonconvex objects, provided the object’s reflectance is
Lambertian.

4 Physical Assumptions: Lambertian Objects

We will introduce a set of hypotheses on the object and the image formation process. Under these
hypotheses, we obtain rigorous bounds for the error ‖ȳ[u]− ȳ[u′]‖2 incurred by approximating an
image ȳ[u] under point illumination u with another image ȳ[u′] under point illumination u′. From
the results in the previous sections, a good approximation of images under distant point illumination
will be sufficient to ensure a good approximation to the cone of all images of the object under distant
illumination in Hausdorff sense.

5Informal variants of Lemma 3.1 are stated in many previous works in this area; see, e.g., [BK98].
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Figure 3: Cone Approximation: Cα (left) and its V-approximation (right).

Object Geometry. Our bounds pertain to triangulated objects, whose boundary is a union of
finitely many oriented triangles:

Definition 4.1 (Triangulated object). We say that O ⊂ R3 is triangulated if for some integer N ,

∂O = ∪Ni=1∆i,

∀ i, ∆i = conv
{
v

(1)
i ,v

(2)
i ,v

(3)
i

}
, dim(∆i) = 2,

∀ i 6= j, ∆i ∩∆j ∈ {∅} ∪ V ∪ E ,

where where V and E are sets of vertices and edges:

V =
{{
v

(k)
i

}
| i ∈ [N ], k ∈ [3]

}
, E =

{
conv

{
v

(k1)
i ,v

(k2)
i

}
| i ∈ [N ], k1 6= k2

}
,

and each face ∆i has a unique outward normal ni ∈ S2.

This geometric assumption captures most of the object models that are interesting for computer
graphics and vision. Notice that N above can be arbitrarily large – and hence this model can
approximate smooth objects.

The normal vectors ni play an important role in describing how light interacts with the object.
If we let

Φ =
⋃
∆i

relint (∆i) (4.1)

be the union of the relative interiors of faces of the object, for x ∈ Φ, the outward normal n is
uniquely defined, and we can write it as n(x) ∈ S2. We write

E
.
= ∂O \ Φ =

⋃
e∈E

e (4.2)

for the remaining points. This is the set of all points contained in some edge e.
We will introduce two indicator functions that describe how object obstructs the “view” from a

given point x ∈ ∂O:
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• The point-direction visibility indicator ν : ∂O×S2 → {0, 1} indicates those directions u, which
when viewed from point x, are not obstructed by other points of the object:

ν(x,u) =

{
1 ({x}+ R+u) ∩ O = {x} ,
0 else.

(4.3)

• The point-point visibility indicator V : ∂O × ∂O → {0, 1} indicates those point pairs (x,x′) ∈
∂O × ∂O that are mutually visible:

V (x,x′) =

{
1 [x,x′] ∩ O = {x,x′} ,
0 else.

(4.4)

Integrating on ∂O. To clearly describe how light interacts with the object O to produce an
image, we need to be able to integrate on ∂O. This is conceptually straightforward. In this section,
we simply introduce notation for this integral; a detailed construction is given in Appendix C. There,
we formally construct a measure space (Φ,Σ∂O, µ∂O). For g : ∂O → R, the Lebesgue integral with
respect to this measure will be written as∫

g(x) dµ∂O(x). (4.5)

We can define a vector space

L2[∂O] =
{
g : ∂O → R | g2 is integrable

}
. (4.6)

For g ∈ L2[∂O], we define

‖g‖L2

.
=

(∫
g(x)2 dµ∂O(x)

)1/2

. (4.7)

Object Reflectance. We will consider a Lambertian reflectance model. In this model, the object
is fully described by its geometry and its albedo

ρ : ∂O → (0, 1], (4.8)

which is the fraction of incoming light that is reflected at each point x ∈ ∂O. We assume that the
albedo is positive everywhere, and that it is Σ∂O-measurable. In the Lambertian model, the key
quantity linking the illumination f and the image y is the outgoing irradiance (radiosity) at each
point x ∈ ∂O:

g : ∂O → R+. (4.9)

Informally speaking, the irradiance g(·) is generated as follows: light from the source impinges on
the surface of the object; some is absorbed, while some is reflected. This reflected light can itself
illuminate the object, as can further reflections of the reflected light. Then the map from distant
illumination f to outgoing irradiance g can be described in terms of two operators.

The direct illumination operator D : L2[S2]→ L2[∂O] describes the object’s reflectance after
the first bounce of light from illumination function f(u):

D [f ] (x) =

∫
D̄[u](x) f(u) dσ(u), x ∈ Φ. (4.10)

10



Here, σ(·) is the spherical measure. For Lambertian objects, direct reflectance under point illumi-
nation D̄ can be expressed as:

D̄[u](x) =

{
ρ(x)〈n(x),u〉+ν(x,u) x ∈ Φ,

0 else.
(4.11)

The interreflection operator T : L2[∂O] → L2[∂O] describes how light reflected off the object
illuminates the object itself again:

T [g](x) =

{∫
κ(x,x′)g(x′) dµ∂O(x′) x ∈ Φ

0 x ∈ E = ∂O \ Φ,
(4.12)

where the kernel κ is given by

κ(x,x′) =
ρ(x)

π

〈n(x′),x− x′〉〈n(x),x′ − x〉
‖x− x′‖4

V (x,x′). (4.13)

For all of the models that we consider, the operator norm of T will be strictly smaller than one,
and so the operator I − T will be invertible. Under this assumption the outgoing irradiance on the
surface of the object can be written as a convergent series

g[f ] = D [f ] + T D [f ] + T 2D [f ] + . . .

= (I − T )−1D [f ] . (4.14)

Sensor Model. We consider a perspective camera, with a thin lens model commonly adopted in
computer vision with focal length fc and lens diameter dc [Hor86].6 We assume the imaging sensor
is composed of m non-overlapping squares Ii with side length sc, then the value of the i-th pixel is
generated by integrating the irradiance over region Ii:

yi = Pi[g]
.
=

γc
4

(
dc
fc

)2 ∫
z∈Ii

g(p−1(z))

〈
z

‖z‖2
, e3

〉4

dµ(z). (4.15)

Here, p represents perspective projection; its inverse maps an image point to the corresponding point
on ∂O and γc is the camera gain. Combining the expressions for pixels 1 . . .m, we can describe the
image vector as a whole as a linear function of g via

y = P[g] =

 P1[g]
...

Pm[g]

 ∈ Rm. (4.16)

6The main idealization in the model (4.15) is that it neglects defocus due to depth. In fact, our methodology
is compatible with more sophisticated imaging models, as well as simpler idealizations such as orthographic models.
However, the bounds claimed in Lemma 5.5 will change.
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The Imaging Operator. Combining the definitions and descriptions in the previous paragraphs,
we can give a description of the imaging operator y[f ] as whole. When ‖T ‖ < 1 (i.e., the object is
not perfectly reflective), we have

y[f ] = P
∞∑
i=0

T iD(f) = P(I − T )−1D[f ]. (4.17)

Using the definition of D [·] and D̄[·], we have

Lemma 4.2. Under the imaging model (4.17), with P as in (4.16), T as in (4.12) and D as in
(4.11), if ‖T ‖L2→L2 < 1, then for any Riemann integrable f we have

y[f ] =

∫
ȳ[u] f(u) du, (4.18)

with
ȳ[u] = P(I − T )−1D̄[u]. (4.19)

The quantity ȳ[u] ∈ Rm in Lemma 4.2 can be interpreted as the image of O under point illumination
from direction u. We will see below that under reasonable hypotheses, ȳ[u] is continuous in u. From
Lemma 3.3, if we can approximate these ȳ[u] well, we will well-approximate the cone as a whole.

This proof of the lemma uses Fubini’s theorem and monotone convergence to change the order
of intergration, and then uses the fact that ȳ[u] is continuous in u to conclude that the integrand
in (4.18) is Riemann integrable. The continuity of ȳ[·] will follow from perturbation bounds in the
next section. In Appendix D, we use these results to give a formal proof of Lemma 4.2.

5 Perturbation Bounds and Sufficient Sample Densities

Based on the assumptions laid out above, we will discuss the properties of the linear operators P,
T , and D, and show how to control ‖ȳ[u]− ȳ[u′]‖2 in terms of ‖u− u′‖2. The relationship between
ȳ[u] and u obviously depends on detailed properties of the object O. In particular, it depends on
two complementary quantities measuring the nonconvexity of O:

The pointwise visibility is fraction of directions that are visible at point x, weighted by 〈n,u〉:

ν̃(x)
.
=

1

π

∫
〈u,n(x)〉≥0

〈n(x),u〉 ν(x,u) dσ(u) ∈ [0, 1]. (5.1)

here ν is the point-direction visibility indicator function in equation (4.3).

  

Figure 4: Pointwise Visibility ν̃(x)
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The pointwise visibility ν(x) is a localized nonconvexity measurement, depending on properties of
the object perceived from a point x: smaller value of this quantity suggests more complex geometry
around x. For convex objects, ν(x) = 1 for any point x ∈ ∂O.

The other crucial quantity is the total length of the edges that cast shadows on O itself, when O is
illuminated from direction u. We call this the gnomon length associated with direction u.7 We
reserve the notation χ[u] for the collection of edges that cast shadows, when the object is illuminated
from direction u. We will define this quantity formally in the next section, after we have introduced
some necessary technical machinery. For now, Figure 5(left) gives a visual example of χ[u]: the
edges in this set are highlighted in yellow.

  

Figure 5: Shadowing Edges χ[u] (yellow) under point illumination u (red), with corresponding
image on the right.

Compared to ν(x), χ[u] is a more global measurement of nonconvexity, depending on the overall
geometry of the object: longer shadowing edges length implies more apparent cast shadows. For
convex objects, χ[u] = 0 always holds for any illumination direction u ∈ S2. For nonconvex objects,
this quantity helps to bound the change in the image induced by cast shadows, which is a source of
considerable difficulty. To state our results more precisely, we begin by introducing some notations
and technical machinery for reasoning about the boundary of the shadow region.

5.1 Shadow Boundaries

Under lighting direction u, the region that is shadowed (not illuminated) is8

S[u]
.
= supp

(
D̄[u]

)c
.

We would like to talk about the boundary of the shadowed region. The follow lemma, which says
that the shadowed region S[u] is closed in the relative topology on ∂O, allows us to do so:

Lemma 5.1. For all u ∈ S2, S[u] ⊆ ∂O is a relatively closed set.

Proof. Please see Appendix E.

7The “gnomon” is the part of a sundial that casts the shadow.
8Here, the support supp (f) = {x | f(x) 6= 0} of a function is its set of nonzeros.
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With this in mind, we can let
∂S [u]

.
= relbdy(S[u]) (5.2)

denote the shadow boundary, and note that ∂S [u] ⊆ S[u]. Points on the shadow boundary ∂S [u]
can be separated into those that come from cast shadows and those that come from attached shadows.
For x ∈ ∂O and u ∈ S2, let

t?(x,u)
.
= inf {t > 0 | x− tu ∈ ∂O} ∈ [0,+∞], (5.3)

t?(x,u)
.
= inf {t > 0 | x+ tu ∈ ∂O} ∈ [0,+∞], (5.4)

where we adopt the standard convention that the infimum of the empty set is +∞. We set

xu = x− t?(x,u)u, ∀ (x,u) s.t. t?(x,u) < +∞. (5.5)

xu = x+ t?(x,u)u, ∀ (x,u) s.t. t?(x,u) < +∞. (5.6)

We call xu the shadow projection of x along direction u, and xu the shadow retraction of x along
direction u. For light direction u, the physical interpretation of the shadow projection of x is that
it is the first point that is shadowed by x. Conversely, the shadow retraction is the first point that
could cast a shadow on x. In particular,

ν(x,u) = 0 ⇐⇒ t?(x,u) < +∞. (5.7)

Notice that because O is closed, whenever they exist, we have xu ∈ ∂O and xu ∈ ∂O.
The notion of a shadow retraction allows us to associate to each point x that lies in a cast

shadow a point xu which prevents the source from directly illuminating x. In particular, if x is
in the boundary of a cast shadow, we will see that xu is necessarily an edge point: xu ∈ E. The
following technical lemma carries this through precisely:

Lemma 5.2. Set C[u]
.
= ∂S[u] ∩ Φ. Then for each x ∈ C[u], xu exists. If we let χ[u]

.
=

{xu | x ∈ C[u] }, then χ[u] ⊆ E.

Proof. Please see Appendix E.

The physical interpretation is that C[u] contains the boundaries of the cast shadows. χ[u] consists
of those edges that cast the shadows. The important (and physically quite intuitive) point here is
that every point on the boundary of a cast shadow can be identified with an edge point in χ[u] ⊆ E.
Hence, it is meaningful to talk about the length of the collection of points χ[u] that cast shadow
edges.

5.2 Perturbation bounds

With all the definitions above, we are ready to show how our bounds are phrased in terms of the
extreme values of three physical quantities:

Maximum length of shadowing edges: χ?
.
= sup

u∈S2

length (χ[u]) , (5.8)

Minimum visibility: ν?
.
= inf

x∈∂O
ν̃(x) ≥ 0, (5.9)

Maximum albedo: ρ?
.
= sup

x∈∂O
ρ(x) ≤ 1. (5.10)
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For convex objects, ν? = 1 and χ? = 0. For general objects, 1 − ν? and χ? can be interpreted as
measures of nonconvexity. In terms of these quantities, we obtain perturbation bounds on D̄, T and
P, which can be combined to bound the error in approximating ȳ[u]:

Theorem 5.3 (Perturbation of direct illumination). Suppose that O is a triangulated object, and
ρ(x) : ∂O → (0, 1] is strictly positive. Let D̄[u] ∈ L2[∂O] be as in (4.11). Then for all u,u′ ∈ S2

with ‖u− u′‖2 ≤
√

2, we have∥∥D̄[u]− D̄[u′]
∥∥2

L2 ≤ 2 ρ2
? area(∂O) ‖u− u′‖22 + 32

√
2 ρ2

? diam (O)χ? ‖u− u′‖2 . (5.11)

If O is convex, we have the tighter bound∥∥D̄[u]− D̄[u′]
∥∥2

L2 ≤ ρ2
? area(∂O) ‖u− u′‖22 . (5.12)

The first term of (5.11) accounts for continuous changes induced by 〈n(x),u〉+. The second term
accounts for nonsmooth changes due to cast shadows, which are reflected in the term ν(x,u). The
proof of Theorem 5.3 is somewhat technical. We delay it to Appendix F.

After direct illumination, the object is also subject to interreflection, T . This operator is also
bounded:

Lemma 5.4. The operator T satisfies ‖T ‖L2→L2 ≤ ρ? · (1− ν?).

We prove this bound in Appendix G. In practice, ν? is bounded away from zero, and ρ? is bounded
away from one. This implies that ‖T ‖L2→L2 < 1, and∥∥(I − T )−1

∥∥
L2→L2 ≤ (1− ρ? · (1− ν?))−1. (5.13)

This inequality controls the total effect of interreflection for all bounces. For convex objects, ν? = 1,
and T does not participate in the image formation process.

At last, the effect of projection and sampling can be controlled in terms of the properties of the
sensor:

Lemma 5.5. Under our sensor model, let ` = min {〈e3,x〉 | x ∈ O} be the depth of the object, and

set βc = γc
4
d2
c

f2
c

. The projection and sampling operator P satisfies

‖P‖L2→`2 ≤ 21/4 βcfcsc/`. (5.14)

Finally, putting these three bounds together, we obtain a perturbation for the images ȳ[·] of O
under point illumination below:

Theorem 5.6. Under our hypotheses, for any u, u′ ∈ S2 with ‖u− u′‖2 ≤
√

2,

‖ȳ[u]− ȳ[u′]‖2 ≤ 21/4 βcρ?fcsc
`(1− ρ?(1− ν?))

×
(

2 area(∂O) ‖u− u′‖22 + 32
√

2 diam (O)χ? ‖u− u′‖2
)1/2

,
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Number of Sample Images. To our knowledge, Theorems 5.3-5.6 are new, and could be useful
for other problems in vision and graphics. This bound depends only on properties of the object
and imaging system that can be known or estimated. In conjunction with Lemma 3.3, it gives a
guideline for choosing the sampling density that guarantees a representation that works for every
illumination f ∈ Fα.

In particular, as ‖u− u′‖2 → 0, Theorem 5.6 suggests that ‖ȳ[u]− ȳ[u′]‖2 is proportional

to ‖u− u′‖1/22 . We can deduce that for guaranteed ε-approximation verification with ambient
illumination level α, it would require

n(α, ε) =
const(sensor, object)

(αε)4
(5.15)

sample images – polynomial in the approximation error ε, ambient level α and dimension m. This
is possible due to the very special structure of the extreme rays ȳ[u] of Cα: they lie on a subman-
ifold of dimension 2. In contrast, general cone approximation in Rm requires a number of samples
exponential in m [BI76].

6 Cone Preserving Complexity Reduction

Although the sample complexity n(α, ε) in (5.15) is polynomial in ε−1, it can still be very large.
This makes working directly with the dictionary Ā ∈ Rm×n problematic in practice. Hence, we
would like to find a surrogate Â that is structured in such a way as to enable efficient computation,
while still belonging to the set

Ω0
.
=
{
Â∈Rm×n

∣∣∣ δ (cone(Ā), cone(Â)
)
≤γ
}

(6.1)

for guaranteed verification. If Â can be expressed as L+S, where L has rank r and S has k nonzero
entries, product Âx can be computed in time O((m+n)r+k), much smaller than O(mn). Empirical
evidence suggests that this model gives a good approximation for images under varying illuminations
(Figure 6): the low-rank term captures the smooth variations [BJ03], while cast shadows are often
sparse [WYG+09]. The effectiveness of such model has been noted, e.g., in [CLMW11], and exploited
for robust photometric stereo by [WGS+10].

Figure 6: Low Rank + Sparse Decomposition. Left: input Ā. Middle: low-rank term L.
Right: sparse term S.

To build a framework for complexity reduction with guaranteed approximation quality, we start
with the following problem, which seeks the lowest-complexity pair (L,S) that suffice for guaranteed
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verification:

min(L,S) rank (L) + λ‖S‖0
s.t. L+ S = Â ∈ Ω0. (6.2)

Note that the constraint illustrates a basic difference between our setting here and all of the afore-
mentioned works on low-rank and sparse recovery. Previous works aimed at statistical estimation
of L and S, and hence worked with simple constraints of the form

∥∥L+ S − Ā
∥∥
F
≤ ε. Here,

we care about preserving the performance guarantee for detection – in particular, ensuring that
cone (L+ S) and cone

(
Ā
)

are close in Hausdorff sense. This forces us to work with a more compli-
cated set Ω0 of matrices, giving a very different optimization problem. The following result shows
how to convexify Ω0, to obtain a tractable convex optimization problem whose solution is guaranteed
to well-approximate cone

(
Ā
)
, in the sense required by the application.

One immediate relaxation is to replace nonconvex objectives rank and `0-norm with their convex
envelope nuclear norm ‖ · ‖∗ (sum of all singular values) and the `1-norm (sum of absolute values of
all entries) respectively. For the nonconvex domain Ω0, we will instead work on one of its convex

subsets Ω1, which is defined via a bound on a supremum of convex functions of Â as follows:

Lemma 6.1. If γ′ ≤ γ
γ+1 , we have Ω1 ⊆ Ω0, where

Ω1
.
=

{
Â∈Rm×n

∣∣∣∣∣ max
x≥0,‖Āx‖

2
≤1

∥∥∥Āx− Âx∥∥∥
2
≤ γ′

}
. (6.3)

While Ω1 is convex, it does not have a tractable description, because of the quadratic maxi-
mization involved. We use a standard lifting trick, writing X = xxT � 0, to relax this quadratic
maximization to a (convex) linear maximization over a semidefinite unknown X. This gives an
upper bound on the maximum in (6.3), giving another convex subset Ω2 ⊆ Ω1, which does admit a
tractable representation:

Lemma 6.2. Consider

Ω2
.
=

{
Â∈Rm×n

∣∣∣∣ max
X∈X

〈
(Â− Ā)T (Â− Ā), X

〉
≤ (γ′)2

}
,

where X .
=
{
X∈Rn×n

∣∣∣X ≥ 0, X � 0,
〈
Ā
T
Ā, X

〉
≤ 1
}
. Then we have Ω2 ⊆ Ω1.

Finally, we reformulate Ω2 via the dual problem of maxX∈X

〈
(Â− Ā)T (Â− Ā),X

〉
:

Theorem 6.3. Let (L?,S?) solve

min(L,S,µ) ‖L‖∗ + λ‖S‖1

s.t.
[

I L+S−Ā
(L+S−Ā)

T
γ̄ĀT Ā−µ

]
� 0, µ ≥ 0. (6.4)

with γ̄ = (γ′)2 ≤ ( γ
1+γ )2, then δ

(
cone(Ā), cone(L? + S?)

)
≤ γ.
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In contrast to existing matrix decompositions (e.g., [CSPW11, CLMW11]), which aim at statis-
tical estimation, and measure quality of approximation in Frobenius norm, we guarantee approxima-
tion in Hausdorff distance δ(·, ·). This is precisely the measure required for worst case verification.
We call (6.4) a cone-preserving low-rank and sparse decomposition. It can be computed
efficiently using the Linearized Alternating Direction Method of Multipliers (L-ADMM)([ZBBO10,
MXZ12]), which converges globally with rate O (1/k) [HY12]. We describe the numerical implemen-
tation and convergence theory associated with this approach in more detail in Appendix J.

7 Numerical Experiment

We render images from 3D triangulated object models following a simplified imaging process y[f ] =
PD[f ]. Thus, our simulations include cast shadows, but not interreflection.9 Camera parameters
γc = fc = dc = 1 and sc = 0.003 are fixed throughout our experiments.

Verifying the Perturbation Bound. We compare the bound in Theorem 5.6, denoted as
PerturbationBound(u,u′), to the actual difference ‖ȳ[u]− ȳ[u′]‖2 for three different object shapes.
The maximum ratio between those two quantities can be expressed as

r
.
= max

u,u′ adjacent

{
‖ȳ[u]− ȳ[u′]‖2

PerturbationBound(u,u′)

}
(7.1)

In our experiment, the set of point illuminations is generated using a uniform grid, θ = pi/360, 2π/360, . . .
and φ = π/360, 2π/360, . . . in spherical coordinates. Results are listed in Table 1: the ratio is always
bounded by 1, corroborating our theoretical results.

Object Vase Face Bunny

r 0.1809 0.0302 0.0290

Table 1: Tightness of the bounds. Largest ratio r between experimental observation and theo-
retical upper bound for three different objects. The bound holds in all cases, and is tightest for the
vase.

Order of Perturbation Bound. We next consider the behavior of our bounds when ‖u− u′‖2 →
0. Our bounds predict that in the worst case, the change in irradiance D̄[u] should be proportional

9This approximation neglects the nontrivial interreflection terms, T + T 2 + . . . . These terms are at most on the
order of ρ?, the maximum albedo. The approximation y[f ] = PD[f ] can be (loosely) considered to be the limiting
case as ρ? becomes small. Here, we make this approximation to make it easier to efficiently simulate the imaging
process.
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to ‖u− u′‖1/22 . We investigate this using a toy object composed of two perpendicular surfaces
S1 and S2 shown in Figure 7 with u fixed, and u′ changing slowly. Figure 7 (right) shows how∥∥D̄[u′]− D̄[u]

∥∥ depends on ‖u− u′‖2. Both the theoretical prediction and the computed value

appear to be proportional to ‖u− u′‖1/22 .10 This suggests that in the worst case, our theory may be
tight up to constant factors. The theoretical prediction curve neglects constants, and simply draws
diam (O)× χ? ×

√
‖u− u′‖2.

Toy Object
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Figure 7: Order of Perturbation Bound. Here, in both theory and simulation the change in

D̄[u] is proportional to ‖u− u′‖1/2.

Cone Preserving Complexity Reduction. We demonstrate the ability of our solution to (6.4)
to reduce the complexity of the representation, while preserving the conic hull. We start with n = 648
images of a face under point illuminations, with resolution 40×40. We solve the low-rank and sparse
cone approximation problem in Theorem 6.3 for varying cone distances γ with λ simply chosen as√

max(m,n). Figure 8 plots the ratio complexity of Â and A, or (m+n)r+s
mn , where r is the rank of

the recovered low-rank term and s is the number of nonzero entries in the recovered sparse term.
The decomposition reduces the complexity in all cases; the reduction becomes more pronounced as
α increases. This is expected, since the cone Cα becomes smaller as α increases. This reduction
in complexity suggests that although the number of extreme rays is large, there may be quite a bit
of additional structure across the extreme rays, that could be exploited by more sophisticated cone
constructions.

Application Sketch. To conceptually justify the advantage of our cone approximation methodol-
ogy in verification under poor illumination conditions, we compare the receiver operating character-
istic (ROC) curves for 5 verification dictionaries obtained from same 3D face model under ambient
level α = 0.1: convex cone C1 composed of 2592 images, corresponds to the ε-approximation of the
original illumination cone; C2 is the γ-approximation of C1 with L + S structure (γ = 0.11); C3

is rendered under 19 illumination directions corresponding to subsets 1 and 2 of Yale B [GBK01]
(roughly, the setting of [WYG+09]); C4 is rendered under all 64 illumination directions considered

10In Figure 7, we rescale the theoretical prediction for clearer comparison – our goal is only to show that the
exponent is 1/2.
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Figure 8: Cone Complexity Reduction for different nonconvex objects under zero ambient level
(α = 0) (left) and for face under different ambient illumination levels (right).

in [GBK01]. Finally, motivated by [BJ03], we also consider the subspace S spanned by 9 principal
components of C1.
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Figure 9: ROC Curves for different dictionaries, with test images under uniform random illu-
mination (left) and extreme illumination (right). The dictionaries are C1: ε approximation, C2:
low-rank and sparse approximation, C3-C4: point illuminations distributed similar to [GBK01], S:
nine-dimensional linear subspace.

Our test data consist of 1,000 positive images under 1,000 illumination directions and 3,000
negative images of 3 other subjects. We consider two distributions for the illumination directions
– uniform on the sphere (roughly corresponding to the “average case”), and uniform on the set of
u ∈ S2 for which −0.1 ≤ u3 ≤ 0.4. Here, the u3 axis is the camera axis. Arguably, the second set
is more challenging. Figure 9 shows the ROC for a simple verification test based on the distance
to the models. As suggested by our theoretical results, both C1 and C2 perform almost perfectly.
The simpler models C3, C4, S perform better than chance, but still break down frequently. We view
this result as illustrating a tradeoff in illumination representation: uniformly good performance is
possible, if we can afford a more complex representation. The cone preserving low-rank and sparse
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decomposition gives a way to control the complexity of the representation, while still maintaining
this good performance.

8 Discussion

There are several directions for future work. Although our cone construction scheme guarantees
worst case verification, the number of samples required is likely to be very large, in particular for
small ε: when ε = 0.01, our theorem requires about 1025 images under ambient level α = 1. Our
experiments on complexity reduction suggest that there should exist a simpler representation, if we
can take advantage of the structure of shadows.

To use the results in a practical recognition system, we need to account for variations in object
pose as well. This can be done using local optimization heuristics, or simply building models at a
set of reference poses [GBK01]. It will be important to have very concise models for each pose; the
complexity reduction by convex programming is one means of achieving this.

Here, we have considered object instance verification, rather than object instance recognition.
The “yes/no” question in verification forces us to confront basic questions about the set of images
of the object. Nevertheless, we believe our methodology will be useful for recognition as well. For
example, one could build models Ĉ for each class and assigning the test sample to the closest model in
angle. For recognition problems, the formulations and goals for sampling and complexity reduction
may also change.

We anticipate three classes of practical application of our results. The first is in instance
detection/recognition using 3D models and 2D test images. The second is in instance detec-
tion/recognition with active acquisition of training data, e.g., in face recognition for access control
[WWG+12]. The final, more speculative application is in instance detection/recognition with large
families of objects with similar gross shape and appearance. In face recognition, learned models
for physical variabilities (albedo and illumination) are often used in conjunction with deformable
models [CET01]. In many practical settings, this approach mitigates the difficulties associated with
small training datasets – they can work with as few as one image [WZL+, ZYZ+13]. Our results
could give a way of learning a set of canonical illumination models, which capture effects such as
cast shadows, and which could be adapted to each new input subject.
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Appendix

A Proof of Lemma 2.3

Proof. For all y of norm one such that ∠ (y, C) ≤ τ , ∃ ȳ ∈ cl (C) with ‖y − ȳ‖ ≤ sin τ . Moreover,

‖ȳ‖2 ≤ 1. By (2.6), we know that ∃ ŷ ∈ cl
(
Ĉ
)

s.t. ‖ȳ − ŷ‖ ≤ δ
(
C, Ĉ

)
. By triangle inequality,

‖y − ŷ‖ ≤ sin τ + δ
(
C, Ĉ

)
, which implies that ∠

(
y, Ĉ

)
≤ asin

(
sin τ + δ

(
C, Ĉ

))
≤ ξ. Therefore

DĈ
ξ (y) = ACCEPT.

Conversely, if DĈ
ξ (y) = ACCEPT, then ∠

(
y, Ĉ

)
≤ ξ. If ‖y‖2 ≤ 1, this implies that there exists

ŷ ∈ cl
(
Ĉ
)

of norm at most one such that ‖ŷ − y‖2 ≤ sin(ξ). Moreover, from the definition of δ,

there exists ȳ ∈ C ∩B(0, 1) such that ‖ȳ − ŷ‖2 ≤ δ(C, Ĉ). By the triangle inequality,

‖y − ȳ‖ ≤ sin(ξ) + δ(C, Ĉ).

Moreover, if

asin
(

sin(ξ) + δ(C, Ĉ)
)
≤ (1 + η)τ, (A.1)

we have ∠(y, C) ≤ (1+η)τ . Hence, whenever (A.1) holds, for every y such that DĈ
ξ (y) = ACCEPT,

we have ∠(y, C) ≤ (1 + η)τ , and hence DĈ
ξ (y) = REJECT for all y with ∠(y, C) > (1 + η)τ . This

condition holds whenever
ξ ≤ asin(sin(τ + ητ)− δ(C, Ĉ)). (A.2)

Take together with the first paragraph, this condition and ξ ≥ asin
(

sin τ + δ(C, Ĉ)
)

imply that

DĈ
ξ ∈ D̂Cτ,η, which establishes our claim.

B Proofs from Section 3

The definition of the Riemann integral on R2 gives the following:

Lemma B.1. Let h : S2 → Rm be a vector-valued function which is nonnegative and Riemann
integrable. Then for every ε > 0, there exists N ∈ Z+, u1 . . .uN ∈ S2, and λ1 . . . λN ≥ 0 such that∥∥∥∥∥

∫
u∈S2

h[u] du −
N∑
i=1

λih[ui]

∥∥∥∥∥
2

≤ ε. (B.1)

Proof. Again letting W = [0, 2π] × [0, π], and let η(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ) denote the
spherical coordinate map. Consider a single coordinate j. From the definition of the Riemann
integral, we have ∫

u∈S2

hj [u] du =

∫
W

hj [η(θ, φ)] sinφ d(θ, φ), (B.2)
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where the right hand side is a Riemann integral on R2. For every η > 0, there exists a partition Πj

of [0, 2π]× [0, π] such that∑
R∈Πj

[
sup

(θ,φ)∈R
h̃j [η(θ, φ)] sinφ

]
vol (R)−η ≤

∫
u

hj [u] du ≤
∑
R∈Πj

[
inf

(θ,φ)∈R
h̃j [η(θ, φ)] sinφ

]
vol (R)+η.

Choose such a partition Πj for each j, and let Π = {R1, . . . , RL} be the common refinement. Then
for any choice of (θi, φi) ∈ Ri, we have∥∥∥∥∥

L∑
i=1

hj [η(θi, φi)] sinφi × vol (Ri)−
∫

(θ,φ)

h[η(θ, φ)] sinφ d(θ, φ)

∥∥∥∥∥
∞

≤ η. (B.3)

For all i ∈ I, set ui = η(θi, φi), and λi = vol (Ri) sinφi. Then∥∥∥∥∥
L∑
i=1

λih[ui]−
∫
u

h[u] du

∥∥∥∥∥
∞

≤ η. (B.4)

Setting η = ε/
√
m, we obtain the result.

Proof of Lemma 3.1. Below, we prove Lemma 3.1.

Proof. For notational convenience, let Ψ = cone
({
ȳ[u] | u ∈ S2

})
. Consider y0 ∈ C0. Then

y0 = y[f ] =
∫
u
f(u) ȳ[u] du, for some nonnegative, Riemann integrable f . The vector val-

ued function ȳ[u]f(u) is Riemann integrable. By Lemma B.1, for every ε > 0, there exists ŷε ∈ Ψ
with ‖y0 − ŷε‖2 ≤ ε. Hence,

y0 ∈ cl (Ψ) , (B.5)

and C0 ⊆ cl (Ψ).
We complete the proof by showing that Ψ ⊆ cl (C0). By continuity of ȳ[·], for any u0 ∈ S2, and

any ε > 0, there exists η > 0 such that

‖ȳ[u0]− ȳ[v]‖2 ≤ ε ∀v ∈ B(u0, η) ∩ S2, (B.6)

where B(u, r) is the `2 ball of radius r around u. Let fε : S2 → R via

fε(v) =
1

area(B(u0, η) ∩ S2)
1‖v−u0‖2 ≤ η. (B.7)

Then fε is Riemann integrable, and

‖y[fε]− ȳ[u0]‖2 =

∥∥∥∥∥ 1

area(B(u0, η) ∩ S2)

∫
‖u−u0‖≤η

ȳ[u]du − ȳ[u0]

∥∥∥∥∥
2

≤ 1

area(B(u0, η) ∩ S2)

∫
‖u−u0‖≤η

‖ȳ[u] − ȳ[u0]‖2 du

≤ 1

area(B(u0, η) ∩ S2)

∫
‖u−u0‖≤η

ε du

≤ ε. (B.8)

Since this is true for every ε > 0, ȳ[u] ∈ cl (C0), and so Ψ ⊆ cl (C0), completing the proof.
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Proof of Lemma 3.2. Below, we prove Lemma 3.2.

Proof. For f = αω + fd ∈ Fa, write

y[f ] =

∫
u

ȳ[u] f(u) du =

∫
u

ȳ[u](αω(u) + fd(u)) du (B.9)

= αya +

∫
u

ȳ[u]fd(u) du, (B.10)

= α (1− ‖fd‖L1) ya +

∫
u

y̆[u]fd(u)du. (B.11)

Repeating arguments in the proof of Lemma 3.1, and using that y̆[u] is continuous in u, we have∫
u

y̆[u] fd(u) du ∈ cl
(
cone

({
y̆[u] | u ∈ S2

}))
. (B.12)

Hence, from (B.11), ‖fd‖L1 ≤ 1, and the fact that

ya ∈ cl
(
cone

({
y̆[u] | u ∈ S2

}))
(B.13)

we have y[f ] ∈ cl
(
cone

({
y̆[u] | u ∈ S2

}))
, and so Cα ⊆ cl

(
C̆
)

.

Conversely, repeating arguments of Lemma 3.1, we can show that the generators
{
y̆[u] | u ∈ S2

}
and ya are all elements of cl (Cα), and hence C̆ ⊆ cl (Cα), completing the proof.

Proof of Lemma 3.3.

Proof. Set

ε = sup
u∈S2

min
i

∥∥∥∥ y̆[u]

‖y̆[u]‖2
− y̆[ui]

‖y̆[ui]‖2

∥∥∥∥
2

, (B.14)

and let w? realize the supremum in the definition of

η? = sup
‖w‖2 ≤ 1

inf
i

〈
w,

y̆[ui]

‖y̆[ui]‖2

〉
. (B.15)

Since C̄ ⊆ C̆, we have

δ(C̆, C̄) = sup
y∈C̆\{0}

d(y, C̄)

‖y‖2
. (B.16)

By Caratheodory’s theorem, for every y ∈ C̆, there exist v1 . . .vm ∈ S2 and scalars λ1 . . . λm ≥ 0,
ζ ≥ 0 such that

y =

m∑
j=1

λj
y̆[vj ]

‖y̆[vj ]‖2
+ ζya. (B.17)
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For each j, choose uij such that

∥∥∥∥ y̆[vj ]
‖y̆[vj ]‖2

− y̆[uij ]

‖y̆[uij ]‖
2

∥∥∥∥
2

is minimal. Then we have

d(y, C̄) ≤

∥∥∥∥∥∥
∑
j

λj
y̆[vj ]

‖y̆[vj ]‖2
+ ζya −

∑
j

λj
y̆[uij ]∥∥y̆[uij ]

∥∥
2

− ζya

∥∥∥∥∥∥
2

≤
∑
j

λj

∥∥∥∥∥ y̆[vj ]

‖y̆[vj ]‖2
−

y̆[uij ]∥∥y̆[uij ]
∥∥

2

∥∥∥∥∥
2

≤
∑
j

λjε

≤ ε

η?

m∑
j=1

λj

〈
w?,

y̆[vj ]

‖y̆[vj ]‖2

〉

=
ε

η?

〈
w?,

∑
j

λj
y̆[vj ]

‖y̆[vj ]‖2

〉

≤ ε

η?

∥∥∥∥∥∥
∑
j

λj
y̆[vj ]

‖y̆[vj ]‖2

∥∥∥∥∥∥
2

≤ ε

η?
‖y‖2 (B.18)

Hence, d(y, C̄)/ ‖y‖2 ≤ ε/η?. We finish the proof by noting that∥∥∥∥ y̆[u]

‖y̆[u]‖2
− y̆[u′]

‖y̆[u′]‖2

∥∥∥∥
2

≤
∥∥∥∥ y̆[u]

‖y̆[u]‖2
− y̆[u]

‖y̆[u′]‖2
+

y̆[u]

‖y̆[u′]‖2
− y̆[u′]

‖y̆[u′]‖2

∥∥∥∥
2

≤
∥∥∥∥ y̆[u]

‖y̆[u]‖2
− y̆[u]

‖y̆[u′]‖2

∥∥∥∥
2

+

∥∥∥∥ y̆[u]

‖y̆[u′]‖2
− y̆[u′]

‖y̆[u′]‖2

∥∥∥∥
2

≤ ‖y̆[u]‖2

∣∣∣∣‖y̆[u′]‖2 − ‖y̆[u]‖2
‖y̆[u′]‖2 ‖y̆[u]‖2

∣∣∣∣+
‖y̆[u]− y̆[u′]‖2
‖y̆[u′]‖2

≤ 2
‖y̆[u]− y̆[u′]‖2
‖y̆[u′]‖2

≤
2 ‖y̆[u]− y̆[u′]‖2

α ‖ya‖2

=
2 ‖ȳ[u]− ȳ[u′]‖2

α ‖ya‖2
, (B.19)

and hence

ε ≤ sup
u

min
i

2 ‖ȳ[u]− ȳ[ui]‖2
α ‖ya‖2

, (B.20)

completing the proof. For the bound η? ≥ 1/
√
m, note that if we choose w = m−1/21 in the right

hand side of (B.15), then since the y̆[u] are elementwise nonnegative, we for each u ∈ S2〈
w,

y̆[u]

‖y̆[u]‖2

〉
=

1√
m

‖y̆[u]‖1
‖y̆[u]‖2

≥ 1√
m
. (B.21)
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This completes the proof.

C Integrating on ∂O
For each triangle

∆i = conv {zi, z′i, z′′i } , (C.1)

we can find an open triangle Ui ⊂ R2, and an isometry ϕi : Ui → relint(∆i). To make this
more concrete, we can let Bi ∈ R3×2 be a matrix whose columns are an orthonormal basis for the
span {z′i − zi, z′′i − zi}, write

ϕi(w) = zi +Biw, (C.2)

and
Ui = ϕ−1

i [relint(∆i)]. (C.3)

We construct an integral ∂O as follows. For each i, define a σ-algebra Σi consisting of all sets of the
form ϕi[S], where S ⊆ Ui is Lebesgue measurable. Let Σ∂O be the smallest σ-algebra containing
each of the Σi. Define a measure µ∂O : Σ∂O → R+ via

µ∂O(S) =
∑
i

µ
(
ϕ−1
i [S ∩ relint (∆i)]

)
, (C.4)

where µ is the Lebesgue measure on R2. It is easy to verify that µ∂O is measure, making (Φ,Σ∂O, µ∂O)
a measure space, with Lebesgue integral∫

g(x) dµ∂O(x) =
∑
i

∫
Ui

g ◦ ϕi dµ. (C.5)

This gives an integral over Φ. It extends to an integral over ∂O as a whole: for g : ∂O → R, we
define its integral to be the integral of its restriction to Φ.

D Proof of Lemma 4.2

We prove Lemma 4.2, which writes the imaging map y[f ] = P(I − T )−1D[f ] as an integral of the
form

∫
f(u) ȳ[u] dσ(u), where ȳ[u] = P(I − T )−1D̄[u]:

Proof. We will show that for any Lebesgue integrable f ,

y[f ] =

∫
f(u) ȳ[u] dσ(u). (D.1)

By Theorem 5.6, ȳ[u] is continuous in u. Since the product of a nonnegative Riemann integrable f
and ȳ[u] is Riemann integrable, this is expression is equal to the Riemann integral

y[f ] =

∫
f(u) ȳ[u] du, (D.2)

as desired. To show (D.1), we use Tonelli’s theorem and monotone convergence. It is not difficult to
show that the Riemann-integrable function f is ΣS2 -measurable, D̄[u](x) is ΣS2 ×Σ∂O measurable,
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and κ is Σ∂O × Σ∂O-measurable. By repeated application of Tonelli’s theorem, and using that the
integrands are nonnegative, we obtain

T iD[f ] =

∫
κ(x,xi) . . .

(∫
κ(x2,x1)

(∫
D̄[u](x1) f(u) dσ(u)

)
dµ∂O(x1)

)
. . . dµ∂O(xi)

=

∫
f(u)

(∫
κ(x,xi) . . .

(∫
κ(x2,x1)D̄[u](x1)dµ∂O(x1)

)
. . . dµ∂O(xi)

)
dσ(u)

=

∫
f(u) (T iD̄[u])(x) dσ(u). (D.3)

By monotone convergence,

∞∑
i=0

T iD[f ](x) =

∫
f(u)

( ∞∑
i=0

T iD̄[u]

)
(x) dσ(u). (D.4)

One more application of Tonelli’s theorem gives (D.1), completing the proof.

E Proofs from Section 5.1

Proof of Lemma 5.1.

Proof. Let x ∈ S[u]c. By definition, D̄(x) = 0 for all x ∈ E, and so we may assume that x ∈ Φ =
∂O \ E. Hence, x ∈ relint (∆) for some face ∆. Moreover, the definition of a triangulated object
implies that there exists τ > 0 such that B(x, τ) ∩ ∂O ⊆ ∆.

Suppose, for purposes of contradiction, that there does not exist r0 > 0 such that B(x, r0)∩∂O ⊆
S[u]c. Then there exists a sequence (xi)

∞
i=1 ⊂ S[u], with xi → x. By dropping finitely many terms,

we may assume xi ∈ relint (∆) for all i. Since x ∈ S[u]c, 〈n(x),u〉 > 0, and so 〈n(xi),u〉 > 0 for
all i. Hence, since xi ∈ S[u], for each i there exists ti > 0 such that xi + tiu ∈ ∂O. For all i large
enough that xi ∈ B(x, τ/2), we necessarily have ti > τ/2. On the other hand, ti is bounded above
by the diameter of the object. Because ti is bounded, it has a convergent subsequence ti1 , ti2 , · · · → t̂,
with t̂ > τ/2. Moreover, we have

lim
j→∞

xij + tiju = x+ t̂u. (E.1)

Because O is closed, this point is in O. Because t̂ > τ/2 > 0, this implies that x /∈ S[u]c, a
contradiction. Hence, for every x ∈ S[u]c, there exists r0 > 0 such that B(x, r0)∩ ∂O ⊆ S[u]c, and
so S[u]c is relatively open and S[u] relatively closed.

Proof of Lemma 5.2. We use the notation11

B[u]
.
= {x ∈ Φ | 〈n(x),u〉 ≤ 0} . (E.2)

This set contains those points x that are necessarily shadowed, because n(x) has nonpositive inner
product with the light direction. Intuitively, if we ignore B[u], the remainder S[u] \ B[u] should
contain cast shadows, and for any point x in this set, the shadow retraction xu should exist.
Furthermore, if x lies on the boundary of a cast shadow, its shadow retraction should lie in some
edge of the object. We next state an intermediate lemma which makes this precise:

11“B” can be taken to stand for “back”.
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Lemma E.1. For all u, and all x ∈ Φ ∩ (∂S [u] \B[u]), xu exists, and xu ∈ E.

Proof. Fix u. Consider x ∈ Φ ∩ (∂S[u] \B[u]). Since x ∈ Φ, n(x) is well-defined. Since x /∈ B[u],
〈n(x),u〉 > 0. Since x ∈ S[u], 〈n(x),u〉 ν(x,u) = 0. This implies that xu exists, xu 6= x, and
xu is an element of ∂O. If xu ∈ E, we are done. For purpose of contradiction, suppose that
xu ∈ relint (∆) for some face ∆. Thus, there exists ε > 0 such that B(xu, ε) ∩ aff (∆) ⊆ ∆. Since
x ∈ Φ, x ∈ relint (∆′) for some face ∆′. Hence, there also exists ε′ < 0 such that B(x, ε′)∩∂O ⊂ ∆′.

Choose w1,w2 ∈ R3 such that

aff (∆) = {xu + α1w1 + α2w2 | α1, α2 ∈ R} .

Similarly, choose orthonormal vectors v1,v2 ∈ R3 such that

aff (∆′) = {x+ β1v1 + β2v2 | β1, β2 ∈ R} .

We claim that u /∈ span(w1,w2). Indeed, if not, then for small δt, x
u− δtu ∈ ∆. This would imply

that x+ (t?(x,u)− δt)u ∈ ∂O, contradicting the minimality of t?(x,u). So,

rank ( [ w1 | w2 | u ] ) = 3.

Consider a generic point x′ = x+ [v1 | v2]

[
β1

β2

]
∈ aff (∆′). We find t such that x′ + tu ∈ aff (∆).

This is possible iff the equation

xu +Wα = x+ tu+ V β

(with W = [w1 | w2], V = [v1 | v2]) has a solution (α, t). Rearranging, we obtain

[W | u]

[
α
−t

]
= [V | u]

[
β

−t?(x,u)

]
.

Since the matrix on the left has full rank three, we have[
α
−t

]
= [W | u]

−1
[V | u]

[
β

−t?(x,u)

]
.

When β = 0, the solution is α = 0, t = t?(x,u) > 0. Hence, we can find ε′′ ∈ (0, ε′) such that
‖β‖2 ≤ ε′′ implies that (i) t > 0, (ii) x+ V β ∈ ∆′, (iii) ∆ 3 xu +Wα = x+ tu. Because ε′′ < ε′,
every x′ ∈ B(x, ε′′) ∩ ∂O lies in ∆′, and therefore has an expression x′ = x + V β with ‖β‖ < ε′′.
Here, the fact that ‖β‖ ≤ ε′′ follows because V has orthonormal columns. By properties (i)-(iii)
above, x′

u
exists, x′ ∈ S[u], and so B(x, ε′′) ∩ ∂O ⊆ S[u]. This implies that x /∈ ∂S[u]. Hence, if

xu /∈ E, x /∈ ∂S[u], and the proof is complete.

Proof of Lemma 5.2. If x ∈ ∂S[u] ∩ Φ, then x ∈ relint (∆) for some face ∆. If x ∈ B[u], then
relint (∆) ⊆ S[u], and x /∈ ∂S[u]. Hence, x ∈ B[u]c. By Lemma E.1, xu exists, and is an element
of E.
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F Proof of Theorem 5.3

Proof. Our goal is to bound∥∥D̄[u]− D̄[u′]
∥∥2

L2 =

∫ ∣∣D̄[u](x)− D̄[u′](x)
∣∣2 dµ∂O(x). (F.1)

Initial manipulations. Notice that for x ∈ S[u] ∩ S[u′], D̄[u](x) = D̄[u′](x) = 0. For x ∈
S[u]c ∩ S[u′]c,∣∣D̄[u](x)− D̄[u′](x)

∣∣ = ρ(x) |〈n(x),u〉 − 〈n(x),u′〉| ≤ ρ(x) ‖u− u′‖2 . (F.2)

This bound also holds for x ∈ B[u] ∪B[u′]. Thus, setting

Γ = B[u]
⋃
B[u′]

⋃
(S[u] ∩ S[u′])

⋃
(S[u′]c ∩ S[u]c) , (F.3)

we obtain ∥∥PΓ

(
D̄[u]− D̄[u′]

)∥∥2

L2 ≤ ρ2
? area(Γ) ‖u− u′‖22 . (F.4)

Note that
∂O = Γ

⊎
{S[u] \ (S[u′] ∪B[u])}

⊎
{S[u′] \ (S[u] ∪B[u′])} , (F.5)

where
⊎

denotes disjoint union. Consider S[u] \ (S[u′] ∪B[u]). Introduce a notation

ū(r) =
(1− r)u′ + ru

‖(1− r)u′ + ru‖2
, r ∈ [0, 1], (F.6)

and set
r?(x) = inf {r ∈ [0, 1] | x ∈ S[ū(r)]} . (F.7)

For all x ∈ S[u] \ (S[u′] ∪B[u]), since u = ū(1) and x ∈ S[u], r?(x) ≤ 1 is finite. We have∣∣D̄[u](x)− D̄[u′](x)
∣∣ = D̄[u′](x) = ρ(x) 〈n(x),u′〉

= ρ(x) 〈n(x),u′ − ū(r?(x))〉+ ρ(x) 〈n(x), ū(r?(x))〉
≤ ρ(x) ‖u′ − ū(r?(x))‖2 + ρ(x) 〈n(x), ū(r?(x))〉 . (F.8)

So, we have ∥∥PS[u]\(S[u′]∪B[u])

(
D̄[u]− D̄[u′]

)∥∥2

L2

≤ 2 ρ2
? · area(S[u] \ (S[u′] ∪B[u])) ‖u− u′‖22

+ 2 ρ2
? ·
∫
x∈S[u]\(S[u′]∪B[u])

〈n(x), ū(r?(x))〉2 dµ∂O(x) (F.9)

and our task is to bound the final integral.12 We will show the following:

(4) For all x ∈ S[u] \ (S[u′] ∪B[u]) such that x ∈ Φ, we have x ∈ ∂S [ū(r?(x))].

The intuition behind this claim is straightforward: as the light direction moves from u′ to u, the first
time that x falls into shadow, it must lie in the boundary of the shadow (imagine the boundary of the
shadow sweeping across the face ∆j). Obtaining this as a rigorous consequence of our assumptions
requires some manipulation, which we perform below.

12Under our assumptions, the function ζ(x) = 〈n(x), ū(r?(x))〉2 can be shown to be piecewise rational, with pieces
defined on semialgebraic sets. This implies that ζ(x) is measurable, and the integral in (F.9) is well-defined.
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Proving (4). Since x ∈ S[u], and u = ū(1), r?(x) ≤ 1 is finite. Notice that ū(r) is continuous
in r. Take ri → r?(x), with x ∈ S[ū(ri)]. Then ū(ri)→ ū(r?(x)). If x ∈ S[u] \ (S[u′] ∪B[u]) then
〈n(x),u〉 > 0, 〈n(x),u′〉 > 0, and so for any r ∈ [0, 1], 〈n(x), ū(r)〉 > 0. Hence, for any r such
that x ∈ S[ū(r)], it must be that ν(x,u) = 0, and xū(r) exists. So, for each of our sequence of ri,
xū(ri) ∈ ∂O exists:

x+ t?(x, ū(ri)) ū(ri) ∈ ∂O,

where we recall that t?(x, ū(ri)) = inf {t > 0 | x+ t ū(ri) ∈ ∂O}. Let ∆ be the face containing
x. Since x ∈ Φ, x ∈ relint (∆), and there exists ε > 0 such that B(x, ε) ∩ ∂O ⊆ ∆. Since
〈n(x), ū(ri)〉 > 0, if t > 0 is such that x+ tū(ri) ∈ ∂O, then t > ε. Hence, for every i, t?(x, ū(ri)) ≥
ε > 0. Because O is bounded, the βi

.
= t?(x, ū(ri)) are bounded. Hence, the sequence (βi) has a

convergent subsequence βij : limj→∞ βij = β? for some β?. From the previous discussion β? ≥ ε.
Moreover, ū(rij )→ ū(r?(x)). Hence

x+ βij ū(rij )→ x+ β?ū(r?(x)).

Because each element of the left hand side is in ∂O, and ∂O is closed, the limit is in ∂O. Because
β? > 0, the right hand side is not equal to x. We conclude that x ∈ S[ū(r?(x))].

It is left to show that x lives in the relative boundary ∂S[ū(r?(x))] of this set. Choose r′ ∈ (0, r?),
and note that 〈ū(r′),n(x)〉 > 0. Notice that

aff (∆) = {x′ | 〈n(x),x′〉 = 〈n(x),x〉} .

Hence, for any τ > 0, if we set

s = τ
〈n(x), ū(r?(x))〉
〈n(x), ū(r′)〉

,

then
x′

.
= x− τ ū(r?(x)) + sū(r′) ∈ aff (∆) .

Suppose, for purpose of contradiction, that x ∈ relint (S[ū(r?(x))]). Then, there exists τ0 > 0 such
that for τ ∈ (0, τ0), we have

x′ ∈ S[ū(r?(x))].

Moreover, if x′ ∈ B(x, ε/2), and t > 0 is such that x′ + t ū(r?(x)) ∈ ∂O, then t ≥ ε/2. Choose
τ > 0 small enough that τ < τ0, ‖x′ − x‖2 < ε/2, and τ < ε/2.

With these choices, x′ ∈ S[ū(r?(x))], and there exists t ≥ ε/2 > τ such that

x′ + tū(r?(x)) ∈ ∂O.

Write
x′ + tū(r?(x)) = x+ sū(r′) + (t− τ)ū(r?(x)) = x+ s′v,

with

v =
sū(r′) + (t− τ)ū(r?)

‖sū(r′) + (t− τ)ū(r?)‖2
and

s′ = ‖sū(r′) + (t− τ)ū(r?)‖2 .

Since v = ū(r′′) for some r′′ > 0 which is strictly smaller than r?(x), and x ∈ S[ū(r′′)], this
contradicts the definition of r? as the infimum. Hence, x ∈ ∂S [ū(r?(x))].
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Bounding the integral. The main utility of (4) is that it allows us to organize our calculations
in terms of the points that cast the shadows, rather than the points that are shadowed. We next
reduce the problem of obtaining the desired bound to that of showing one key inequality, (F.12). We
show how this inequality implies the desired result, and then return to show that this inequality indeed
holds.

To lighten the notation, we write

H = S[u] \ (S[u′] ∪B[u]), HΦ = H ∩ Φ. (F.10)

Since every x ∈ HΦ satisfies x ∈ ∂S [ū(r?(x))], by the Lemma E.1, xū(r?(x)) exists, and is an
element of some edge e?(x). For each e ∈ E , let

Ξe,∆
.
= {x ∈ HΦ ∩∆ | e?(x) = e} . (F.11)

By the above discussion,

HΦ =
⋃
e,∆

Ξe,∆.

Below, we will demonstrate the following key inequality:13

∑
e,∆

∫
x∈Ξe,∆

〈n(x), ū(r?(x))〉2 dµ∂O(x) ≤ 8
√

2 · diam (O) ‖u− u′‖2 χ?. (F.12)

The proof of this inequality will consist of several steps, which are carried out below. We first show
that this inequality implies the desired result. Notice that by definition,∫

x∈H
〈n(x), ū(r?(x))〉2 dµ∂O(x) =

∫
x∈HΦ

〈n(x), ū(r?(x))〉2 dµ∂O(x)

≤ 8
√

2 · diam (O) ‖u− u′‖2 χ?. (F.13)

Combining with (F.9), we obtain∥∥PS[u]\(S[u′]∪B[u]) (D [u]−D [u′])
∥∥2

L2

≤ 2 ρ2
? area(S[u] \ (S[u′] ∪B[u])) ‖u− u′‖22 + 16

√
2 ρ2

? diam (O)χ? ‖u− u′‖2 . (F.14)

By symmetry, we also obtain∥∥PS[u′]\(S[u]∪B[u′]) (D [u]−D [u′])
∥∥2

L2

≤ 2 ρ2
? area(S[u′] \ (S[u] ∪B[u′])) ‖u− u′‖22 + 16

√
2 ρ2

? diam (O)χ? ‖u− u′‖2 . (F.15)

Combining these two bounds with (F.4) and (F.5), we obtain the claimed result. We are just left to
verify (F.12).

Proof of Key Inequality (F.12). Rather than directly proving (F.12), which requires us to bound
integrals over Ξe,∆, we first demonstrate a bound over a much simpler set (which turns out to be a

13Below, we will show that the Ξe,∆ are semialgebraic sets, and hence measurable. Thus, the integrals in (F.12)
are well-defined.
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quadrilateral Q ⊆ ∆), and then show that we can arbitrarily well-approximate the domain of interest
using finite collections of such quadrilaterals, to obtain the desired bound.

For each z ∈ e, and each ∆, let

τe,∆(z) =
{
r ∈ [0, 1] | zū(r) exists, and zū(r) ∈ Ξe,∆

}
(F.16)

It is immediate that Ξe,∆ =
{
zū(r) | z ∈ e, r ∈ τe,∆(z)

}
. Let [v,w] = conv {v,w}. Simple geometric

reasoning shows that if [v,w] ⊆ e, and [r1, r2] ⊆ τe,∆(z) for every z ∈ [v,w] (i.e., [r1, r2] ⊆⋂
z∈[v,w] τe,∆(z)), the set

Q ([v,w], [r1, r2])
.
=
{
zū(r) | r ∈ [r1, r2], z ∈ [v,w]

}
⊂ Ξe,∆ (F.17)

is a quadrilateral. We will show the following:

(�) Let [v,w] ⊆ e. Suppose that [r1, r2] ⊆
⋂
z∈[v,w] τe,∆(z). Let

Q = Q([v,w], [r1, r2]).

Then we have that∫
x∈Q
〈n(x), ū(r?(x))〉2 dµ∂O(x) ≤ 8

√
2·diam (O) ‖u− u′‖2 ‖v −w‖2 |r2−r1|. (F.18)

We show the claim (�). If v−w ∈ span(u,u′), then Q has measure zero, the integral on the left hand
side is zero, and the bound holds trivially. Suppose that v−w /∈ span(u,u′). Notice that if xū(r) ∈ e,
then there exists a solution (s1, s2, s3) to the system of equations x+ s1u+ s2u

′ = vs3 +w(1− s3).
When v −w /∈ span(u,u′) this system has at most one solution, and so for each x there is at most
one r such that

xū(r) ∈ e.
Now, for x ∈ Q ⊆ Ξe,∆, we have xū(r?(x)) ∈ e. Moreover, by construction of Q, x = zū(r) for some
z ∈ [v,w] and r ∈ [r1, r2]. Hence, it must be that r = r?(x), and so r?(x) ∈ [r1, r2].

Set u1 = ū(r1), u2 = ū(r2). Notice that n(x) is constant over Q. We abbreviate it by n.
Suppose that 〈n, ū(r)〉 is maximized over [r1, r2] at r = r1. Then∫

x∈Q
〈n(x), ū(r?(x))〉2 dµ∂O(x) ≤

(
nTu1

)2
area(Q). (F.19)

Let x0 be an arbitrary point in ∆. Then

aff (∆) = {x | 〈n,x〉 = 〈n,x0〉} .

Using this expression, we can write the shadow projection zu as

zu =

(
I − un

T

nTu

)
z +

nTx0

nTu
u (F.20)

The set Q is a quadrilateral, with sides [wu1 ,vu1 ], [vu1 ,vu2 ], [vu2 ,wu2 ], [wu1 ,wu2 ]. We can
calculate

vu1
− vu2

=

(
v − u1

nTv

nTu1
+
nTx0

nTu1
u1

)
−
(
v − u2

nTv

nTu2
+
nTx0

nTu2
u2

)
=

(
u1

nTu1
− u2

nTu2

)(
nT (x0 − v)

)
,
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and similarly, wu1
−wu2

=
(

u1

nTu1
− u2

nTu2

) (
nT (x0 −w)

)
. Since these differences are scalar mul-

tiples of the common vector u1

nTu1
− u2

nTu2
, the two sides [vu1

,vu2
] and [wu1

,wu2
] are parallel.

Let `⊥ denote the orthogonal length

`⊥
.
=
∥∥∥P (vu1

−vu2
)⊥ (wu1 − vu1)

∥∥∥
2
. (F.21)

We have

area(Q) =
‖vu1

− vu2
‖2 + ‖wu1

−wu2
‖2

2
× `⊥

=
|nT (v − x0)|+ |nT (w − x0)|

2

∥∥∥∥ u1

nTu1
− u2

nTu2

∥∥∥∥
2

× `⊥ (F.22)

Since v ∈ O, and vu2
∈ ∆ ⊆ O, we have ‖v − vu2

‖2 ≤ diam (O). If we consider the right triangle
formed by v, vu2

, and vproj = v − nnT (v − x0) (the orthogonal projection of v onto aff(∆)), we
have

|nT (v − x0)| =
∥∥v − (v − nnT (v − x0)

)∥∥
2
,

= ‖v − vu2
‖2 · sin∠ (v − vu2

,vproj − vu2
) ,

= ‖v − vu2
‖2 × n

Tu2,

≤ diam (O)× nTu2. (F.23)

A similar inequality holds for |nT (w − x0)|. Together, this implies that

area(Q) ≤ diam (O)× nTu2 ×
∥∥∥∥ u1

nTu1
− u2

nTu2

∥∥∥∥
2

× `⊥. (F.24)

Thus, we have∫
x∈Q
〈n(x), ū(r?(x))〉2 dµ∂O(x) ≤ nTu1 ×

∥∥nTu2u1 − nTu1u2

∥∥
2
× diam (O)× `⊥. (F.25)

Using the triangle inequality, it is easy to show that∥∥nTu2u1 − nTu1u2

∥∥
2
≤ 2 ‖u1 − u2‖2. (F.26)

Using the general fact that for nonzero vectors a, b,∥∥∥∥ a

‖a‖2
− b

‖b‖2

∥∥∥∥
2

≤
2 ‖a− b‖2

max {‖a‖2, ‖b‖2}
, (F.27)

and the fact that when ‖u− u′‖2 ≤
√

2, ‖ru+ (1− r)u′‖2 ≥ 1/
√

2 for all r in [0, 1], we have

‖u1 − u2‖2 ≤
2 ‖r1u+ (1− r1)u′ − (r2u− (1− r2)u′)‖2

‖r1u+ (1− r1)u′‖2
≤ 2

√
2 · ‖u− u′‖2 |r1 − r2|, (F.28)
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Putting together (F.25), (F.26) and (F.28), we get∫
x∈Q
〈n(x), ū(r?(x))〉2 dµ∂O(x) ≤ 4

√
2× nTu1 × `⊥ × diam (O)× ‖u− u′‖2 × |r1 − r2|.

Finally, using the expression for vu1
and wu1

, we obtain

nTu1 × `⊥ ≤ nTu1 ‖vu1 −wu1‖2
=

∥∥(nTu1)(v −w)− u1n
T (v −w)

∥∥
2

≤ 2 ‖v −w‖2 . (F.29)

This completes the proof of (�) for the case when 〈n, ū(r)〉 is maximized at r = r1. If 〈n, ū(r)〉 is
instead maximized r = r2, we may simply repeat the above argument, interchanging u1 and u2. If
〈n, ū(r)〉 is instead maximized at some r0 ∈ (r1, r2), we may partition Q into two sub-quadrilaterals,
indexed by [r0, r1] and [r1, r2], respectively, and then apply the argument to each. This establishes
(�).

Our approach, then, is to discretize the domain of integration and apply (�). We make the fol-
lowing technical claim regarding approximation of the domain of intergration Ξe,∆ by quadrilaterals:

(♦) For each edge e and face ∆, and any ε > 0, there exists a finite collection of segments

[a1, b1] ∪ [a2, b2] ∪ · · · ∪ [aN , bN ] ⊆ e

with disjoint relative interiors, and a collection of interior-disjoint intervals([
r

(1)
2j−1, r

(1)
2j

])n1

j=1
, . . . ,

(
[r

(N)
2j−1, r

(N)
2j ]

)nN
j=1

with the following properties:

(i) [r
(i)
2j−1, r

(i)
2j ] ⊆

⋂
z∈[ai,bi]

τe,∆(z), (F.30)

which implies that Qij
.
= Q

(
[ai, bi], [r

(i)
2j−1, r

(i)
2j ]
)
⊆ Ξe,∆, and

(ii) µ∂O

Ξe,∆ \
⋃
i,j

Qij

 ≤ ε. (F.31)

We will show (♦) below. Let us first examine its implications. We have∫
x∈Ξe,∆

〈n(x), ū(r?(x))〉2 dµ∂O(x)

≤

∑
i,j

∫
x∈Qij

〈n(x), ū(r?(x))〉2 dµ∂O(x)

 + µ

Ξe,∆ \
⋃
ij

Qij

 sup
x∈∂O

〈n(x), ū(r?(x))〉2 ,

≤
∑
ij

8
√

2 diam (O) ‖u− u′‖2 ‖bi − ai‖2 |r
(i)
2j − r

(i)
2j−1| + ε,
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where the first term follows from (�).

Consider the product e× [0, 1]. The rectangles [ai, bi]× [r
(i)
2j−1, r

(i)
2j ] have disjoint interiors. So,∑

ij

‖bi − ai‖2 |r
(i)
2j − r

(i)
2j−1| =

∫
z∈e,r∈[0,1]

1
(z,r)∈

⋃
ij int

(
[ai,bi]×[r

(i)
2j−1,r

(i)
2j ]
)dz dr. (F.32)

By construction, for any pair (z, r) ∈ [ai, bi]× [r
(i)
2j−1, r

(i)
2j ] we have zū(r) ∈ Ξe,∆. So,

1
(z,r)∈

⋃
ij int

(
[ai,bi]×[r

(i)
2j−1,r

(i)
2j ]
) ≤ 1zū(r)∈Ξe,∆ ,

and∫
x∈Ξe,∆

〈n(x), ū(r?(x))〉2 dµ∂O(x) ≤ 8
√

2 diam (O) ‖u− u′‖2
∫
z∈e,r∈[0,1]

1zū(r)∈Ξe,∆dz dr + ε.

Since this holds for every ε > 0, we have∫
x∈Ξe,∆

〈n(x), ū(r?(x))〉2 dµ∂O(x) ≤ 8
√

2 diam (O) ‖u− u′‖2
∫
z∈e,r∈[0,1]

1zū(r)∈Ξe,∆dz dr.

(F.33)
Summing over e,∆, we obtain

∑
e,∆

∫
x∈Ξe,∆

〈n(x), ū(r?(x))〉2 dµ∂O(x) ≤ 8
√

2 diam (O) ‖u− u′‖2
∫
r∈[0,1]

(∑
e

∫
z∈e

∑
∆

1zū(r)∈Ξe,∆dz

)
dr.

Notice that for a given edge e = [a, b], if it happens that b − a ∈ span {u,u′}, Ξe,∆ has measure
zero. So, letting E ′ denote the set of edges [a, b] for which b− a /∈ span {u,u′}, we have

∑
e,∆

∫
x∈Ξe,∆

〈n(x), ū(r?(x))〉2 dµ∂O(x) ≤ 8
√

2 diam (O) ‖u− u′‖2
∫
r∈[0,1]

(∑
e∈E′

∫
z∈e

∑
∆

1zū(r)∈Ξe,∆dz

)
dr.

It is not difficult to show that if e ∈ E ′, for each x /∈ e there is at most one r such that xū(r) ∈ e.
So, if x = zū(r) ∈ Ξe,∆, it must be that r = r?(x). This implies (via (4)) that x ∈ ∂S[ū(r)].

Since x ∈ Φ as well, and z = xū(r), we have z ∈ χ[ū(r)]. So, for e ∈ E ′, zū(r) ∈ Ξe,∆ implies that
z ∈ χ[ū(r)]. This, together with the fact that the sets Ξe,∆ and Ξe,∆′ are disjoint whenever ∆ 6= ∆′

gives that ∑
∆

1zū(r)∈Ξe,∆ ≤ 1z∈χ[ū(r)],

and∑
e,∆

∫
x∈Ξe,∆

〈n(x), ū(r?(x))〉2 dµ∂O(x) ≤ 8
√

2 diam (O) ‖u− u′‖2
∫
r∈[0,1]

(∑
e∈E′

∫
z∈e

1z∈χ[ū(r)]dz

)
dr

≤ 8
√

2 diam (O) ‖u− u′‖2
∫
r∈[0,1]

length (χ[ū(r)]) dr

≤ 8
√

2 diam (O) ‖u− u′‖2 χ?, (F.34)
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as desired. To finish the proof, we are just left to show (♦).

Demonstrating (♦). We begin with the definition of Ξe,∆:

Ξe,∆ =

x
∣∣∣∣∣∣
x ∈ relint(∆)
x ∈ S[u] \ (S[u′] ∪B[u])

xū(r?(x)) ∈ e

 . (F.35)

If the outward normal n to ∆ satisfies nTu ≤ 0, relint(∆) ⊆ B[u], and Ξe,∆ is empty, implying
that (♦) is trivially satisfied. Similarly, if nTu′ ≤ 0, ∆ ⊆ S[u′], Ξe,∆ is empty, and (♦) is trivially
satisfied. To fix notation, let e = [a, b]. If b − a ∈ span {u,u′}, then Ξe,∆ has measure zero, and
(♦) is again trivially satisfied.

It remains to consider the case when nTu > 0 and nTu′ > 0, and b− a /∈ span {u,u′}. We will
find it slightly more convenient to work with an unnormalized version of ū, by setting

ũ(r) = ru+ (1− r)u′. (F.36)

It is easy to check that xū(r) is defined if and only if xũ(r) is defined, and xũ(r) = xū(r). So, we
can rephrase our expression for Ξe,∆ as

Ξe,∆ =

x
∣∣∣∣∣∣
x ∈ relint(∆)
x ∈ S[u] \ (S[u′] ∪B[u])

xũ(r?(x)) ∈ e

 . (F.37)

To show that Ξe,∆ can be well-approximated by quadrilaterals of the desired form, it will be useful
to work in coordinates. Let

∆ = conv {v1,v2,v3} .

We can parameterize aff (∆) in terms of w ∈ R2 via

x(w) = v1w1 + v2w2 + v3(1− w1 − w2) = V w + v3, (F.38)

with V = [v1 − v3 | v2 − v3] ∈ R3×2. Then

∆ = {x(w) | w1 ≥ 0, w2 ≥ 0, w1 + w2 ≤ 1} . (F.39)

Similarly, parameterize e via
z(s) = sa+ (1− s)b. (F.40)

Let
We,∆

.
= {w | x(w) ∈ Ξe,∆} ⊂ R2. (F.41)

We will show that We,∆ is a semialgebraic set [Cos00]. As we will see, semialgebraic sets are
sufficiently well-behaved to admit the approximation promised by (♦). To show that We,∆ is semi-
algebraic, we take the conditions in (F.37) one at a time. First, notice that

x(w) ∈ relint(∆) ⇐⇒ w1 > 0, w2 > 0, and w1 + w2 < 1. (F.42)

Set
W1 =

{
w ∈ R2 | w1 > 0, w2 > 0, and w1 + w2 < 1

}
. (F.43)
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The set W1 is semialgebraic.
Now, take the second condition in (F.37): x ∈ S[u] \ (S[u′] ∪B[u]). Since nTu > 0, this

condition reduces to x ∈ S[u] \ S[u′]. Moreover, since nTu′ > 0, this condition further reduces to

∃ t > 0 s.t. x+ tu ∈ ∂O, and @ t′ > 0 s.t. x+ t′u′ ∈ ∂O. (F.44)

For each ∆′, define a coordinate map x∆′(w
′) in the same manner as x(w). For each ∆′, write

S2,∆′ =

w,w′, t
∣∣∣∣∣∣
x(w) + tu = x∆′(w

′)
t > 0
w′1 ≥ 0, w′2 ≥ 0, w′1 + w′2 ≤ 1

 ⊂ R5. (F.45)

Write Pw for the projection onto the w coordinates, and

W2,∆′ = PwS2,∆′ . (F.46)

With this definition, notice that ∃ t > 0 such that x(w) + tu ∈ ∂O if and only if w ∈
⋃

∆′ 6=∆W2,∆.
Moreover, since each S2,∆′ is defined by finitely many polynomial inequalities, each S2,∆′ is semial-
gebraic. By the Tarski-Seidenberg theorem, each W2,∆′ is also semialgebraic.

In a similar manner, define

S3,∆′ =

w,w′, t′
∣∣∣∣∣∣
x(w) + t′u′ = x∆′(w

′)
t′ > 0
w′1 ≥ 0, w′2 ≥ 0, w′1 + w′2 ≤ 1

 (F.47)

and W3,∆′ = PwS3,∆′ . The W3,∆′ are also semialgebraic. Combining these sets, we have that
x(w) ∈ S[u] \ S[u′] if and only if

w ∈

(⋃
∆′

W2,∆′

)
\

(⋃
∆′

W3,∆′

)
.
= W4. (F.48)

The set W4 is produced from semialgebraic sets via finitely many set operations, and hence is
semialgebraic.

The final condition in (F.37) that we need to consider is that xũ(r?(x)) ∈ e. Because b − a /∈
span {u,u′}, for each x there exists at most one pair (t̂, r̂) with t̂ > 0, r̂ ∈ [0, 1] such that x+t̂ũ(r̂) ∈ e.
Hence, there exists at most one r̂ ∈ [0, 1] such that xũ(r̂) ∈ e. For any given r̂, xũ(r̂) ∈ e if and only
if the following two conditions are satisfied:

∃ t̂ s.t. t̂ > 0, x+ t̂ũ(r̂) ∈ e (F.49)

@ (t̂, t′) s.t. 0 < t′ < t̂, x+ t̂ũ(r̂) ∈ e, x+ t′ũ(r̂) ∈ ∂O. (F.50)

The first condition ensures that the ray x+ R++ũ(r̂) intersects e, while the second ensures that no
other point of ∂O lies between x and this intersection on the ray.

Set

S5 =

r̂, t̂,w, s
∣∣∣∣∣∣∣∣
x(w) + t̂ũ(r̂) = z(s)
s ∈ [0, 1]
t̂ > 0
r̂ ∈ [0, 1]

 (F.51)
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and W5 = PwS5. Write

S6,∆′ =


r̂, t̂,w, s, t′,w′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x(w) + t̂ũ(r̂) = z(s)
s ∈ [0, 1]
t̂ > 0
r̂ ∈ [0, 1]
0 < t′ < t̂
w′1 ≥ 0, w′2 ≥ 0, w′1 + w′2 ≤ 1
x(w) + t′ũ(r̂) = x∆′(w

′)


, (F.52)

and W6,∆′ = PwS6,∆′ . Then there exists r̂ ∈ [0, 1] such that x(w)ũ(r̂) ∈ e if and only if

w ∈W5 \
⋃

∆′ 6=∆

W6,∆′
.
= W7. (F.53)

Again, the set W7 is semialgebraic.
Consider w ∈ W7. By construction this means that there exists r̂ such that x(w)ũ(r̂) ∈ e.

Moreover, by the above reasoning, this r̂ is the only r with this property. Is r̂ = r?(x(w))? This is
true if and only if there does not exist r′ ∈ (0, r̂) and t′ > 0 with x(w) + t′ũ(r′) ∈ ∂O. Let

S8,∆′ =


r̂, t̂,w, s, r′, t′,w′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x(w) + t̂ũ(r̂) = z(s)
s ∈ [0, 1]
t̂ > 0
r̂ ∈ [0, 1]
t′ > 0
0 < r′ < r̂
w′1 ≥ 0, w′2 ≥ 0, w′1 + w′2 ≤ 1
x(w) + t′ũ(r̂) = x∆′(w

′)


(F.54)

and again set W8,∆′ = PwS8,∆′ . Then we have

x(w)ũ(r?(x(w))) ∈ e ⇐⇒ w ∈W7 \
⋃

∆′ 6=∆

W8,∆′
.
= W9. (F.55)

Hence, setting We,∆ = W1 ∩W4 ∩W9, we have

x(w) ∈ Ξe,∆ ⇐⇒ w ∈We,∆, (F.56)

and the set We,∆ is semialgebraic.
Our next task is to rewrite We,∆ in terms of the parameters s, r. Since nTu > 0 and nTu′ > 0,

for every r ∈ [0, 1], nT ũ(r) > 0. Hence, for every r, s there is a unique t such that

z(s)− tũ(r) ∈ aff (∆) .

In particular, there exists a unique (w, t) ∈ R2 × R such that

z(s)− tũ(r) = x(w).
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This gives a system of equations [
V | ũ(r)

] [ w
t

]
= z(s)− v3. (F.57)

Under our assumptions, it is not difficult to show that there exists ζ > 0 such that

σmin

([
V | ũ(r)

])
≥ ζ (F.58)

for all r ∈ [0, 1].14 Hence, we can write the coordinates w in this unique pair explicitly as a function
of (r, s):

w = Υ(r, s) =

[
1 0 0
0 1 0

] [
V ũ(r)

]−1
(z(s)− v3) .

The components of Υ are rational functions of (r, s), the denominator of which does not vanish.
This implies that Υ is a semialgebraic map [Cos00]. Set

Ae,∆ = Υ−1 [We,∆] ⊆ [0, 1]2. (F.59)

Since Υ is a semialgebraic map, Ae,∆ is also semialgebraic. Ae,∆ ⊆ [0, 1]2 is also bounded. Because
semialgebraic sets are finite unions of intersections of sublevel sets of finitely many polynomial
(and hence continuous) functions, bounded semialgebraic sets are Jordan measurable. This implies
that for every η > 0, there exists an M ∈ Z and a collection of M interior disjoint rectangles
Ri = [ri,1, ri,2]× [si,1, si,2] (i = 1 . . .m) such that

µ

(
Ae,∆ \

M⋃
i=1

Ri

)
≤ η.

The function Υ is differentiable on (r, s) ∈ [0, 1]2. Moreover, it is not difficult to show that there
exists ξ < +∞ such that

sup
(r,s)∈[0,1]2

∣∣∣∣det

(
∂Υ

∂(r, s)
(r, s)

)∣∣∣∣ ≤ ξ. (F.60)

Furthermore, for some ξ′, the map w 7→ x(w) satisfies∣∣∣∣det

(
∂

∂w
(ϕ−1 ◦ x)(w)

)∣∣∣∣ ≤ ξ′ (F.61)

for all w. So, noting that Ξe,∆ = x (Υ[Ae,∆]), we have

µ∂O

(
Ξe,∆ \

M⋃
i=1

x(Υ[Ri])

)
≤ ξξ′η. (F.62)

Choose η = ε
ξξ′ .

Order all of the endpoints si,j of the Ri, to produce 0 ≤ s1 < s2 < · · · < sN ≤ 1. Set

R′i,j = Rj ∩ ([si, si+1]× [0, 1]) . (F.63)

Set ai = z(si), bi = z(si+1). Each R′i,j either has empty interior, or has the form [si, si+1] ×
[ri,j , ri,j+1]. Hence, there exists a collection of disjoint intervals [r1, r2], [r3, r4], . . . , [r2ni−1, r2ni ] such
that ∪jR′i,j = ∪j [si, si+1]× [r2j−1, r2j ]. This collection of intervals has the desired properties.

14Because nT ũ(r) > 0 for all r ∈ [0, 1], the matrix [V | ũ(r) ] is full rank for all r, and hence for all r its smallest
singular value is positive. Noting that σmin(M) is a continuous function of M and ũ(r) a continuous function of r,
it must be that σmin([V | ũ(r)]) achieves its infimum over [0, 1], and hence its infimum is strictly larger than zero.
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G Proof of Lemma 5.4

Proof. Using the change of variables formula, it is not difficult to show that

ν̃(x) = 1− 1

π

∫
〈n(x),y − x〉 〈n(y),x− y〉

‖y − x‖42
V (x,y) dµ∂O(y). (G.1)

For any y, we have∫
y

κ(x,y) dµ∂O(y) =
ρ(x)

π

∫
y

〈n(x),y − x〉 〈n(y),x− y〉
‖x− y‖42

V (x,y) dµ∂O(y)

= ρ(x)(1− ν̃(x))

≤ ρ?(1− ν?). (G.2)

Similarly, for any x ∈ ∂O, we have∫
x

κ(x,y) dµ∂O(x) =
1

π

∫
x

ρ(x)
〈n(x),y − x〉 〈n(y),x− y〉

‖x− y‖42
V (x,y) dµ∂O(x)

≤ ρ?
π

∫
x

〈n(x),y − x〉 〈n(y),x− y〉
‖x− y‖42

V (x,y) dµ∂O(x)

≤ ρ?(1− ν̃(x))

≤ ρ?(1− ν?). (G.3)

By Theorem II.1.6 of [Con90], this implies that for g ∈ L2[∂O], T [g] ∈ L2[∂O], and ‖T ‖L2→L2 ≤
ρ?(1− ν?).

H Proof of Lemma 5.5

We can obtain Lemma 5.5 of the paper using the change of variables formula. Before jumping into
the proof of this bound, we record a quick lemma:

Lemma H.1. Let u, v ∈ Rn (n > 1) such that u∗v 6= 0. Then∥∥∥∥I − uv∗u∗v

∥∥∥∥ =

∥∥∥∥uv∗u∗v

∥∥∥∥ =
‖u‖2 ‖v‖2
|u∗v|

. (H.1)

Proof. If u and v are linearly dependent, the result is immediate. Let us assume they are linearly
independent. Let M = I − uv∗

u∗v , and consider the eigenvalues of

MM∗ = I − 1

u∗v
(uv∗ + vu∗) +

uv∗vu∗

(u∗v)2
(H.2)

Notice that if x ⊥ u,v, we have MM∗x = x. We can find an orthonormal basis of n−2 vectors for
(u,v)⊥. Since any orthonormal collection of eigenvectors of a symmetric matrix can be completed
to an orthonormal basis of eigenvectors, there must exist two linearly independent eigenvectors lying
in span {u,v}. If x is an eigenvector with eigenvalue λ, we have

(1− λ)x =

[
1

u∗v
(uv∗ + vu∗)− uv

∗vu∗

(u∗v)2

]
x. (H.3)
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For x ∈ span {u,v}, write x = αu + βv. Plugging into the above equation and using linear
independence of u and v, we obtain

(1− λ)α =

(
1− v

∗vu∗u

(u∗v)2

)
α, (H.4)

(1− λ)β =
u∗u

u∗v
α+ β. (H.5)

The first equation implies that either α = 0, or λ = ‖v‖22 ‖u‖
2
2 /(u

∗v)2. If α = 0, this implies that
v is an eigenvector with eigenvalue λ = 1. Plugging back into (H.3), and simplifying, we get v = 0,
contradicting u∗v 6= 0. Hence, α = 0 cannot give an eigenvector under our assumptions, and it
must be that the eigenvalue is λ = ‖v‖22 ‖u‖

2
2 /(u

∗v)2. By Cauchy-Schwarz, this quantity is strictly
larger than one, and hence it is the largest eigenvalue of MM∗. Hence, ‖M‖ = ‖v‖2 ‖u‖2 /|u∗v|.
It is straightforward to observe that this quantity is also the norm of uv∗/u∗v.

Using this lemma and the change of variables formula, we can control the norm of the maps Pi:

Lemma H.2. For each i, ‖Pi‖L2→R ≤ 21/4βfs/`.

Proof. We can define a restricted perspective projection p̃ : ∂O+ → ΠI via

p̃(x) = −f x

〈x, e3〉
. (H.6)

Here, ∂O+ stands for the visible part of the object from the camera, defined as

∂O+ = {x ∈ ∂O | conv{x,0} ∩ O = x} .

The image coordinates are read off as the first two values p(x) = P 12 p̃(x), via

P 12 =

[
1 0 0
0 1 0

]
. (H.7)

The map p is injective, and its inverse p−1 : im(p) ⊆ R2 → ∂O+ exists. In our sensor model, we can
write the value of the i-th pixel as

Pi[g] = β

∫
z∈Ii∩im(p)

g(p−1z)

〈
z

‖z‖2
, e3

〉4

dµ(z)

.
= β

∫
z∈Ii∩im(p)

g(p−1z) cos4 (α(z)) dµ(z). (H.8)

We can change variables as above. Write

Pi[g] = β
∑
j

∫
z∈Ii∩p[∂O+∩ϕj [Uj ]]

g(p−1z) cos4 (α(z)) dµ(z).

Here, ϕj : Uj → ∆j is defined as in Appendix C. Using the change of variables formula, this
becomes

Pi[g] = β
∑
j

∫
w∈ϕ−1

j [∂O+∩p−1[Ii]]

g ◦ ϕj(w) cos4 (α(pϕj w))

∣∣∣∣det

(
∂ p ◦ ϕj
∂w

(w)

)∣∣∣∣ dµ(w).
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Writing
ζj(z) = 1z∈Ii∩p[∂O+∩ϕj [Uj ]]. (H.9)

The above expression becomes

Pi[g] = β
∑
j

∫
w∈Uj

g ◦ϕj(w) ζj ◦ p ◦ϕj(w) cos4(α(pϕj w))

∣∣∣∣det

(
∂ p ◦ ϕj
∂w

(w)

)∣∣∣∣ dµ(w). (H.10)

From this, we have

‖Pi‖2L2→R = β2
∑
j

∫
w∈Uj

(ζj ◦p◦ϕj)2(w) cos8(α(pϕj w))

∣∣∣∣det

(
∂ p ◦ ϕj
∂w

(w)

)∣∣∣∣2 dµ(w). (H.11)

To evaluate this, we can change variables again. Write

‖Pi‖2L2→R = β2
∑
j

∫
z∈R2

ζ2
j (z) cos8 (α(z))

∣∣∣∣det

(
∂ p ◦ ϕj
∂w

)
(ϕ−1
j p−1z)

∣∣∣∣2 ∣∣∣∣det

(
∂(p ◦ ϕj)−1

∂z
(z)

)∣∣∣∣ dµ(z)

= β2
∑
j

∫
z∈R2

ζ2
j (z) cos8 (α(z))

∣∣∣∣det

(
∂ p ◦ ϕj
∂w

)
(ϕ−1
j p−1z)

∣∣∣∣ dµ(z). (H.12)

To finish, we need to get a bound on the determinant term. For this, we use the fact that

∂p̃

∂x
= − f

〈e3,x〉

(
I − xe∗3
〈e3,x〉

)
, (H.13)

and

det

(
∂ p ◦ ϕj
∂w

)
= det

(
P 12

∂p̃

∂x
U j

)
≤

∥∥∥∥P 12
∂p̃

∂x
U j

∥∥∥∥2

≤
∥∥∥∥ ∂p̃∂x

∥∥∥∥2

=
f2

(e∗3x)2

∥∥∥∥I − xe∗3e∗3x

∥∥∥∥2

=
f2

(e∗3x)2

∥∥∥∥ x

e∗3x

∥∥∥∥2

2

, (H.14)

where in the final line, we have used the above lemma. To bound the terms in this expression, notice
that since x ∈ O, e∗3x ≥ `. Notice also that

− x

e∗3x
=

1

f
p̃(x). (H.15)

We have

‖p̃(x)‖2 =

√
f2 + f2 tan2 α. (H.16)

So, finally, we obtain ∣∣∣∣det

(
∂ p ◦ ϕj
∂w

)∣∣∣∣ ≤ f2

`2
(1 + tanα). (H.17)

It is not difficult to show15 that for all α,

| cos8 α× (1 + tanα)| ≤
√

2. (H.18)

15In fact, the right hand side of (H.18) can be easily tightened to cos8 α× (1 + tanα) ≤ c < 1.1. We will not pursue
tight constants here, however.
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Combining everything together, we obtain

‖Pi‖2L2→R ≤
√

2
β2f2

`2

∑
j

∫
z

ζ2
j (z) dµ(z) ≤

√
2
β2f2

`2
s2, (H.19)

giving the desired result.

This gives us a fairly direct proof of Lemma 5.5 of the paper:

Proof of Lemma 5.5. We have

‖P‖L2→`2 = sup
‖g‖L2≤1

∥∥∥∥∥∥∥
 P1[g]

...
Pm[g]


∥∥∥∥∥∥∥

2

. (H.20)

Because the Ii are disjoint and p is injective, the sets Ξi = p−1[Ii ∩ im(p)] are disjoint, and

‖g‖2L2 ≥
∑
i

‖g 1Ξi‖
2
L2 . (H.21)

From Lemma H.2, we have

|Pi[g]| ≤ ‖Pi[g]‖L2→L2 ‖g 1Ξi‖L2 ≤ (21/4βsf/`) ‖g 1Ξi‖L2 , (H.22)

and so
‖P[g]‖2`2 ≤ (21/4βsf/`)2

∑
i

‖g 1Ξi‖
2
L2 ≤ (21/4βsf/`)2 ‖g‖2L2 , (H.23)

completing the proof.

I Proofs from Section 6

Proof of Lemma 6.1.

Proof. Consider any Â ∈ Ω1. By the definition of Ω1, we have

sup
y ∈ cone(Ā), ‖y‖≤1

d
(
y, cone

(
Â
))
≤ γ′ ≤ γ

γ + 1
≤ γ.

We also have that

sup
y∈cone(Â), ‖y‖≤1

d
(
y, cone

(
Ā
))
≤ max
x≥0, ‖Âx‖2≤1

‖Āx− Âx‖2.

Since ∀ x ≥ 0, ‖Āx− Âx‖2 ≤ γ′‖Āx‖2, we have{
x
∣∣∣ x ≥ 0, ‖Âx‖2 ≤ 1

}
⊆

{
x
∣∣∣ x ≥ 0, ‖Āx‖2 ≤ 1 + ‖Āx− Âx‖2

}
⊆

{
x

∣∣∣∣ x ≥ 0, ‖Āx‖2 ≤
1

1− γ′

}
.
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Thus

sup
y ∈ cone(Â), ‖y‖≤1

d
(
y, cone

(
Ā
))
≤ max

x≥0, ‖Âx‖2≤1
‖Āx− Âx‖2

≤ max
x≥0, ‖Āx‖2≤ 1

1−γ′

‖Āx− Âx‖2

=
1

1− γ′
× max
x≥0, ‖Āx‖2≤1

‖Āx− Âx‖2

=
γ′

1− γ′
≤ γ.

Therefore, Â ∈ Ω1 implies Â ∈ Ω0 as desired.

Proof of Lemma 6.2.

Proof. By making the transformation X = xxT , we have that maxx≥0, ‖Āx‖2≤1 ‖Âx−Āx‖2 equals

max

〈(
Â− Ā

)T (
Â− Ā

)
, X

〉
s.t. 〈ĀT

Ā, X〉 ≤ 1

X ≥ 0, X � 0

rank (X) = 1.

Dropping the rank constraint gives the result.

Proof of Theorem 6.3 We will prove the theorem via two lemmas below:

Lemma I.1. Consider Ω3
.
=
{
Â
∣∣∣ f (Â) ≤ γ̄} , where γ̄ = (γ′)2 and

f
(
Â
)

.
= min

(µ,β)
β

s.t.

 I Â− Ā(
Â− Ā

)T
βĀ

T
Ā− µ

� 0, µ ≥ 0, β ≥ 0.

Then Ω3 = Ω2.

Proof. The above lemma follows directly from the fact that the dual problem of

(P) max

〈(
Â− Ā

)T (
Â− Ā

)
, X

〉
s.t.

〈
Ā
T
Ā, X

〉
≤ 1 (I.1)

X ≥ 0, X � 0,
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can be written as

(D) min β

s.t.

 I Â− Ā(
Â− Ā

)T
βĀ

T
Ā− µ

 � 0

µ ≥ 0, β ≥ 0,

with zero duality gap.
To derive that dual reformulation, we first reformulate problem (I.1) as:

max

〈(
Â− Ā

)T (
Â− Ā

)
, X

〉
s.t.

〈
Ā
T
Ā, X

〉
− 1 ≤ 0 (I.2)

X − Y = 0

Y ∈ Rn×n+ , X ∈ Sn+.

Let β ∈ R and µ ∈ Rn×n correspond to the inequality constraint and equality constraint. Then the
dual problem of (I.2) could be written in the following min-max form:

min
β ≥ 0
µ free

max
X ∈ Sn+
Y ∈ Rn×n+

〈(
Â− Ā

)T (
Â− Ā

)
, X

〉
− β

(
〈ĀT

Ā, X〉 − 1
)

+ 〈µ, X − Y 〉. (I.3)

By verifying that

max
X ∈ Sn+,Y ∈ Rn×n+

〈(
Â− Ā

)T (
Â− Ā

)
, X

〉
− β

(
〈ĀT

Ā, X〉 − 1
)

+ 〈µ, X − Y 〉

= max
X ∈ Sn+,Y ∈ Rn×n+

〈(
Â− Ā

)T (
Â− Ā

)
− βĀT

Ā+ µ, X

〉
+ 〈−µ, Y 〉+ β

=

β if −
(
Â− Ā

)T (
Â− Ā

)
+ βĀ

T
Ā− µ ∈ Sn+ and µ ∈ Rn×n+

+∞ otherwise
,

we can write (I.3) as

min β

s.t. −
(
Â− Ā

)T (
Â− Ā

)
+ βĀ

T
Ā− µ � 0 (I.4)

µ ≥ 0, β ≥ 0.

Because of Schur’s complement, −
(
Â− Ā

)T (
Â− Ā

)
+ βĀ

T
Ā− µ � 0 if and only if I Â− Ā(

Â− Ā
)T

βĀ
T
Ā− µ

 � 0.
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Thus (I.4) is equivalent to

min β

s.t.

 I Â− Ā(
Â− Ā

)T
βĀ

T
Ā− µ

 � 0.

µ ≥ 0, β ≥ 0.

Moreover, it can be easily verified that X = 1

2〈ĀT Ā,11T+In×n〉

(
11T + In×n

)
is a interior point

in the feasible set of (I.1). Thus by Slater’s condition, the duality gap is zero.

Hence, instead of solving (6.2), we can work with

min
{
‖L‖? + λ‖S‖1

∣∣∣ L+ S = Â, Â ∈ Ω3

}
.

The following lemma completes our proof of Theorem 6.3:

Lemma I.2. Our relaxed convex optimization problem

min
{
‖L‖? + λ‖S‖1

∣∣∣ L+ S = Â, Â ∈ Ω3

}
(I.5)

is equivalent to problem (6.4).

Proof. Problem (I.5)

min ‖L‖∗ + λ‖S‖1
s.t. L+ S = Â

f
(
Â
)
≤ γ̄,

can be easily written as

min ‖L‖∗ + λ‖S‖1

s.t.

[
I L+ S − Ā(

L+ S − Ā
)T

βĀ
T
Ā− µ

]
� 0 (I.6)

µ ≥ 0, γ̄ ≥ β ≥ 0.

Whenever (L?,S?, β?,µ?) is an optimal solution to problem (I.6), (L?,S?, γ̄,µ?)is still feasible
by noting that[

I L? + S? − Ā(
L? + S? − Ā

)T
γ̄Ā

T
Ā− µ?

]
=

[
I L? + S? − Ā(

L? + S? − Ā
)T

β?Ā
T
Ā− µ?

]
+

[
0 0

0 (γ̄ − β?) ĀT
Ā

]
� 0.

Moreover, the objective value does not change. Thus (L?,S?, γ̄,µ?) is also an optimal solution.
Therefore, we can rewrite problem (I.6) as

min ‖L‖∗ + λ‖S‖1

s.t.

[
I L+ S − Ā(

L+ S − Ā
)T

γ̄Ā
T
Ā− µ

]
� 0

µ ≥ 0,
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J Scalable Complexity Reduction using L-ADMM

Per Nesterov’s advice that “. . . the proper use of the problem’s structure can lead to efficient op-
timization methods. . . ” [Nes07], we would like to search for a scalable algorithm that takes full
advantage of the structure of (6.4). The problem can be rephrased as

min ‖L‖? + λ‖S‖1 + I (Z � 0) + I (µ ≥ 0) (J.1)

s.t. Z −
[

I L+ S − Ā(
L+ S − Ā

)T
γ̄Ā

T
Ā− µ

]
= 0,

where the indicator function I (x ∈ X ) is defined as

I (x ∈ X ) =

{
0, if x ∈ X
+∞, otherwise.

The most important structure in (J.1) seems to be that the objective function and constraints are
separable. This naturally suggests the use of alteranting directions methods. We will adopt the
recently proposed Linearized Alternating Direction Method of Multipliers (L-ADMM) [ZBBO10,
ZBO11, MXZ12] for (J.1). The L-ADMM is well adapted for problems of this form (J.1). This
method works with the Augmented Lagrangian,

Lρ (Z,L,S,µ;Y )
.
= ‖L‖∗ + λ‖S‖1+I (Z � 0) + I (µ ≥ 0)

+

〈
Y , Z −

[
I L+ S − Ā(

L+ S − Ā
)T

γ̄Ā
T
Ā− µ

]〉
+
ρ

2

∥∥∥∥Z − [ I L+ S − Ā(
L+ S − Ā

)T
γ̄Ā

T
Ā− µ

]∥∥∥∥2

F

.

Here, Y is the multiplier of the linear constraint, and ρ > 0 is the penalty parameter. For notational
convenience, partition Z as

Z =

[
Z11 Z12

Z21 Z22

]
,

in accordance with the block structure of[
I L+ S − Ā(

L+ S − Ā
)T

γ̄Ā
T
Ā− µ

]
.

Following the same rule, we define Y 11, Y 12, Y 21 and Y 22 correspondingly.
The L-ADMM algorithm, operating on Lρ (Z,L,S,µ;Y ), consists of the following three steps:
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1. Minimize Lρ (Z,L,S,µ;Y ) with respect to Z, while keeping all the other variables fixed:

Zk+1 = arg min
Z
Lρ
(
Z,Lk,Sk,µk;Y k

)
= arg min

Z
I (Z � 0) +

ρ

2

∥∥∥∥∥Z −
([

I Lk + Sk − Ā(
Lk + Sk − Ā

)T
γ̄Ā

T
Ā− µk

]
− Y

k

ρ

)∥∥∥∥∥
2

F

= Qk
(
Λk
)

+

(
Qk
)T

,

where QkΛk
(
Qk
)T

is any eigenvalue decomposition of

[
I Lk + Sk − Ā(

Lk + Sk − Ā
)T

γ̄Ā
T
Ā− µk

]
− Y

k

ρ
,

and Λk = diag
({
λki
}m+n

i=1

)
and

(
Λk
)

+
= diag

({
max

(
λki , 0

)}m+n

i=1

)
.

2. Fix variables Z and Y and update L, S and µ. Instead of minimizing Lρ(Zk+1,L,S,µ;Y k)

directly, we construct a surrogate function L̂ρ(Zk+1,L,S,µ;Y k) by linearizing Lρ(Zk+1,L,S,µ;Y k),

and then minimize L̂ρ(Zk+1,L,S,µ;Y k) in (L,S,µ)-direction. This gives

 Lk+1

Sk+1

µk+1

 = argmin(L,S,µ) L̂ρ
(
Zk+1,L,S,µ;Y k

)
=


argminL

(
‖L‖∗ + ρ

2τ ‖L− F
k‖2F

)
argminS

(
λ‖S‖1 + ρ

2τ ‖S −G
k‖2F

)
argminµ

(
I (µ ≥ 0) + ρ

2τ ‖µ−K
k‖2F

)


where

F k := Lk + 2τ
(
Zk+1

12 −Lk − Sk + Ā+ Y k
12/ρ

)
Gk := Sk + 2τ

(
Zk+1

12 −Lk − Sk + Ā+ Y k
12/ρ

)
Kk := µk − τ

(
Zk+1

22 − γ̄ĀT
Ā+ µ+ Y k

22/ρ
)

and τ ≥ 0 is a given step size to be discussed later. The advantage of this linearization is that
the sub-minimizations over L, S, and µ have efficient, closed-form solutions. Let Sθ : R→ R
denote the shrinkage operator

Sθ (x) = sgn (x) max (|x| − θ, 0)

and extend it to matrices by applying it componentwise. It is easy to show that Sk+1 =
Sτλ/ρ(Gk). Similarly, for any matrix X, denote Dθ as the singular value thresholding operator
Dθ (X) = USθ (Σ)V ? where X = UΣV ? is any singular value decomposition. It is not
difficult to show that Lk+1 = Dτ/ρ(F k). For µk+1 , we simply have µk+1 = (Kk)+ =

[max(Kk
ij , 0)]ij .
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3. Update the dual multiplier

Y k+1 = Y k + ρ

(
Zk+1 −

[
I Lk+1 + Sk+1 − Ā(

Lk+1 + Sk+1 − Ā
)T

γ̄Ā
T
Ā− µk+1

])

Putting these results together, we obtain an L-ADMM iterates as follows:

Algorithm 1 L-ADMM for (J.1)

Step 1. Generate Zk+1:

Zk+1 = Qk
(
Λk
)

+

(
Qk
)T

.

Step 2. Generate Lk+1, Sk+1 and µk+1:
Lk+1 = Dτ/ρ

(
F k
)

Sk+1 = Sτλ/ρ
(
Gk
)

µk+1 = (Kk)+

Step 3. Update the multiplier Y k+1:

Y k+1 = Y k + ρ

(
Zk+1 −

[
I Lk+1 + Sk+1 − Ā(

Lk+1 + Sk+1 − Ā
)T

γ̄Ā
T
Ā− µk+1

])
.

It can be shown that, with a proper choice of τ , our L-ADMM algorithm converges globally
with rate O (1/k). The proper τ is dictated by the following lemma, which bounds the norm of the
operator in the linear constraint in (J.1):

Lemma J.1. Let G : Rm×n × Rm×n × Rn×n → R(m+n)×(m+n) such that

G (L,S,µ) :=

[
0 L+ S

(L+ S)
T −µ

]
.

Then we have operator norm ‖G‖ = 2.

Proof. Set G1 (L+ S)
.
=

[
0 L+ S

(L+ S)
T

0

]
and G2 (µ)

.
=

[
0 0
0 −µ

]
. It can be easily verified
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that operator norms ‖G1‖ = 2 and ‖G2‖ = 1. Then we have

‖G‖2 = sup
‖µ‖2F+‖(L,S)‖2F=1

∥∥∥∥[ 0 L+ S

(L+ S)
T −µ

]∥∥∥∥2

F

= sup
‖µ‖2F+‖(L,S)‖2F=1

(∥∥∥∥[ 0 L+ S

(L+ S)
T

0

]∥∥∥∥2

F

+

∥∥∥∥[ 0 0
0 −µ

]∥∥∥∥2

F

)
= sup
‖µ‖2F+‖(L,S)‖2F=1

(
‖G1‖2‖ (L,S) ‖2F + ‖G2‖2‖µ‖2F

)
= max

(
‖G1‖2, ‖G2‖2

)
= 4,

Combining it with convergence results from Appendix A of [MXZ12], and results on convergence
rate from [HY12] (Theorem 4.1), we obtain the following convergence guarantee for our algorithm:

Theorem J.2. (Convergence Results) Suppose 0 < τ < 0.25. Then the sequence
{(
Zk,Lk,Sk,µk

)}
produced by Alg-1 from any starting point converges to an optimal solution with rate O (1/k).

52


	1 Introduction
	2 Problem Formulation and Methodology
	3 Extreme Rays of C
	4 Physical Assumptions: Lambertian Objects
	5 Perturbation Bounds and Sufficient Sample Densities
	5.1 Shadow Boundaries
	5.2 Perturbation bounds

	6 Cone Preserving Complexity Reduction
	7 Numerical Experiment
	8 Discussion
	A Proof of Lemma 2.3
	B Proofs from Section 3
	C Integrating on O
	D Proof of Lemma 4.2
	E Proofs from Section 5.1
	F Proof of Theorem 5.3
	G Proof of Lemma 5.4
	H Proof of Lemma 5.5
	I Proofs from Section 6
	J Scalable Complexity Reduction using L-ADMM

