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Abstract

Exposure bracketing for high dynamic range (HDR)
imaging involves capturing several images of the scene at
different exposures. If either the camera or the scene moves
during capture, the captured images must be registered.
Large exposure differences between bracketed images leau
to inaccurate registration, resulting in artifacts such as
ghosting (multiple copies of scene objects) and blur. We
present two techniques, one for image capture (Fibonacci
exposure bracketing) and one for image registration (gen- Exponential bracketing and  Fibonacci bracketing and
eralized registration), to prevent such motion-related-ar conventional registration  generalized registration
facts. Fibonacci bracketing involves capturing a sequence Figure 1.(Left) HDR image computed using conventional regis-
of images such that each exposure time is the sum of tharation has blur and ghosting due to camera motion. Eacheof th
previousN (N > 1) exposures. Generalized registration three candle flames (inset) has multiple cop{@&ight) HDR im-
involves estimating motion between sums of contiguous setgge computed using the proposed approach. Zoom in for sletail

range and minimal motion-related artifacts. We show, by re-
sults for several real-world indoor and outdoor scenest tha
the proposed approach significantly outperforms several ex
isting bracketing schemes.

after normalization, image features are not preservedacro
frames, and motion information cannot be computed reli-
ably. This results in artifacts, such ghosting(multiple
copies of scene objects), blur and distortions. An example
is shown in Figurel. Such artifacts often negate the quality
1. Introduction enhancementthatis brought aboutin the image by capturing
a wide dynamic range. This presents a fundamental trade-
High dynamic range (HDR) imaging is the process of off - while a large difference in image exposures is required
capturing scenes with a larger intensity range than whatto capture a wide intensity dynamic range, it also results in
conventional sensors can capture. Because HDR imagestrong motion-related artifacts.
faithfully capture details in both dark and bright partstud t In this paper, we present new exposure bracketing and
scene, they are desirable in surveillance, astronomy, medimage registration techniques for handling scene and cam-
ical imaging, and more recently, even consumer photogra-era motion while also capturing a wide dynamic range
phy. Exposure bracketin@] 2] is the most popular tech- (DR). The key idea is to compute motion information be-
nique for HDR digital imaging. The basic idea is to capture tween sums of contiguous sets of frames. We calldhkis-
multiple images of the same scene with different exposures.eralized registration This is different from conventional
While each captured image has a low dynamic range (LDR), registration, where motion is computed between individual
a single HDR image is generated by merging the exposure{frames. We propose an exposure bracketing scheme called
bracketed LDR frames. Because of its ease of implemen-Fibonacci bracketingvhere the exposure times follow the
tation, bracketing for HDR is now available as a standard Fibonacci property, i.e., each exposure time is the sum of
feature in most digital cameras, including cell-phones. the previousN(N > 1) exposure times. Together, Fi-

Despite its simplicity, exposure bracketing is not used bonacci bracketing and generalized registration ensate th

in several real-world scenarios because it is prone to®rror  lin this paper, image exposure is changed only by varying aneeca
when there is scene or camera motion. In order to compen-shutter-time. Variations in camera aperture and gain heseeteen used

sate for motion, the bracketed images are registered beford® $aPturing HDR imagesi, 5. - .
In all the simulations and experiments in the paper, whereeees-

merging in_to the HDR image_. Registration _is performed sary, the captured images were normalized by their expssgfore mo-
by computing motion information between adjacent frames. tion estimation in order to maintain brightness constaretyben them.




motion isalwaysestimated between frames of the same to- handle dynamic camera and scenes.

tal exposure. The exposure times in a Fibonacci sequenceost-processing for Ghost Removal: In order to re-
grow exponentially, thus capturing a large DR as well. Fig- move the ghosting artifacts in HDR images, several post-
urel(_Right) shows an image c_omputed using the prOPOSEdprocessing techniques have been proposed]] These
techniques. It captures the wide DR of the scene and hasmethods attenuate the contribution of pixels belonging to
negligible motion-related artifacts. moving objects in the final HDR image. While these ap-

Hardware Prototype: For generalized registration, a proaches reduce ghosting, the moving objects may not have
sensor that allows exposure bracketing with a negligible HDR content if the inter-frame motion is large. Recently,
inter-frame time-gap is required. Although most current Senet al. [15] proposed creating the HDR image by enforc-
cameras support exposure bracketing, there is often a largéng its consistency with the bracketed images in a patch-
inter-frame gapf0 — 200ms). We implemented our tech-  based optimization procedure. Our focus is different than
niques on a machine vision camera which is triggered exter-the above post-processing techniquiéss-on acquiring im-
nally using a micro-controller based circuit. This hardevar agesso that ghosting artifacts can be prevented. The above
setup achieves a small inter-frame gap.dfn.s while expo- technigues can be used in a complementary fashion to our
sure times are changed from one frame to the next. We showapproach in order to remove any residual artifacts.

results for several real-world scenes, both indoors and out 4ardware Modifications: Several approaches have been

_doors, (;aptured during d_ifferent times_ of the day and hav- proposed to increase the DR by making hardware (opti-

ing a wide range of motion characteristics. For the samecq| and electronic) modifications to the camera. These in-

time-budget, Fibonacci bracketing and generalized negist  ¢|,de using an array of neutral density filtefs][ to spa-

tion produce images of significantly higher quality as com- tially modulate light before reaching the sensor, splijtine

pared to existing tgchniques. We also ex.tend our_technique$ight inside the camera using beam-splitter§][ and plac-

to capture HDR video at up to5 fps while adapting the  jnq optical filters in front of the camera §]. These systems

bracketing sequence to scene brightness and motion. requiring hardware modifications are often expensive and
Scope and Contributions: Our contributions are tech-  inaccessible to consumers. For most consumer cameras, es-

niques for image capture and registration that mitigate ar-pecially the point-and-shoot and cell-phone ones, exgosur

tifacts due tointer-framemotion and different amount of  bracketing remains the cheapest and the most viable HDR

motion blur between frames. These techniques do not re-imaging option.

duce motion blur caused bntra-frame motion. We use

existing deblurring methods to reduce blurring inthe brack 3 \What are Good Exposure Bracketing

eted frames. Our techniques are robust to non-linear cam- Schemes for HDR Imaging?

era intensity response and small bit-depths, making them ’

especially attractive for use in inexpensive cell-phone an Given a time-budget for acquiring a single HDR im-

point-and-shoot cameras. The proposed approach does neige, an exposure bracketing sequence is defined as a set of

require any modifications to the optics. Because of its sim- frame exposuref = {e1, es, ..., ex } such that:
plicity, our method is especially suited for implementatio K
on compact cell-phone cameras, for which, low-light and Ze’ - T (K-1) 1)

low-dynamic-range are known problems. This makes our P

work particularly pertinent as cell-phone cameras are ex-where§ is the inter-frame time gap due to sensor read-

pected to dominate consumer imaging in the next five years.out delay. The captured exposure-bracketed LDR frames
{f1, f2,..., fx} constitute the exposure stack. The max-

2. Related Work imum number of framesk is constrained by the max-

imum frame rate of the camera. For example, for an

F = 300 frames-per-second camera and a time budget of

T = 120ms, a maximum ofK = £*L — 36 LDR frames

can be captured for a single HDR image.

Given a time-budget, there are infinite possible brack-

ng sequences. Which bracketing sequence achieves the

ghest quality HDR image? The dynamic range achieved

>I9y a bracketing scheme is given &sJ.

Exposure Bracketing: One of the most widely used
bracketing schemes for HDR imaging is tbgponential
schemd9, 2], where a sequence of images with exponen-
tially increasing shutter times are used. Kangl. [6] pro-
posed a bracketing sequence of alternating short and Ionq9ti
exposures. In this approach, an HDR image is computed byhi
registering three LDR images. Later, Zhagtaal [21] pro-
posed capturing and registering a sequence of several ver

short and same exposure images. We propose using expo- DR = log Imaz €max )
sure times that have the Fibonacci property, i.e., each-expo Lnin €min
sure is the sum of previou§(N > 1) exposures. wheree,,, . ande,,;, are the maximum and the minimum

Recently, there has been a lot of work in devising scene-exposures in the bracketing scheme, respectivgly, (de-
adaptive exposure bracketing techniqugs [These tech-  termined by the sensor’s full well capacity) aig;, (de-
nigues attempt to maximize the signal-to-noise-ratio ef th termined by the sensor read noise) are the maximum and
final HDR image by adapting the bracketing sequence to theminimum signals detectable by the sensor. FromZ:d.is
scene’s brightness distribution. All these techniquesrags  clear that in order to maximize the dynamic range, a brack-
the scene and camera to be static. In contrast, our goal is teeting scheme should have a large range of exposures so that



Registration Error (pixels) 4 —5ms —10ms —15ms =—20ms

the ratio 2=e= is maximized. The LDR frames in the ex-
posure stack captured using such bracketing sequences will
have large differences in exposures.

On the other hand, if there is camera or scene motion,
large differences in LDR frame exposures can lead to in-
correct registration. Why does this happen? This is be-
cause image registration techniques work best when both - or—s w & 20 .
the source and the targetimages have similar features. How- = Exposure of s‘;;rce Image (ms) Exposure Time (ms)

ever, because of different exposure times, images have dif-_ : , (b) )
Figure 2.lllustration of the iso-exposure advantage 400 image

patches were extracted from HDR images. Images were sietulat

Registration Error (pixels)

Exposure of Target Image (ms)

ferent amount of motion blur and noise, and hence, image

feature§ are npt preserved_. Although norma!izing the im- assuming the scene to be a translating patch. For each patch,
ages with their equsure times maintains br_|ghtness (:_O”'images with different exposure times were generated, riaretk
stancy between therit,does not remove the differences in - a4 optical flow was computed between them. The difference in
motion blur. This results in incorrect motion estimation. the computed flow and the ground truth flow gives the regismat
This is illustrated in Figur@. Images are simulated as- error. (c) 2D plot of the mean errors. The exposures of thecgou

suming the scene to be translating images patches of sizend the targetimages are plotted on the X and Y axes, resglgcti
64 x 64 pixels. For each patch, two images with different (d) Error plots for four differer_n target exposur_dmages with the
exposure times are generated, using an affine image noiséame exposures have the minimum registration errors.
model. Image intensities are normalized by their exposures let the exposure bracketed frames  be
and then dense optical flow is computed between them. The . .

; : . {frse s fis firts oo JE with  exposure  times
difference in the estimated flow and the ground truth flow

: . - . X {e1,...,€i,€i41,...,ex}. In order to compute flow
gives the registration error. As shown, images with the same ;.1 etween f; and f; we first make two adiacent
exposures have the minimum registration errors. ci)ntiguous setsz of franl;gs' aroufid ) ’

Qualitative comparison of existing bracketing schemes: s

The exponential schemé][achieves good DR as the ex- 57 = Afinett fioneizs - fi} ()
posures grow exponentially. The alternating schefje [ S {fis1s fivas s firn b s 4)
uses long and short exposures (ratio between the exposureghere the superscriptsand¢ stand for source and target.
is 16). This scheme achieves a moderate DR. Both expo-Number of frames ir5y and S} is ns andn,, respectively.

nential and alternating schemes are prone to registrationThegeneralized frame&; and.F! for both sets are defined
errors due to large differences between consecutive expogs the sum of the individual frames:

sures. The burst-of-short-exposures schefrigresults in

S — . . .
the smallest increase in the DR as all the exposures are the ]:it = Jfinenrt fin2 A iy )
same. Since the burst scheme uses images of the same ex- Fi = fin+firet oo+ fign, - (6)
posure, it is robust to registration errors. Suppose the inter-frame time gépetween consecutive

Thus, in the context of exposure bracketing for HDR frames is negligible and the camera has a linear intensity re
imaging, there is a fundamental tradeoff between the dy-sponse. Then, the fran¥’ is the same as the single frame
namic range and registration accuracy. To capture a Iarge]:is that the camera would have captured had it exposed for

dynamic range, it is important to use a large range _of eX- the sum of exposure times_,,, 1 +€;_n, ya+. . .+¢; °. F?
posures. However, large differences in exposures of images = -
. ) ; : Is related taF! in a similar manner. Let the flow between
can result in strong registration artifacts. How can we cre- X e i i) } i
ate a bracketing scheme that achieves high dynamic range’s and/; beo;”, "\ 5 (generalized flow). The subscript
while minimizing the likelihood of registration artifacts and the superscript denote the first and the last frames in the
setsS§ andS?, respectively. Assuming that the flow vectors

4. Generalized Registration for Exposure are linear within the duration of capture of the generalized

Bracketed Image Sequences framesF; and.F}, the flowo; " is computed a$:
Consider a sequence of exposure bracketed images that ot — G T Cit1  Sfitlitn 7)
are to be registered using optical flow. Our key idea is that ’ “i” . [i=nat1dl
instead of directly estimating the flow between individual j=ima41 I
frames, we estimate flow between sums of two contiguous Two examples withn, — 2,n; = 1 (6[3] ) and
sets of frames. We call the flow between sums of frames A (1,2]

asgeneralized flovand the process of estimating general- p, = 1,n, = 2 (5%4]) are illustrated in Figur@. The
ized flow asgeneralized registration Flow between indi-
vidual frames is then computed by scaling the generalized 3The standard deviation of the effective read noise#giis ,/n times
flow. This is illustrated in Figur8. In the next section, that of F¢; the photon noise is the same & and.F:.
we will show that with the correct choice of exposure se-  “Ingeneral, if alarge number of frames are added to creaigetheral-
guence, generalized registration allows computing flow be- 2&d frames, the flows within a generalized frame may notrigeali, espe-
. - cially for very long exposures. As shown in the next sectair,approach
tween sums of frames having the same total exposure, whil&eqgires adding only a few frames £ 3). This allows approximating the

also achieving a high dynamic range. flows by linear vectors for a wide range of scenes and motions.




Conventional Registration Generalized Registration

~[3,4]
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3 ~[3] 5
0, 0y 0[1,2] [5]
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Figure 3.Conventional versus generalized registration.f; are the bracketed LDR frames, are the exposure times andare the flows
between frames(Left) In conventional registration, flow is computed betweenviitlial frames. The flows are then used to register all
the frames to a reference frame. Differences in exposuréisedframes result in registration artifact®Right) We propose generalized
registration where flow is computed between summationsaafiés. By choosing the exposure times appropriately, giretaiegistration
ensures that the flow is always computed between sums of $ravitle the same total exposure times. Flows between indiittames
are computed by scaling the generalized fléws

individual flows are computed ag = < 6{?12] and The next higher order i, 1). Order(2, 1) iso-exposure
o3 — _estes  [3.4] ’ property is achieved if every exposueg is equal to the
47 estestes V[5] sum of two previous exposures, i.€; = e;_1 + ¢;_o.

. . . This is the property of th&ibonacci sequencef numbers,
5. Fibonacci Exposure Bracketing a series well studied in number theo].[ The sequence

1,2,3,5,8,13,...is the canonical Fibonacci sequence. We

scheme that exploits generalized registration to ensuate th Ea” the_ bracketmgﬁztj:heme_wnh exposl;urei f?rmmg a k-
optical flow is always computed between frames of the onacq sequence .onacm expos.ure racke 'hg' )
same exposure time. To formalize this, we defineisoe =~ What is the dynamic range achieved by Fibonacci

In this section, we propose an exposure bracketing

exposure propertior an exposure sequence: br_acketing? TheDR is dete_rmined by the ratiO of COHSB(.:-
utive exposuresl[1]. The ratios of consecutive numbers in
Definition 1 An exposure sequenge,es,...,ex+ has a Fibonacci sequence approaches (in the lighit 1+2¢5,
order (n, n) iso-exposure properij Vi € [2...K — 1], thegolden ratio This is a well-known result in number the-
d it ory [8]. Thus, Fibonacci sequences behave like exponential

there existi, andn, suchthat >  e; = > ;.

=i P sequences with a growth fact@r= ¢. While it may appear

that theD R of Fibonacci bracketinglQ R ¢;;) is small due

If an exposure sequence has orfier, n;) iso-exposure 0 & relatively small growth factor, it turns out thBtR ¢,
property, it is possible to make generalized franigsand is always within a small additive constant of the maximum
F! (using Eqgs5 andb6) for every pair of adjacent framefs achievable dynamic range

and fi; so thatF; and Fif have thesame total exposure | g yyma 1 For any given time-budgét, the dynamic range
Since the flow betweerf; and f;., is computed by first — 5ohieved by Fibonacci bracketin® R, is within 1.39

estimating the flow betweef;® and F{ (Eq.7), the iso- tops of the maximum achievable dynamic rafe,,...
exposure property ensures that the flow is always esumatecf

between frames of the same exposure. Proof 1 Consider an exposure sequence where the ratio of

How should the parameters andn; be chosen? Both  successive exposuresgs= 1+2_¢5 This sequence follows
ns andn; should be as small as possible so that (a) flow the Fibonacci property. Suppose the time-budget equal
vectors within the generalized frames can be assumed to béo the sum of all exposures. Thehjs the sum of an expo-
linear, and (b) the gaps createdAii and F} due to inter- nential series witte,,,;,, as the first (minimum) exposure:
frame gapy are minimized. Moreoverns — n; should be K _ K

(0" - 1) ¢ @®

minimized to ensure that the effective noise of bsthand T = emin———= < e€min—",
F!is similar. Thus, the first natural choice is tfie 1) iso- _ $—1 -1 .
exposure sequence. In such a sequence, all the images haVd1€re X is the number of frames. The DRI?f |1:|_bonaCC| se-
the same exposure. The burst-of-short-expostrdgg an ~ dUENCE s given by substituting,., = emin ¢~ in EQ.2:
example. While such a sequence can minimize registration mar |, K—1

errors, it cannot capture a wide dynamic range. DRyip = log <—¢ ) : )

Imin



N

Ml Generalized Registration

The maximum dynamic rande,, ... for a time-budgef”

- ) Il Conventional Registration
is achieved with two exposures,;, andT" — e,,n: S'io-s S1s
306 L
Lnae T — €mi 1, T g a
DRypos _1og< max ﬂ) <log( mar >(10) Zoa >
Imin Cmin Imzn Cmin i § 05
_ . £ 02[ £
Substituting Eg8 into above, we get: B T
0 0.2 0.4 0.6 0.8 1 0 5 10 15 20
I ¢K Image Irradiance (0-1) Camera Response Function Index
max . . .
DRyae < log (I : H) - (11) (a) Cameraresponses (b) Normalized intensity errors
men Figure 4.Robustness of Fibonacci bracketing to non-linear
Subtracting Eq9 from Eg.11, we get: camera response functions(a) 20 response functions (from]).

(b) Average intensity difference between pixels in soune r-
¢ get images for each response function. Differences forriébol
DRmaz — DRy < log (¢, —1 <139. (12) bracketing based generalized registration is always less that
] ) ) ) ) of conventional registration.
Thus, Fibonacci bracketing achieves both - a high dy-

namic range (close to maximum achievable) as well as ro-N-bonacci sequences behave similar to Eitzonaccise-
bustness to registration errors. For example, a Fibonaeci s dquence; the ratio of consecutive numbers approaches a con-
quence constructed with a total time budge8®fns anda  stant in the limit [L6]. The ratios, called theV-bonacci
minimum exposure of.1ms hasl1 frames. This sequence constantspy, lie betweenl and2, i.e., 1 < ¢y < 2 for
results in a DR increase 6£94 stops over a single LDR  all N. For examplegs; = 1.84 (tribonacci) andp, = 1.93
image. With the same time-budget and minimum exposure, (tetranacci). Thus, alN-bonacci sequences behave like ex-
the maximum achievable DR increasei82 stops. ponential sequences with a growth fac@r= ¢n,1 <

G < 2. By following the same steps as in Proof 1, it can

Robustness to non-linear camera response functions: . ) . .
: : . be shown that the DR achieved by tribonacci and tetranacci
Several sensors have non-linear intensity response, espe- y

cially most cell-phone cameras. If the two images have dif- fne;q)?ir?]r:fnisalc?hvi\gtgglleélggdﬁﬁogeségc%\s’vczss?he;vt\;\/righﬁfstgf
ferent exposures and the sensor has a non-linear response, i exposure bracket'n '

the intensities of a scene point (after scaling by the expo- I exposu Ng-

sures) are different. This can lead to strong registratien e

rors. The maroon colored bars in Figutéo) show the av- 6. Hardware Prototype and Results

erage intensity differenc®.,,,(R) for conventional reg-
istration, corresponding to some typical camera responses; .
R shown in Figuret (a). The expression fab ..., (R) is
derived in the technical report available a}.[

Several consumer cameras support exposure bracketing.
s possible to capture a sequence of images while vary-
ing the exposure time. However, there is a time-lag of ap-
proximately50 — 200ms between successive frames. On
On the other hand, in the proposed approach, flow is al-the other hand, while there is negligible time gap between
ways computed between two frames of the same total ex-successive images of a video stream captured by a video
posure, making it robust to non-linearities in the responsecamera, it is not possible to change exposure time during
functions. The blue-colored bars in Figut€b) represent  capture. For generalized registration, ideally, a serfsar t
the intensity differencé),.,,(R) for Fibonacci bracketing  allows varying exposures with a negligible inter-frame gap
and generalized registration. The differences are signif-is required. One way of achieving this is to develop a video
icantly smaller, thus making it possible to achieve good camera with a programmable timing control unit, so that
results without calibrating the camera’s response curve.successive images can have different exposures.
Moreover, the proposed approach can be especially use- \while we have not developed such an image sensor,
fulin exposure-fusion based techniques, where the cagture we have emulated it by using a machine vision Miro
images are _directly merged_without rz?\diometric calibmatio \M310 camera. By triggering the camera externally with
and computing an intermediate HDR image][ pulses generated from an Arduino controller based circuit,
Higher order iso-exposure sequencesSo far, we have it is possible to achieve a negligible inter-frame time gap
considered ordef2, 1) iso-exposure sequences. Next, we (0.1ms)while varying exposure from one frame to the next.
discuss higher order sequences. It is not always possible tdur setup is shown in Figure
make (N, M) order sequences fdv/ > 1 while ensuring
non-negative and non-decreasing exposures. In this pape
we consider sequences with orly, 1) order iso-exposure
property for different values V.

Results: Figure 6 shows the result of Fibonacci bracket-
fing and generalized registration for an outdoor night scene
The time-budget for capturing a single HDR image was
set to120ms. The minimum exposure time was3ms.

A sequence of exposures has th#&,1) order iso- The Fibonacci exposure sequence obeying these constraints
exposure property if the exposure times are fronoater- IS {0.3,0.49,0.8,1.3,2.12,3.45,5.63,9.17,14.95,24.37,39.72}ms. Each
N Fibonaccisequence (ofV-bonacci sequence). In an exposure is the sum of the previous two; the ratio between
N-bonacci sequence, each number is the sum of previ-successive exposures is63. The sum of all the expo-
ous N numbers. Examples are thigbonacci (N = 3) sures is102.3ms. For comparisons, we use an exponen-
andtetranacci(N = 4) sequences. It turns out that all tial sequence with growth facta¥ = 4. The sequence



iS {0.3,1.2,4.8,19.2,76.8}ms. The total exposure time is again
102.3ms. In order to mitigatentra-frame motion bluythe
LDR images were deblurred using a recent methicgithat

can handle spatially-varying motion blur. The images for
exponential bracketing were normalized by their exposure
times before registration. Optical flow was computed using
the technique proposed if{].

The best-exposed LDR image chosen from the Fibonacci
sequence (image with the maximum number of pixels in
the intensity rang.07 —0.93]) contains saturated regions.
The HDR image computed without registering the LDR im-

Camera for
scene metering

Arduino

- 1
Trigger
cable

Camera for acquiring
exposure-bracketed sequences

Figure 5.Image acquisition setup. (Left)The Miro M310 cam-
era used to capture exposure bracketed images. Point-Gra§ F

ages is blurred due to camera and scene motion. The HDReamera was used for scene-metering to capture HDR videe (Sec
image computed using exponential bracketing and conven-ion 7). (Right) Bracketing was performed using an external trig-

tional registration has artifacts due to large differenices

ger generated by an Arduino microprocessor.

the exposures. The HDR images were tone-mapped usingynction: In order to emulate a non-linear response, we ap-

the photographic tone-reproduction operafci |

Comparisons with existing bracketing schemeskEigure?
shows comparisons of Fibonacci bracketing with the burst
(of short exposures) schemz1] and the alternating (long
and short exposure) schem@.[ The same time-budget
of 120ms was used for all three schemes. To ensure that

plied av-curve ¢ = 2.2) on the input LDR images. Fig-
ure10shows the comparison for an outdoor scene. Because
of differences between exposures of consecutive images,
there are strong distortions for the exponential scheme. In
contrast, as discussed in Secti@rthe proposed approach

is robust to non-linear camera response.

the scene was approximately the same for every schemeComparisons with different registration and image

all the input images were captured within a short duration
(380ms). For the burst schem8&p frames were captured,
each with an exposure 6f3ms for bright scenes (top row),
and3ms for dark scenes (bottom row). Since the frame rate
of the camera i800 fps, 36 LDR frames could be captured
within 120ms. For the alternating schem2?2 frames with
alternating exposures 6f£.3ms and 10ms were captured.
The frames were normalized before registration.

The alternating scheme suffers from strong registration

merging techniques: Several techniques have been pro-
posed to register and merge differently exposed images [
15]. We compared with the techniques of Ward]] and
Senet al. [15]. We compared four cases: (a) Exponential-
bracketing + conventional-registration, (b) Exponential
bracketing + Ward-registration, (c) Exponential-braakgt
+ Sen-method, and (d) Our method.

The average SNR (on 40 simulated image-sequences) for
the four methods are (a) 37dB, (b) 35dB, (c) 35dB and (d)

artifacts because of the large exposure differences and can40dB. We implemented the Ward method ourselves. For
not reconstruct mid-tones of the scenes (table and flowers)Senet al. method, we used the authors’ code available on
Images captured using the burst scheme have a low dynamitheir website.

range. Although the bright regions are faithfully captured

(sky, candle flames), the images have low signal-to-noise-7. Capturing HDR Video

ratio in the dark regions. With the same capture time, HDR
images created using Fibonacci bracketing have a signifi-
cantly better qualityFor more results and comparisons,
please see the project web-pagé]

Results of tribonacci bracketing: Figure8 shows HDR re-

In this section, we extend the proposed techniques to
capture HDR videos. The bracketing sequence is changed
according to scene characteristics (intensity and mo#sn)
they vary during video capture. As discussed in Secion

. g k - all N-bonacci sequences lend themselves to generalized
sults computed using tribonacci exposure bracketing or th ggistration. These sequences are defined by their growth

same scenes as in Figufe In this case, flow is computed  t5.tor v which varies between and2. i.e. 1 < G < 2.
between a frame and the sum of three previous frames. They; e éxtreme is the sequence qu: 1. where all the

ratio of consecutive exposures in a tribonacci sequence iSexposures are the same. Since it has only short exposures,

¢3 = 1.84, with the minimum exposure df.3ms. Atotal s sequence should be used only to capture bright scenes
of 9 images were used, giving a dynamic range increase Ofyit, |arge motion and relatively small dynamic range. On

W
8 ~ i i i 7 .
1.84 ~ 131 times over a single LDR image. the other hand, sequences with largéwalues (e.g., Fi-

Comparison between conventional and generalized reg-  bonacci and tribonacci) have a wide range of exposures, and
istration: Figure9 shows a comparison between conven- are more suitable for capturing scenes with a wide dynamic
tional and generalized registration. For both, the same LDRrange and small/moderate motion.

frames were used { frames of a Fibonacci bracketing se- Thus, we capture HDR video by changing the growth
quence). For conventional registration, image intersitie factor G as a function of the scenes intensities and the
were normalized. Conventional registration does not ékplo amount of motion. As discussed in the previous paragraph,
the iso-exposure property of Fibonacci bracketing. Thisre G should be inversely proportional both to scene’s bright-

sults in incorrect registration and ghosting artifactscom-
trast, generalized registration produces a ghost-fregéma
Evaluating the effect of non-linear camera response

ness values and amount of motion. Moreover, since we aim
to capture HDR videdi7 should vary smoothly as the scene
changes. We use the following simple function that can be



id A
(a) LDR Image (b) HDR Image (c) HDR Image (Exponential  (d) HDfage (Fibonacci
(Best exposure) (No registration) bracketing + conv. itegis bracketing + gen. registr.)
Figure 6.Comparison between exponential bracketing and Fibonaccifacketing. (a) The best exposed LDR image contains saturated
regions. (b) HDR image computed without registering LDR@esis blurred due to camera and scene motion. (c) HDR imagpuwed
using exponential bracketing and conventional registnalias strong registration artifacts. (d) HDR image obthingng the proposed
Fibonacci bracketing and generalized registration teghes.See the project web-pagell] for more results and comparisons.

(a) LDR Image (b) HDR Image (alternating (c) HDR Image (bofshort (d) HDR Image (Fibonacci

(Best exposure) exposures] [ exposures)q1] bracketing + gen. registration)
Figure 7.Comparison between Fibonacci and two existing bracketingahemes. (Top)Church on a cloudy day(Bottom) Indoor
birthday party. Both scenes have large dynamic ramge € 10°). (a) The best exposed LDR image has saturated regionscghgles).
(b) The alternating (long and short exposure) scheme suffem strong registration artifacts (church) and can nocdmstruct mid-tones of
the scenes faithfully (flowers, table). (c) Images captwsdg the burst (of short exposures) scheme have a low dgnamge, resulting
in low quality in the dark regions. (d) HDR images createahggtibonacci bracketing and generalized registration.

computed sufficiently fast on commodity hardware: the Flea3 camera for determining the bracketing sequence.
. . Since image analysis and capture steps are parallelized and
Gy = 1+ ((1 - Ik—l) (1 - Mk—l)) » (13)  the total capture time for each bracketing sequence is about

60ms, our system captures HDR video Hi fps. See the

where;,_; is the median intensity of the previous frame project web-page [1] for the videos and more resuilts.

and M;_; is the mean motion between two previous
frames. Motio_n is. computed by computing correlation be- 8. Discussion and Limitations

tween1-D projections of the two frames along rows and

columns. Both/,_; andM;,_; are normalized to lie in the In order to be used widely in consumer cameras, HDR
range(0, 1]. We used a Miro M310 camera (see Fighje  techniques should handle motion. Ours is finst expo-

for capturing exposure bracketed images. A Point-Grey sure bracketing scheme that is designed to deal with dy-
Flea3 camera was used for ‘scene-metering’ - intensity andnamic camera and objects. The proposed approach is robust
motion information was computed on images captured by to non-linearities in the camera response functions and low



= =
Fibonacci bracketing + Fibonacci bracketing +
Conventional registration Generalized registration
Figure 9.Comparison between conventional and generalized
registration. The same LDR imagesl { frames of a Fibonacci
bracketing sequence) were used for both cases. Conventagna
istration does not exploit the iso-exposure property obRdxrci
bracketing. This results in incorrect registration andrsgrghost-
ing artifacts. Generalized registration produces a gfrestimage.

g St Rk \

HDR Image (exponential) HDR Image (Fibonacci)
Figure 10 Evaluating the effect of non-linear camera response.

A non-linear response was emulated by applyinge@urve ¢ =

2.2) on the input LDR frames. Because of differences between ex-
posures of consecutive frames, there are strong distsrf@mrex-
ponential (bushes, walking path and people at the bottoh®rse.

In contrast, the proposed approach is robust to non-lirsmanse.

[5] S. W. Hasinoff, F. Durand, and W. T. Freeman. Noise-
optimal capture for high dynamic range photography. In
IEEE CVPR 2010.1, 2

[6] S.B.Kang, M. Uyttendaele, S. Winder, and R. Szeliskgli
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cameras: Extending dynamic range by combining differently
exposed pictures. IRroc. of IST 1995.1, 2

[10] T. Mertens, J. Kautz, and F. V. Reeth. Exposure fusian. |
Proc. Pacific Graphics2007.5

sensor bit-depth, and require minimal modifications to use[11] S. K. Nayar and T. Mitsunaga. High dynamic range imaging

with existing sensors. Thus, our techniques are partigular

Spatially varying pixel exposures. @®VPR 2000.2, 4

suitable for implementation on inexpensive image sensors[12] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. &hot

such as ones used in cell-phone cameras.

The technique of Fibonacci bracketing+generalized reg-
istration should be seen as a general ‘pre-conditioniregy st
in HDR imaging, that enhances the accuracy of existing
image-alignment/optical flow methods. Note that it is not :

a new alignment technique in itself.

Limitations: While the proposed approach significantly
mitigates registration artifacts, it may not completely re
move them. Our method shares the limitations of dense

graphic tone reproduction for digital images. ACM SIG-
GRAPH 2002.6

[13] M. Rouf, R. Mantiuk, W. Heidrich, M. Trentacoste, and
C. Lau. Glare encoding of high dynamic range images. In
IEEE CVPR2011.2

14] D. Schleicher and B. G. Zagar. High dynamic range imag-
ing by varying exposure time, gain and aperture of a video
camera. IrProc. of IEEE Instrumentation and Measurement
Technology Conferenc2010.1

15] P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B. ol

optical flow techniques (e.g., aperture problem), and hence” * yan and E. Shechtman. Robust patch-based HDR recon-

may not perform reliably for textureless regions, occlasio
and in the presence of highly non-rigid motion (such as fluid

struction of dynamic scenesACM Trans. Graph. 31(6),
2012.2,6

motion). For extremely fast motions, or large inter-frame [16] W. R. Spickerman and R. N. Joyner. Binet's formula fae th

time gaps, our technique may not produce a good result.

recursive seq. of order Kribonacci Quart, 22, 1984.5

In order to remove the residual artifacts, one of the post-[17] D. Sun, S. Roth, and M. J. Black. Secrets of optical flow

processing techniques discussed in Seciamy be used.
References

[1] Project webpagehttp:/iwww.cs.columbia.edu/CAVE/
projects/FibonacciHDR/5, 6, 7

[2] P. E. Debevec and J. Malik. Recovering high dynamic range

radiance maps from photographs. ACM SIGGRAPH
1997.1,2,3

[3] O. Gallo, N. Gelfand, W. Chen, M. Tico, and K. Pulli.

Artifact-free HDR imaging. INEEE ICCP, 2009.2

[4] M. D. Grossberg and S. K. Nayar. What is the space of cam-

era response functions? IIBEE CVPR 2003.5

estimation and their principles. IEEE CVPR 2010.6

[18] M. Tallon, J. Mateos, S. Babacan, R. Molina, and A. K.Kat
saggelos. Space-variant blur deconvolution and denoising
the dual exposure problermformation Fusion2012.6

[19] M. Tocci, C. Kiser, N. Tocci, and P. Sen. A versatile HDR
video prodction systemACM Trans. Graph.30(4), 2011.2

[20] G. Ward. Fast, robust image registration for compogiti
high dynamic range photographs from handheld exposures.
Journal Of Graphics Tools8, 2003.6

[21] L. Zhang, A. Deshpande, and X. Chen. Denoising versus
deblurring: HDR techniques using moving camerasEBE
CVPR 2010.2,3,4,6,7



