
Monte Carlo Tree Search for Scheduling Activity Recognition

Mohamed R. Amer, Sinisa Todorovic, Alan Fern
Oregon State University
Corvallis, Oregon, USA

{amerm, afern, sinisa}@eecs.oregonstate.edu

Song-Chun Zhu
University of California Los Angeles

Los Angeles, California, USA
sczhu@ucla.edu

Abstract

This paper presents an efficient approach to video pars-
ing. Our videos show a number of co-occurring individ-
ual and group activities. To address challenges of the do-
main, we use an expressive spatiotemporal AND-OR graph
(ST-AOG) that jointly models activity parts, their spatiotem-
poral relations, and context, as well as enables multitarget
tracking. The standard ST-AOG inference is prohibitively
expensive in our setting, since it would require running
a multitude of detectors, and tracking their detections in
a long video footage. This problem is addressed by for-
mulating a cost-sensitive inference of ST-AOG as Monte
Carlo Tree Search (MCTS). For querying an activity in the
video, MCTS optimally schedules a sequence of detectors
and trackers to be run, and where they should be applied
in the space-time volume. Evaluation on the benchmark
datasets demonstrates that MCTS enables two-magnitude
speed-ups without compromising accuracy relative to the
standard cost-insensitive inference.

1. Introduction
Research on video parsing has made impressive progress

[1]. Recent approaches usually model activity parts, their
spatiotemporal relations, and context (e.g., [16, 14, 4]),
as well as enable tracking of actors (e.g., [6]). For this
they use highly expressive activity representations whose
intractable inference and learning require approximate algo-
rithms. However, as the representations are getting increas-
ingly expressive, even their approximate inference becomes
prohibitively expensive.

This paper presents a framework for cost-sensitive video
parsing using a probabilistic model, such that the result-
ing accuracy is close to that of the model’s cost-insensitive
inference. Our videos show a number of individual and
group activities co-occurring in a large scene, as illustrated
in Fig. 1. The video resolution allows for digital “zoom-in”,
and thus analyzing objects, and fine video details. Also, the
video footage is long enough to show all stages of tempo-

rally structured activities. To address challenges of this do-
main, we use a hierarchical, spatiotemporal AND-OR graph
(ST-AOG). ST-AOG is a stochastic grammar [18] that mod-
els both individual actions and group activities, captures
relations of individual actions within a group activity, ac-
counts for parts and contexts, and enables their tracking.
Fig. 1 illustrates how ST-AOG increases modeling com-
plexity relative to prior work.

ST-AOG enables parsing of challenging videos by run-
ning a multitude of object/people/activity detectors, and
tracking their detections. For some applications, such a
video parsing may be prohibitively expensive. To address
this issue, we enforce that ST-AOG inference is cost sensi-
tive, and formulate such an inference as a scheduling prob-
lem. In particular, given a query about a particular activity
class (e.g., where and when it occurs in the video), our in-
ference first identifies the node in ST-AOG that represents
that activity, and then runs a sequence of computational pro-
cesses for that node, termed as in [17, 14, 4]:

• α process: detecting objects, actions, and group activ-
ities directly from video features;

• β process: prediction of an activity from its children
individual actions or objects;

• γ process: prediction of actions or objects using the
context of their parent group activity;

• ω process: tracking an activity or action based on de-
tections in the previous time intervals.

As illustrated in Fig. 1, the scheduling of α, β, γ, and ω
processes jointly defines: which activity detectors to run,
and which level of activities to track, and where in the
space-time video volume to apply the detectors and track-
ing. Thus, given a query, the scheduling specifies a se-
quence of triplets {(process, detector, time interval)} to be
run, in order to efficiently answer the query. The sequence
is executed until the allowed time budget. In this way, in-
ference becomes efficient, optimizing the total number of
detectors and trackers to be run, for a given time budget.

We use training examples to learn a close-to-optimal
scheduling of ST-AOG inference. Since the best sequence
of inference steps is learned for each query type, and ex-

1



Figure 1. (Left to right) Our ST-AOG, inference processes (color-coded), and a video from the UCLA Courtyard dataset [4]. The rows show performance
of typical activity representations, where modeling complexity increases top to bottom. The top two rows show detections of “walking”, and tracking these
detections for recognizing structured actions of each person, as in [9]; this approach may suffer from missed detections, identity switches, and false positives.
The middle row increases complexity by accounting for both context and parts, as in [4]; this reduces the number of missed detections and false positives
relative to the figure rows above; however, this approach cannot relate detections from different time intervals. The row above the bottom shows an approach
that allows tracking but only at the group-activity level, as in [6]. The bottom row shows our performance for ST-AOG that models both individual actions
and group activities, relations of individual actions within every group activity, context, and enables tracking at all semantic levels.

ecuted as-is during inference, our approach belongs to the
general framework of open-loop planning. Inspired by re-
cent advances in Monte Carlo planning [5], we use Monte-
Carlo tree search (MCTS) to learn the scheduling of ST-
AOG inference. MCTS iterates the exploration and ex-
ploitation steps. Exploration performs Monte-Carlo simu-
lations for estimating the unknown distributions of rewards
of various sequences of α, β, γ, ω. Based on these distri-
bution estimates, exploitation conducts search for the best
sequence with the highest reward.

In the following, Sec. 2 reviews prior work; Sec. 3 for-
mulates our open-loop planning; Sec. 4 specifies MCTS;
Sec. 5 defines ST-AOG; Sec. 6–7 present inference and
learning; Sec. 8 describes implementation details; and
Sec. 9 presents our results.

2. Prior Work and Our Novelty
Models: Prior work uses Conditional Random Fields

(CRFs) [9, 6], Latent Structured SVM [12], Sum-Product
Networks [3], and context-sensitive grammars [8, 16, 14, 4]
for video parsing. Their inference is NP-hard, and re-
quires approximations, such as, e.g., Branch-and-Bound
[6], Network-flow [9], or the cutting-plane algorithm [12].
Also, grammar parsing, e.g., in [16, 14] uses dynamic pro-
gramming to process only a few candidate detections.

Planning for Inference: Hidden Markov Decision Pro-
cess (hMDP) is a planning framework used for predicting

human trajectories [10]. However, hMDP was not used for
activity recognition. MDP is not suitable for our problem,
due to its restrictive assumptions that activities are governed
by the stationary and first-order Markovian dynamics. In
[4], Q-learning is used for scheduling the α, β, γ inference
of a spatial AOG. In that work, Q-Learning simplifies the
inference of a stochastic grammar by: i) Summarizing all
current parse-graph hypotheses into a single state; and ii)
Conducting inference as first-order Markovian moves in a
large state space, following a fixed policy. The policy is es-
timated by Q-learning, where most of the states are simply
ignored, because there is typically not enough training data
to exemplify all states in the huge state space. Instead of es-
timating a single optimal move given a state via Q-learning,
in this paper, we use MCTS for estimating an optimal se-
quence of moves in the state space.

Novelty: MCTS has never been used for learning how
to schedule video parsing. ST-AOG extends the temporal
AOG of [16, 14], and non-temporal AOG of [4]. Instead
of Q-Learning, we use MCTS for estimating higher-order
dependencies among a sequence of α, β, γ, ω.

3. Inference as Open-Loop Planning

Given a query for an activity in the video, and ST-AOG, a
brute force approach to inference would be to run all detec-
tors associated with α, β, γ, ω, and then compute the poste-
rior of the query. This is prohibitive, and also unnecessary



in most cases, since many detectors will provide little to no
new information about the query. Our problem is to deter-
mine the best sequence of triplets {(process, detector, time
interval)} to run, in order to efficiently and accurately esti-
mate the query. This problem can be viewed as a planning
problem where each triplet is viewed as an inference step.
Our goal is to select an optimal sequence of inference steps,
given a time budget, that maximizes a utility measure.

One approach to selecting inference steps would be to
follow a closed-loop planning, where at each step we run
a planning algorithm to select the next step, based on the
information from previous steps. However, in our setting,
the computation required to select an optimal subset of de-
tectors to run may be larger than just running the full set
of detectors. Another closed-loop planning would be re-
inforcement learning (RL), e.g., used for grammar parsing
in [4]. RL uses a policy that maps any inference state to
an action (e.g., grammar inference step in [4]). However,
since the number of inference states is enormous, such ap-
proaches require making significant approximations, e.g.,
ignoring most of the states. It is unclear how much the ap-
proximation is hurting accuracy.

We explore an alternative approach, based on open-loop
planning. We pre-compute an explicit sequence of infer-
ence steps for each type of query that will be executed at
inference time. The approach is open-loop in the sense that
the sequence is executed without consulting previously ob-
tained results. The assumption underlying our approach is
that for each type of query there do exist high-quality open-
loop sequences of inference steps. Our experimental results
indicate that this is indeed true for ST-AOG inference. In
particular, we demonstrate that our approach is more effec-
tive than prior work that used approximations in conjunc-
tion with closed-loop planning. In general, it is well-known
that open-loop plans are quite effective, even compared to
the best known closed-loop approximations.

We now formalize the open-loop planning problem. The
steps available to our inference are {(process, detector, time
interval)} triplets. The process can be one of α, β, γ, ω,
which invokes one of the corresponding detectors, at a cer-
tain time interval. In this paper, we use the set of 32 de-
tectors. For each type of query, our objective is to produce
a high utility sequence of inference actions (a1, . . . , aB),
where B is the maximum budget available for applying ac-
tions during inference. Note that the exact observation se-
quence resulting from the action sequence will vary across
videos. Thus, we take the utility of an action sequence to
be the expected with respect to a distribution over videos of
the log-likelihood of the parse graph, pg. As explained in
Sec. 5 and Sec. 6, pg summarizes the current video parsing
results given observations gathered from the applied action
sequence. Note that this definition of utility cannot be com-
puted exactly due to the expectation. Thus, in our approach,

Figure 2. Steps for building MCTS tree. (a) Selection, where the selection
function is applied recursively until a leaf node is reached. (b) Expansion,
where a new node is added to the tree. (c) Simulation, where a sequence
of moves is taken till the goal is reached. (d) Backpropagation, where the
reward of the simulation is propagated to all the states along the tree path.

we estimate the expectation using an empirical average over
a set of training data. In particular, we assume the availabil-
ity of a set of training videos on which we can easily simu-
late the application of any action sequence and compute the
required likelihoods. Next, we describe how to search for a
high utility action sequence using MCTS.

4. Monte-Carlo Tree Search
The number of potential action sequences is exponen-

tial in the budget B, and hence we use an intelligent search
over potential action sequences, which is able to uncover
high quality sequences in a reasonable amount of time. Our
approach is based on the view that the set of all length B
action sequences can be represented as a rooted tree, where
edges correspond to actions, so that each path from the root
to a leaf corresponds to a distinct length B action sequence.
Our problem is to intelligently search this tree in order to
quickly find a leaf corresponding to a high quality sequence.

To search the tree we use MCTS. An appealing aspect
of MCTS is that it does not require the availability of a
search heuristic function, which is generally required by
other search methods, such as A*, and branch-and-bound
methods. MCTS has shown considerable success in recent
years, yielding state-of-the-art results in a variety of do-
mains [5]. In this work, we focus on one of the most popular
MCTS algorithms, called UCT [11].

MCTS is conceptually simple, as shown in Fig. 2. The
search tree is built in an iterative manner. It is initialized
to a single root node, and each iteration adds a single new
leaf node to the current tree, and updates certain statistics of
nodes in the tree. Each iteration, as illustrated in Fig. 2, be-
gins by using a tree policy to follow a path of actions from
the root until reaching a leaf node v of the current tree. A
random action is selected at node v, and the resulting node
v′ is added to the tree as a new leaf, noting that v′ corre-
sponds to an action sequence from the root to v′. This ac-
tion sequence is appended to by selecting random actions
until reaching a depth of B, resulting in a sequence of B
actions. The utility of the action sequence is then evaluated
using the training videos, as described in Sec. 3. This eval-
uation is used to update the statistics of tree nodes along the



path from the root to v′. Specifically, each node v in the
tree maintains a count n(v) of how many times the node
has been traversed during the search, and the average util-
ity Q(v) of the length B actions sequences that have passed
through the node so far during the search. Intuitively, the
statistics at each tree node indicates the overall quality of
the action sequences which have that node as a prefix.

After a specified number of iterations is reached, MCTS
stops and returns the best depth B action sequence from
the root. This is done by starting at the root and selecting
the action that leads to the child node v with largest utility
Q(v). Then, from v the next action is the one that leads to
the highest utility child of v. This repeats until we construct
the entire path of B actions.

It remains to specify the tree policy which is the key
ingredient in an MCTS algorithm as it controls how the
tree is expanded. Intuitively, we would like the tree to be
expanded toward more promising action sequences, which
exploits information from previous information. However,
at the same time the expansion to explore parts of the tree
that have not been sampled much to avoid missing promis-
ing sequences. Different MCTS algorithms mainly differ in
how they balance this trade-off between exploration and ex-
ploitation. We use the UCT algorithm that selects action a
at node v as

argmaxa

[
Q(T (v, a)) + C

√
2 log n(v)

n(T (v, a))

]
, (1)

where T (v, a) denotes the tree node that is reached by se-
lecting action a in node v. In (1), the exploitation term,
Q(T (v, a)), favors actions that have been observed to have
high average utility from v in previous iterations. The sec-
ond exploration term in (1) is larger for actions that have
been tried fewer times at v, since n(T (v, a)) is in the de-
nominator. The parameter C thus serves to set the tradeoff
between exploration and exploitation. We use C = 1/

√
2.

Theoretically, by using this tree policy, UCT is guaranteed
to converge to an optimal solution, if run long enough. In
practice, UCT typically shows good anytime behavior.

In the next section, we specify our ST-AOG model. This
will allow us to formalize, in Sec. 6, the α, β, γ, ω processes
that are scheduled by MCTS in inference for video parsing.

5. AOG Model
ST-AOG organizes domain knowledge in a hierarchical

manner at three levels. Group activities are defined as a
spatial relationship of a set of individual actions. They are
represented by nodes at the highest level of ST-AOG. In-
dividual actions are defined as punctual or repetitive mo-
tions of a single person, who may interact with an object.
They are represented as children nodes of the group-activity
nodes. Objects include body parts and tools or instruments

that people interact with while conducting a individual ac-
tion. Object nodes are placed at the lowest level of ST-
AOG, and represent children of the individual-action nodes.
Modeling efficiency is achieved by sharing children nodes
among multiple parents, where AND nodes encode particu-
lar configurations of parts, and OR nodes account for alter-
native configurations. ST-AOG establishes temporal (lat-
eral) edges between stages of the activity to model their
temporal variations. Thus, ST-AOG accounts for both tem-
poral and hierarchical context.

Formally, ST-AOG is a stochastic grammar, G =
(VNT ,VT , E ,P). VNT is a set of non-terminal AND and
OR nodes, denoted as ∧ and ∨. VT = {t(∧) : ∀∧ ∈ VNT }
is a set of terminal nodes connected to the corresponding
non-terminal nodes, where each t(∧) represents a detector
applied to the video part associated with ∧. E is a set of
edges of G. A parse graph, pg, is a valid, subgraph instance
of G. P is the family of pdf’s characterizing G.

G associates activity classes with ∧ nodes, which are hi-
erarchically organized in levels l = 1, ..., L to encode their
compositional relations. The root is at level l = 1. A par-
ent of ∧l is denoted as ∧l− . Similarly, the ith child of ∧l

is denoted as ∧il+ . The hierarchical structure of G means
that activity classes ∧l are connected with directed compo-
sitional edges to their children sub-activities {∧il+}. G uses
∨l nodes as switches that provide alternative, hierarchical
definitions of the activities. As shown in Fig. 1, at a par-
ticular level l of G, nodes ∨l are connected with switching
edges to nodes ∧l, and nodes ∧l are connected with rela-
tional edges to other nodes ∧l.

G also encodes temporal constraints between activities,
as illustrated in Fig. 1. The video can be partitioned into a
number of time intervals τ = 1, ..., T , where τ+ denotes the
interval that follows after τ . We associate distinct subsets
of nodes ∨τ

l , ∧τ
l , and t(∧τ

l ) with time intervals τ . Tempo-
ral relations are encoded by two types of edges. Nodes ∨τ

l

are connected with temporal switching edges to nodes ∧τ+

l

to express alternative temporal sequences of activities, sim-
ilar to the compositional switching edges. Also, temporal
prediction edges link nodes ∧τ

l and ∧τ+

l .
The distribution of a parse graph of G is defined as

p(pg) = 1
Z exp(−E(pg)), where Z is the partition func-

tion, and the total energy E(pg) is defined as:

E(pg)=−
∑

l,τ

[∑
switch edges log p(∧τ

l |∨τ
l )

+
∑

compositional edges log p(X(∧τ
l )|X(∧τ

l−))

+
∑

relational edges log p(X(∧τ
il+), X(∧τ

jl+))

+
∑

temporal-switch edges log p(∨
τ+

l |∧τ
l )

+
∑

prediction edges log p(X(∧τ+

l )|X(∧τ
l ))

]
.

(2)

where X(∧) denotes a feature vector of the video part asso-
ciated with node ∧.



6. Video Parsing

The goal of video parsing is to detect and localize all
instances of a given query activity. From (2), the query
uniquely identifies the level l in ST-AOG, and its parent
level l− wherein the corresponding pg = pgl is rooted. A
subgraph pgτ

l of pgl, associated with time interval τ , has
a single switching node ∨τ

l which selects ∧τ
l representing

the query activity detected in interval τ of the video. The
detected activity ∧τ

l can be explained as a layout of Nτ
l

sub-activities, {∧τ
il+ : i = 1, ..., Nτ

l }. Also, the detected
activity ∧τ

l can be predicted, given a preceding detection at
the same level ∧τ−

l . Thus, we have E(pgl) =
∑

τ E(pgτl ),
where E(pgτ

l ) is defined as

−E(pgτl ) = log p(∧τ
l |∨τ

l )︸ ︷︷ ︸
spatial switch

+α(t(∧τ
l ))︸ ︷︷ ︸

ατ
l detector

+
[
α(t(∧τ

l−))︸ ︷︷ ︸
ατ

l−
detector

+ log p(X(∧τ
l )|X(∧τ

l−))︸ ︷︷ ︸
γτ
l spatial prediction︸ ︷︷ ︸

zoom-out to the parent activity

]

+ p(Nτ
l )

Nτ
l∑

i=1

[
α(t(∧τ

il+))︸ ︷︷ ︸
ατ

il+
detectors

+ log p(X(∧τ
il+)|X(∧τ

l ))︸ ︷︷ ︸
γτ
il+

spatial prediction

]
︸ ︷︷ ︸

zoom-in to the parts

+ p(Nτ
l )

Nτ
l∑

i,j=1

log p(X(∧τ
il+), X(∧τ

jl+))︸ ︷︷ ︸
βτ
ijl+

spatial relations︸ ︷︷ ︸
zoom-in to the parts

+ log p(∨τ
l |∧τ−

l )︸ ︷︷ ︸
temporal switch

+ log p(X(∧τ
l )|X(∧τ−

l ))︸ ︷︷ ︸
ωτ

l temporal prediction︸ ︷︷ ︸
look-ahead in time

.

(3)
The equation (3) specifies the four computational processes
involved in inference of pgτl – namely, ατ

l , βτ
l , γτ

l , ωτ
l , il-

lustrated in Fig. 1.
From (3), for each type of query, our inference first iden-

tifies the root node of pg. Then, it executes the maximum
expected-utility inference sequence (a1, . . . , ab, . . . , aB),
learned by MCTS, where B is the maximum time budget.
Every inference action ab, represents a triplet {(process,
detector, time interval)}, where the process is one of
{ατ

l , β
τ
l , γ

τ
l , ω

τ
l : l = 1, 2, 3, τ = 1, ..., T}, indexed by

the time interval τ , and the detector is one from the set of
detectors associated with the process.

7. Parse Graph Distributions and Learning

Parameters of the distributions, given by (3), are as-
sumed independent of time intervals. Learning of these pa-
rameters is the same as in [17, 14, 4].

Learning spatial switching: p(∧l|∨l) is learned as the
frequency of occurrence of pairs (∧l,∨l) in training parse
graphs. The prior of the number of children nodes p(Nl)
is the exponential distribution, learned on the numbers of
corresponding children nodes of ∧l in training parse graphs.

Learning α: Positive examples T+
αl

are labeled bound-
ing boxes around group activities (l = 1), or individual ac-
tions (l = 2), or objects (l = 3). Negative examples T−

αl
}

are random boxes. αl uses Deformable Parts Model (DPM)
of [Felzenszwalb et al. PAMI10], learned on {T+

αl
, T−

αl
}.

Learning γ: Training set Tγl
consists of pairs of descrip-

tor vectors, {(X(∧l), X(∧l−))}, extracted from bounding
boxes around individual actions (or objects), and their con-
textual group activities (or individual actions) occurring in
the training videos. The descriptors X(·) capture the rel-
ative location, orientation, and scale of the corresponding
pairs of training instances. Tγl

is used for the ML learn-
ing of the mean and covariance, (µγl

,Σγl
), of the Gaussian

distribution p(X(∧l)|X(∧l−)).
Learning β: Training set Tβl

consists of all pairs of de-
scriptors, {(X(∧il), X(∧jl))}, of bounding boxes of indi-
vidual actions (or objects) having the same parent. The de-
scriptors capture the relative location, orientation, and scale
of the corresponding pairs of training instances. Tβl

is used
for the ML learning of the mean and covariance, (µβl

,Σβl
)

of the Gaussian distribution p(X(∧il), X(∧jl)).
Learning ω: Training set Tωl

consists of pairs of descrip-
tors {(X(∧τ

l ), X(∧τ+

l )) : τ = 1, 2, ...}, of bounding boxes
at intervals τ around group activities, or individual actions,
or objects occurring in the training videos. The descriptors
capture the relative location, orientation, and scale of the
corresponding pairs of training instances. Tωl

is used for
the ML learning of the mean and covariance, (µωl

,Σγl
), of

the stationary Gaussian distribution p(X(∧τ+

l )|X(∧τ
l )).

8. Implementation Details
Grid of Blocks: Each video is partitioned into a grid of

2D+t blocks, allowing inference action sequences to select
optimal blocks for video parsing. We evaluate the effect
of the varying grid size on our performance, for the total
number of blocks {1, 5, 10, 15, 20, 25, 50}. Best results are
obtained for 25 blocks.

Detectors: For each level l of ST-AOG, we define a set
of αl activity detectors. We specify three different types
of detectors. All detectors have access to the DPM detec-
tor, and a multiclass SVM classifier for detecting a person’s
facing direction. The person detector is initially applied to
each frame using the standard window scanning. A person’s
facing direction is classified by an 8-class classifier, learned
by LibSVM on HOGs (the 5-fold cross-validation precision
of orientation is 69%).

For detecting objects: We train the DPM on bounding
boxes of object instances annotated in training videos, and



apply this detector in a vicinity of every people detection.
For each object detection, we use SVM to identity the ob-
ject’s orientation. We obtain the tracklets using [15].

For detecting individual actions: We apply the motion-
appearance based detector of [13] in a vicinity of every per-
son detection. From a given window enclosing a person
detection, we first extract motion-based STIP features, and
describe them with HOG descriptors. Then, we extract KLT
tracks of Harris corners, and quantize the motion vectors
along the track to obtain a descriptor called the Sequence
Code Map. The descriptors of STIPs and KLT tracks are
probabilistically fused into a relative location probability
table (RLPT), which captures the spatial and temporal re-
lationships between the features. Such a hybrid descriptor
is then classified by a multiclass SVM to detect the individ-
ual actions of interest.

For detecting group activities: We compute the STV
(Space-Time Volume) descriptors of [7] in a vicinity of ev-
ery person detection, called an anchor. STV counts people,
and their poses, locations, and velocities, in space-time bins
surrounding the anchor. Each STV is oriented along the an-
chor’s facing direction. STVs calculated per frame are con-
catenated to capture the temporal evolution of the activities.
Since the sequence of STVs captures a spatial variation over
time, the relative motion and displacement of each person in
a group is also encoded. Tracking STVs across consecutive
frames is performed in 2.5D scene coordinates. This makes
detecting group activities robust to perspective and view-
point changes. The tracks of STVs are then classified by a
multiclass SVM to detect the group activities of interest.

9. Results
Datasets: For evaluation, we use datasets with mul-

tiple co-occurring individual actions and group activities,
such as the UCLA Courtyard Dataset [4], Collective Ac-
tivity Dataset [7], and New Collective Activity Dataset [6].
These datasets have multiple layers of annotations in terms
of group activities, individual actions, and objects. They
test our performance on a collective behavior of individu-
als under realistic conditions, including background clutter,
and transient occlusions. Other existing benchmark datasets
are not suitable for our evaluation. Major issues include: (1)
unnatural, acted activities in constrained scenes; (2) lim-
ited spatial and temporal coverage; (3) limited resolution;
(4) poor diversity of activity classes (particularly for multi-
object events); (5) lack of concurrent events; (6) lack of
detailed annotations; and (7) primarily aimed at evaluating
video classification rather than video parsing.

UCLA Courtyard Dataset [4] consists of a 106-minute,
30 fps, 2560 × 1920-resolution video footage. A bound-
ing box is annotated with the orientation and pose, where
we use 4 orientation classes for groups, 8 orientations for
people, and 7 poses for people. The following annotations

are provided, 6 group activities, 10 individual actions, and
17 objects. For each group activity or individual action, the
dataset contains 20 instances, and for each object the dataset
contains 50 instances. We split the dataset 50-50% for train-
ing and testing.

Collective Activity Dataset [7] consists of 75 short
videos of crossing, waiting, queuing, walking, talking, run-
ning, and dancing. For training and testing, we use the stan-
dard split of 2/3 and 1/3 of the videos from each class.
The dataset provides labels of every 10th frame, in terms
of bounding boxes around people performing the activity,
their pose, and activity class. Recently [6] released a new
collective activity dataset which has interactions.

New Collective Activity Dataset [6] is composed of 32
video clips with 6 collective activities, with 9 interactions,
and 3 individual actions. The annotations include 8 poses.
We use the same setup for splitting the training and testing
for testing. The dataset is divided into 3 subsets and run
3-fold training and testing.

For each type of query, our inference identifies the root
node of pg, then executes the associated inference sequence
(a1, . . . , ab, . . . , aB), where every inference action ab, rep-
resents a (process, detector, time interval) triplet. The pro-
cess is one of {ατ

l , β
τ
l , γ

τ
l , ω

τ
l }, the detector is one from

the set of detectors associated with the process, described
in Sec. 8.

Variants: We evaluate three variants of our model for
different time budgets B. B = ∞ means that we run full
inference with unlimited number of inference steps. V1(B)
is our default ST-AOG specified in Sec. 5. Inference of
V1(B) has time budget B and accounts for ω process at
all semantic levels. V2(B) is a variant of our ST-AOG,
whose inference accounts for ω process only at the query
level. The comparison of V1(B) and V2(B) tests the per-
formance gain of tracking jointly groups and individuals
versus either groups or individuals. This variant is similar
to the temporal AOG of [14], and thus V2(B) may be used
for comparison with [14]. A direct comparison with [14]
is not possible, because their temporal AOG models human
intentions, which is beyond our scope. V3(B) is a variant of
our AOG that does not model temporal relations, and thus
becomes a spatial AOG (S-AOG). Consequently, its infer-
ence does not account for ω process. This variant is similar
to S-AOG presented in [4]. The comparison of V3(B) and
S-AOG of [4] tests the performance gain of using MCTS
versus Q-Learning for learning the inference policy.

We compare our activity recognition with that of the state
of the art [4, 6, 9], and our tracklet association accuracy
with that of [6]. For the UCLA Courtyard dataset, per-
formance is evaluated in terms of precision and false pos-
itive rate of per-frame activity recognition. For the Col-
lective Activities and New Collective Activities datasets,
performance is evaluated in terms of video classification



accuracy. Our tracking evaluation uses the same setup
as presented in [6]. We use the same metric – namely,
Match Error Correction Rate (MECR), (error in tracklet −
error in result)/error in tracklet), which counts the number
of errors made during data association in tracking. MECR
can effectively capture the amount of fragmentation and
identity switches in tracking. In the case of a false alarm
tracklet, any association with this track is considered to be
an error.

Experiments: Tables 1–2 show the results of the three
variants of our approach on the UCLA Courtyard dataset.
Table 3 shows our performance on the Collective Activi-
ties dataset. Tables 4–5 show our performance on the New
Collective Activity dataset. From the tables, we derive the
following empirical conclusions.

The comparison of V3(B) and S-AOG of [4] in ta-
bles 1–2 demonstrates that the use of MCTS significantly
improves per-frame activity recognition, and reduces the
over all computational time, since we operate per blocks
of video rather than the entire video.

When time budget B = ∞, our approach achieves the
best results in Tables 1–2, since it is able to run as many
inference steps as needed. From Tables 1–2 we see that as
B decreases, our performance gracefully downgrades. For
a sufficiently large B our performance is very close to that
obtained for B = ∞.

The comparison of V2(B) and V3(B), and the compar-
ison of V2(B) with recent work of [4, 9, 6] in Tables 1–2
and Tables 3–4 demonstrate that accounting for temporal re-
lations between activities across the video improves perfor-
mance. From the four tables, the comparison of V1(B) and
V2(B) demonstrates that accounting for temporal relations
at all semantic levels leads to performance gains relative to
the approach that only tracks individuals.

As can be seen in Table 5, the comparison of our MCER
tracking accuracy with that of [6] demonstrates that we are
able to correct more trajectories than their approach.
Qualitative Results: Fig. 1 shows the results of the differ-
ent variants of our approach on UCLA dataset. As you can
see, starting from the top to bottom, the number of false de-
tections was reduced by using V3(∞). Then, tracking the
root node by using V2(∞) further reduces false detections.
At the bottom of Fig. 1, V1(∞) tracks activities at multiple
levels and achieves the best performance.

10. Conclusion
To address challenges of parsing complex videos, we

have used a stochastic grammar, called spatiotemporal And-
Or-Graph (ST-AOG). In our setting, common approaches to
AOG inference (e.g., using dynamic programming) may be
prohibitively expensive, since video parsing requires run-
ning a multitude of object and activity detectors in the long
video footage. To address this issue, we have formulated

inference of ST-AOG as open-loop planning, which opti-
mally schedules inference steps to be run until the allowed
time budget. For every query type, our inference executes
a maximum utility sequence of inference processes. These
optimal inference sequences are learned using Monte Carlo
Tree Search (MCTS). MCTS efficiently estimates the ex-
pected utility of inference steps by using an empirical aver-
age over a set of training data. MCTS accounts for higher-
order dependences of inference steps, and thus alleviates
drawbacks of Q-Learning and Markov Decision Process
used in related work for inference. Our results demon-
strate that the MCTS-based scheduling of video parsing
gives similar accuracy levels under two-magnitude speed-
ups relative to the standard cost-insensitive inference with
unlimited time budgets. Also, the extended expressiveness
of ST-AOG relative to existing activity representations leads
to our superior performance on the benchmark datasets,
including the UCLA Courtyard, Collective Activities, and
New Collective Activities datasets.

Acknowledgements
This research has been sponsored in part by grants

DARPA MSEE FA 8650-11-1-7149, ONR MURI N00014-
10-1-0933, and NSF IIS 1018490.

References
[1] J. Aggarwal and M. Ryoo. Human activity analysis:

A review. ACM Comput. Surv., 43:16:1–16:43, 2011.
[2] M. Amer and S. Todorovic. A Chains model for local-

izing group activities in videos. In ICCV, 2011.
[3] M. Amer and S. Todorovic. Sum-product networks

for modeling activities with stochastic structure. In
CVPR, 2012.

[4] M. Amer, D. Xie, M. Zhao, S. Todorovic, and S.-C.
Zhu. Cost-sensitive top-down/bottom-up inference for
multiscale activity recognition. In ECCV, 2012.

[5] C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas,
P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton. A survey of monte
carlo tree search methods. IEEE Trans. Comput. In-
tellig. and AI in Games, 4(1):1–43, 2012.

[6] W. Choi and S. Savarese. A unified framework for
multi-target tracking and collective activity recogni-
tion. In ECCV, 2012.

[7] W. Choi, K. Shahid, and S. Savarese. What are they
doing? : Collective activity classification using spatio-
temporal relationship among people. In ICCV, 2009.

[8] A. Gupta, P. Srinivasan, J. Shi, and L. Davis. Under-
standing videos, constructing plots learning a visually
grounded storyline model from annotated videos. In
CVPR, 2009.



Variant Line Tour Disc. Sit Walk Wait Avg Time
V1(5), Precision 75.1 77.2 76.2 81.4 80.1 73.2 77.2 15

V1(5), FP 4.2 4.9 9.8 11.2 8.3 10.1 8.0 15
V2(5), Precision 73.2 76.1 74.9 78.3 76.1 68.3 74.5 15

V2(5), FP 6.8 4.6 10.4 12.2 9.8 11.0 9.1 15
V3(5), Precision 68.9 71.2 72.8 73.2 75.6 61.3 70.5 15

V3(5), FP 9.2 5.1 11.9 13.6 11.2 12.6 10.6 15
QL(5), Precision 64.1 65.4 68.3 66.5 69.8 63.1 66.2 25

QL(5), FP 8.6 3.1 9.2 9.9 8.3 10.5 8.26 25

V1(15), Precision 77.8 80.2 78.9 84.4 85.1 76.5 80.4 35
V1(15), FP 8.2 4.9 11.8 13.2 10.3 12.1 10.0 35

V2(15), Precision 75.8 79.6 75.6 81.3 77.1 70.2 76.6 35
V2(15), FP 9.6 5.4 12.5 14.1 11.8 12.9 11.0 35

V3(15), Precision 71.2 71.8 73.5 73.9 76.3 67.0 72.2 35
V3(5), FP 10.2 5.9 12.8 14.6 12.5 13.7 11.6 35

QL(15), Precision 65.4 66.1 69.0 68.7 70.3 66.5 67.6 75
QL(15), FP 10.1 4.7 11.1 11.1 8.7 10.9 9.4 75

V1(∞), Precision 80.4 83.5 81.5 87.2 88.6 80.1 83.7 170
V1(∞),FP 8.9 5.7 12.4 14.2 11.1 12.9 10.9 170

V2(∞), Precision 77.4 82.2 77.2 84.2 79.3 72.9 78.8 170
V2(∞), FP 9.9 6.3 12.8 14.6 12.5 13.3 11.6 170

V3(∞), Precision 74.8 73.5 77.1 75.8 80.1 71.0 75.4 170
V3(∞), FP 11.2 6.4 13.1 14.8 13.0 13.9 12.1 170

QL(∞), Precision 68.0 70.2 75.1 71.4 78.6 72.6 72.7 230
QL(∞), FP 13.6 10.3 17.1 13.7 10.1 12.2 12.8 230

Table 1. Average precision and false positive rates on the UCLA Court-
yard Dataset for group activities. The larger the allowed number of actions,
the better precision. Results are shown in %, and time is in seconds.
Class V1(∞) V1(∞) V2(∞) V2(∞) V3(∞) V3(∞) QL(∞) QL(∞)

Prec. FP Prec. FP Prec.. FP Prec. FP

Walk 80.0 17.1 76.9 17.5 73.2 18.1 69.1 18.7
Wait 78.4 18.8 74.1 20.1 69.2 20.4 67.7 20.2
Talk 76.8 16.6 74.8 17.3 72.9 17.5 69.6 17.9
Drive 82.1 8.1 78.3 9.0 75.4 9.6 70.2 9.7
Surf 79.8 15.4 75.2 16.1 73.1 17.0 71.3 17.1

Scoot 81.8 14.1 76.8 14.8 73.3 15.9 68.4 16.3
Bike 76.9 12.2 71.5 13.0 68.2 13.2 61.4 12.3
Read 79.6 10.1 75.6 11.2 73.9 11.8 67.3 12.1
Eat 82.3 6.5 77.4 7.1 74.1 7.5 71.3 7.7
Sit 75.5 8.1 71.2 8.8 68.3 9.3 64.2 9.0

Avg 79.3 12.7 75.1 13.5 72.2 14.0 68.0 14.1

Time 210 210 210 210 210 210 330 330
Table 2. Average precision, and false positive rates on the UCLA Court-
yard Dataset for individual actions. The larger the allowed number of ac-
tions, the better precision. Results are shown in %, and time is in seconds.

Class V3(∞) [4] [2] [12] [7] V1(∞) V2(∞) [6] [9]

Walk 78.1 74.7 72.2 80 57.9 83.4 79.3 65.1 61.5
Cross 79.4 77.2 69.9 68 55.4 81.1 80.0 61.3 67.2
Queue 95.3 95.4 96.8 76 63.3 97.5 96.3 95.4 81.1
Wait 81.5 78.3 74.1 69 64.6 83.9 82.4 82.9 56.8
Talk 98.1 98.4 99.8 99 83.6 98.8 98.4 94.9 93.3

Avg 86.5 84.8 82.5 78.4 64.9 88.9 87.2 80 72

Time 120 165 55 N/A N/A 180 150 N/A N/A
Table 3. Average classification accuracy, and running times on the Col-
lective Activity Dataset [7]. We use B = ∞. Results are shown in %, and
time is in seconds.

Class V3(∞) QL(∞) [7] V1(∞) V2(∞) [6]

Gathering 48.1 44.2 50.0 48.9 42.8 43.5
Talking 81.3 76.9 72.2 86.5 82.4 82.2

Dismissal 55.3 50.1 49.2 84.1 81.2 77.0
Walking 89.1 84.3 83.2 92.5 89.9 87.4
Chasing 95.9 91.2 95.2 96.5 95.3 91.9
Queuing 96.7 92.2 95.9 97.2 96.1 93.4

Avg 77.7 74.8 77.4 84.2 80.1 79.2

Time 130s 150s N/A 180s 170s N/A
Table 4. Average classification accuracy, and running times on the New
Collective Activity Dataset [6]. We use B = ∞. Results are shown in %,
and time is in seconds.

Dataset Match Linear [6] Quadratic [6] V2 (∞) V1(∞)

Collective Activity [7] 28.73 37.40 42.54 46.9 48.7
New Collective Activity [6] 81.79 82.28 82.78 83.1 83.9

Table 5. Tracking results on [7] and [6]. All results are shown in %.

[9] S. Khamis, V. I. Morariu, and L. S. Davis. Combining
per-frame and per-track cues for multi-person action
recognition. In ECCV, 2012.

[10] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and
M. Hebert. Activity forecasting. In ECCV, 2012.

[11] L. Kocsis and C. Szepesvari. Bandit based monte carlo
planning. In ECML, 2006.

[12] T. Lan, Y. Wang, W. Yang, S. Robinovitch, and
G. Mori. Discriminative latent models for recognizing
contextual group activities. TPAMI, 34(8):1549–1562,
2012.

[13] P. Matikainen, M. Hebert, and R. Sukthankar. Rep-
resenting pairwise spatial and temporal relations for
action recognition. In ECCV, 2010.

[14] M. Pei, Y. Jia, and S.-C. Zhu. Parsing video events
with goal inference and intent prediction. In ICCV,
2011.

[15] H. Pirsiavash, D. Ramanan, and C. Fowlkes. Globally-
optimal greedy algorithms for tracking a variable
number of objects. In CVPR, 2011.

[16] Z. Si, M. Pei, B. Yao, and S.-C. Zhu. Unsupervised
learning of event AND-OR grammar and semantics
from video. In ICCV, 2011.

[17] T. Wu and S.-C. Zhu. A numerical study of the
bottom-up and top-down inference processes in and-
or graphs. IJCV, 93:226–252, June 2011.

[18] S.-C. Zhu and D. Mumford. A stochastic gram-
mar of images. Found. Trends. Comput. Graph. Vis.,
2(4):259–362, 2006.


