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Fast object segmentation in unconstrained video

Anestis Papazoglou
University of Edinburgh

Vittorio Ferrari
University of Edinburgh

Abstract

We present a technique for separating foreground objects
from the background in a video. Our method is fast, fully au-
tomatic, and makes minimal assumptions about the video.
This enables handling essentially unconstrained settings,
including rapidly moving background, arbitrary object mo-
tion and appearance, and non-rigid deformations and ar-
ticulations. In experiments on two datasets containing over
1400 video shots, our method outperforms a state-of-the-
art background subtraction technique [4] as well as meth-
ods based on clustering point tracks [6, 18, 19]. Moreover,
it performs comparably to recent video object segmentation
methods based on object proposals [14, 16, 27], while being
orders of magnitude faster.

1. Introduction

Video object segmentation is the task of separating fore-
ground objects from the background in a video [14, 18, 26].
This is important for a wide range of applications, includ-
ing providing spatial support for learning object class mod-
els [19], video summarization, and action recognition [5].

The task has been addressed by methods requiring a user
to annotate the object position in some frames [3, 20, 26,
24], and by fully automatic methods [14, 6, 18, 4], which
input just the video. The latter scenario is more practi-
cally relevant, as a good solution would enable processing
large amounts of video without human intervention. How-
ever, this task is very challenging, as the method is given no
knowledge about the object appearance, scale or position.
Moreover, the general unconstrained setting might include
rapidly moving backgrounds and objects, non-rigid defor-
mations and articulations (fig. 5).

In this paper we propose a technique for fully automatic
video object segmentation in unconstrained settings. Our
method is computationally efficient and makes minimal as-
sumptions about the video: the only requirement is for the
object to move differently from its surrounding background
in a good fraction of the video. The object can be static
in a portion of the video and only part of it can be mov-
ing in some other portion (e.g. a cat starts running and then
stops to lick its paws). Our method does not require a static

or slowly moving background (as opposed to classic back-
ground subtraction methods [9, 4, 7]). Moreover, it does
not assume the object follows a particular motion model,
nor that all its points move homogeneously (as opposed to
methods based on clustering point tracks [6, 17, 18]). This
is especially important when segmenting non-rigid or artic-
ulated objects such as animals (fig. 5).

The key new element in our approach is a rapid technique
to produce a rough estimate of which pixels are inside the
object based on motion boundaries in pairs of subsequent
frames (sec. 3.1). This initial estimate is then refined by
integrating information over the whole video with a spatio-
temporal extension of GrabCut [21, 14, 26]. This second
stage automatically bootstraps an appearance model based
on the initial foreground estimate, and uses it to refine the
spatial accuracy of the segmentation and to also segment the
object in frames where it does not move (sec. 3.2).

Through extensive experiments on over 1400 video shots
from two datasets [24, 19], we show that our method: (i)
handles fast moving backgrounds and objects exhibiting a
wide range of appearance, motions and deformations, in-
cluding non-rigid and articulated objects; (ii) outperforms
a state-of-the-art background subtraction technique [4] as
well as methods based on clustering point tracks [6, 18, 19];
(iii) is orders of magnitude faster than recent video object
segmentation methods based on object proposals [14, 16,
27]; (iv) outperforms the popular method [14] on the large
YouTube-Objects dataset [19]; (v) produces competitive re-
sults on the small SegTrack benchmark [24]. The source
code of our method is released at http://groups.
inf.ed.ac.uk/calvin/software.html

2. Related Work
Interactive or supervised methods. Several methods for
video object segmentation require the user to manually an-
notate a few frames with object segmentations and then
propagate these annotations to all other frames [3, 20, 26].
Similarly, methods based on tracking [8, 24], require the
user to mark the object positions in the first frame and then
track them in the rest of the video.
Background subtraction. Classic background subtrac-
tion methods model the appearance of the background at
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each pixel and consider pixels that change rapidly to be
foreground. These methods typically assume a stationary,
or slowly panning camera [9, 4, 7]. The background should
change slowly in order for the model to update safely with-
out generating false-positive foreground detections.

Clustering point tracks. Several automatic video seg-
mentation methods track points over several frames and
then cluster the resulting tracks based on pairwise [6, 17]
or triplet [18] similarity measures. The underlying assump-
tion induced by pairwise clustering [6, 17] is that all ob-
ject points move according to a single translation, while the
triplet model [18] assumes a single similarity transforma-
tion. These assumptions have trouble accommodating non-
rigid or articulated objects. Our method instead does not at-
tempt to cluster object points and does not assume any kind
of motion homogeneity. The object only needs to move suf-
ficiently differently from the background to generate mo-
tion boundaries along most of its physical boundary. On the
other hand, these methods [6, 17, 18] try to place multiple
objects in separate segments, whereas our method produces
a simpler binary segmentation (all objects vs background).

Ranking object proposals. The works [14, 16, 27] are
closely related to ours, as they tackle the very same task.
These methods are based on finding recurring object-like
segments, aided by recent techniques for measuring generic
object appearance [10], and achieve impressive results on
the SegTrack benchmark [24]. While the object proposal in-
frastructure is necessary to find out which image regions are
objects vs background, it makes these methods very slow
(minutes/frame). In our work instead, this goal is achieved
by a much simpler, faster process (sec. 3.1). In sec. 4 we
show that our method achieves comparable segmentation
accuracy to [14] while being two orders of magnitude faster.

Oversegmentation. Grundmann et al. [13] oversegment
a video into spatio-temporal regions of uniform motion and
appearance, analog to still-image superpixels [15]. While
this is a useful basis for later processing, it does not solve
the video object segmentation task on its own.

3. Our approach

The goal of our work is to segment objects that move dif-
ferently than their surroundings. Our method has two main
stages: (1) efficient initial foreground estimation (sec. 3.1),
(2) foreground-background labelling refinement (sec. 3.2).
We now give a brief overview of these two stages, and then
present them in more detail in the rest of the section.

(1) Efficient initial foreground estimation. The goal of
the first stage is to rapidly produce an initial estimate of
which pixels might be inside the object based purely on
motion. We compute the optical flow between pairs of sub-
sequent frames and detect motion boundaries. Ideally, the

Figure 1. Motion boundaries.. (a) Two input frames. (b) Optical
flow ~fp. The hue of a pixel indicates its direction and the color
saturation its velocity. (c) Motion boundaries bmp , based on the
magnitude of the gradient of the optical flow. (d) Motion bound-
aries bθp, based on difference in direction between a pixel and its
neighbours. (e) Combined motion boundaries bp. (f) Final, binary
motion boundaries after thresholding, overlaid on the first frame.

motion boundaries will form a complete closed curve co-
inciding with the object boundaries. However, due to in-
accuracies in the flow estimation, the motion boundaries
are typically incomplete and do not align perfectly with ob-
ject boundaries (fig. 1f). Also, occasionally false positive
boundaries might be detected. We propose a novel, compu-
tationally efficient algorithm to robustly determine which
pixels reside inside the moving object, taking into account
all these sources of error (fig. 2c).

(2) Foreground-background labelling refinement. As
they are purely based on motion boundaries, the inside-
outside maps produced by the first stage typically only ap-
proximately indicate where the object is. They do not accu-
rately delineate object outlines. Furthermore, (parts of) the
object might be static in some frames, or the inside-outside
maps may miss it due to incorrect optical flow estimation.

The goal of the second stage is to refine the spatial ac-
curacy of the inside-outside maps and to segment the whole
object in all frames. To achieve this, it integrates the infor-
mation from the inside-outside maps over all frames by (1)
encouraging the spatio-temporal smoothness of the output
segmentation over the whole video; (2) building dynamic
appearance models of the object and background under the
assumption that they change smoothly over time. Incor-
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Figure 2. Inside-outside maps. (Left) The ray-casting observation. Any ray originating inside a closed curve intersects it an odd number
of time. Any ray originating outside intersects it an even number of times. This holds for any number of closed curves in the image.
(Middle) Illustration of the integral intersections data structure S for the horizontal direction. The number of intersections for the ray
going from pixel x to the left border can be easily computed as Xleft(x, y) = S(x − 1, y) = 1, and for the right ray as Xright(x, y) =
S(W, y)− S(x, y) = 1. In this case, both rays vote for x being inside the object. (Right) The output inside-outside map M t.

porating appearance cues is key to achieving a finer level
of detail, compared to using only motion. Moreover, af-
ter learning the object appearance in the frames where the
inside-outside maps found it, the second stage uses it to seg-
ment the object in frames where it was initially missed (e.g.
because it is static).

3.1. Efficient initial foreground estimation

Optical flow. We begin by computing optical flow be-
tween pairs of subsequent frames (t, t + 1) using the state-
of-the-art algorithm [6, 22]. It supports large displacements
between frames and has a computationally very efficient
GPU implementation [22] (fig. 1a+b).
Motion boundaries. We base our approach on motion
boundaries, i.e. image points where the optical flow field
changes abruptly. Motion boundaries reveal the location of
occlusion boundaries, which very often correspond to phys-
ical object boundaries [23].

Let ~fp be the optical flow vector at pixel p. The sim-
plest way to estimate motion boundaries is by computing
the magnitude of the gradient of the optical flow field:

bmp = 1− exp(−λm||∇ ~fp||) (1)

where bmp ∈ [0, 1] is the strength of the motion boundary at
pixel p; λm is a parameter controlling the steepness of the
function.

While this measure correctly detects boundaries at
rapidly moving pixels, where bmp is close to 1, it is unre-
liable for pixels with intermediate bmp values around 0.5,
which could be explained either as boundaries or errors due
to inaccuracies in the optical flow (fig. 1c). To disambiguate
between those two cases, we compute a second estimator
bθp ∈ [0, 1], based on the difference in direction between the
motion of pixel p and its neighbours N :

bθp = 1− exp(−λθmax
q∈N

(δθ2p,q)) (2)

where δθp,q denotes the angle between ~fp and ~fq . The idea
is that if n is moving in a different direction than all its

neighbours, it is likely to be a motion boundary. This esti-
mator can correctly detect boundaries even when the object
is moving at a modest velocity, as long as it goes in a dif-
ferent direction than the background. However, it tends to
produce false-positives in static image regions, as the direc-
tion of the optical flow is noisy at points with little or no
motion (fig. 1d).

As the two measures above have complementary failure
modes, we combine them into a measure that is more reli-
able than either alone (fig. 1e):

bp =

{
bmp , if bmp > T

bmp · bθp, if bmp ≤ T,
(3)

where T is a high threshold, above which bmp is considered
reliable on its own. As a last step we threshold bp at 0.5 to
produce a binary motion boundary labelling (fig. 1f).
Inside-outside maps. The produced motion boundaries
typically do not completely cover the whole object bound-
ary. Moreover, there might be false positive boundaries, due
to inaccurracy of the optical flow estimation. We present
here a computationally efficient algorithm to robustly esti-
mate which pixels are inside the object while taking into
account these sources of error.

The algorithm estimates whether a pixel is inside the
object based on the point-in-polygon problem [12] from
computational geometry. The key observation is that any
ray starting from a point inside the polygon (or any closed
curve) will intersect the boundary of the polygon an odd
number of times. Instead, a ray starting from a point out-
side the polygon will intersect it an even number of times
(figure 2a). Since the motion boundaries are typically in-
complete, a single ray is not sufficient to determine whether
a pixel lies inside the object. Instead, we get a robust es-
timate by shooting 8 rays spaced by 45 degrees. Each ray
casts a vote on whether the pixel is inside or outside. The
final inside-outside decision is taken by majority rule, i.e. a
pixel with 5 or more rays intersecting the boundaries an odd
number of times is deemed inside.

Realizing the above idea with a naive algorithm would
be computationally expensive (i.e. quadratic in the number
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of pixels in the image). We propose an efficient algorithm
which we call integral intersections, inspired by the use of
integral images in [25]. The key idea is to create a special
data structure that enables very fast inside-outside evalua-
tion by massively reusing the computational effort that went
into creating the datastructure.

For each direction (horizontal, vertical and the two diag-
onals) we create a matrix S of the same size W ×H as the
image. An entry S(x, y) of this matrix indicates the num-
ber of boundary intersections along the line going from the
image border up to pixel (x, y). For simplicity, we explain
here how to build S for the horizontal direction. The algo-
rithm for the other directions is analogous. The algorithm
builds S one line y at a time. The first pixel (1, y), at the left
image border, has value S(1, y) = 0. We then move right-
wards one pixel at a time and increment S(x, y) by 1 each
time we transition from a non-boundary pixel to a boundary
pixel. This results in a line S(:, y) whose entries count the
number of boundary intersections (fig. 2b.).

After computing S for all horizontal lines, the data struc-
ture is ready. We can now determine the number of inter-
sectionsX for both horizontal rays (left→right, right→left)
emanating from a pixel (x, y) in constant time by

Xleft(x, y) = S(x− 1, y) (4)
Xright(x, y) = S(W, y)− S(x, y) (5)

where W is the width of the image, i.e. the rightmost pixel
in a line (fig. 2b).

Our algorithm visits each pixel exactly once per direc-
tion while building S, and once to compute its vote, and is
therefore linear in the number of pixels in the image. The
algorithm is very fast in practice and takes about 0.1s per
frame of a HD video (1280x720 pixels) on a modest CPU
(Intel Core i7 at 2.0GHz).

For each video frame t, we apply the algorihtm on all 8
directions and use majority voting to decide which pixels
are inside, resulting is an inside-outside map M t (fig. 2c).

3.2. Foreground-background labelling refinement

We formulate video segmentation as a pixel labelling
problem with two labels (foreground and background). We
oversegment each frame into superpixels St [15], which
greatly reduces computational efficiency and memory us-
age, enabling to segment much longer videos.

Each superpixel sti ∈ St can take a label lti ∈ {0, 1}. A
labelling L = {lti}t,i of all superpixels in all frames repre-
sents a segmentation of the video. Similarly to other seg-
mentation works [14, 21, 26], we define an energy function
to evaluate a labeling

E(L) =
∑
t,i

Ati(l
t
i) + α1

∑
t,i

Lti(l
t
i) (6)

+ α2

∑
(i,j,t)∈Es

V tij(l
t
i , l

t
j) + α3

∑
(i,j,t)∈Et

W t
ij(l

t
i , l

t+1
j )

At is a unary potential evaluating how likely a superpixel is
to be foreground or background according to the appearance
model of frame t. The second unary potential Lt is based on
a location prior model encouraging foreground labellings in
areas where independent motion has been observed. As we
explain in detail later, we derive both the appearance model
and the location prior parameters from the inside-outside
mapsM t. The pairwise potentials V andW encourage spa-
tial and temporal smoothness, respectively. The scalars α
weight the various terms.

The output segmentation is the labeling that mini-
mizes (6):

L∗ = argmin
L

E(L) (7)

As E is a binary pairwise energy function with submodular
pairwise potentials, we minimize it exactly with graph-cuts.
Next we use the resulting segmentation to re-estimate the
appearance models and iterate between these two steps, as
in GrabCut [21]. Below we describe the potentials in detail.
Smoothness V, W. The spatial smoothness potential V is
defined over the edge set Es, containing pairs of spatially
connected superpixels. Two superpixels are spatially con-
nected if they are in the same frame and are adjacent.

The temporal smoothness potential W is defined over
the edge set Et, containing pairs of temporally connected
superpixels. Two superpixels sti, s

t+1
j in subsequent frames

are connected if there at least one pixel of sti moves into
st+1
j according to the optical flow (fig. 3).

The functions V,W are standard contrast-modulated
Potts potentials [21, 26, 14]:

V tij(l
t
i , l

t
j) = dis(sti, s

t
j)
−1[lti 6= ltj ] exp(−βcol(sti, s

t
j)

2) (8)

W t
ij(l

t
i , l

t+1
j ) = φ(sti, s

t+1
j )[lti 6= ltj ] exp(−βcol(sti, s

t+1
j )2)

(9)
where dis is the Euclidean distance between the centres of
two superpixels and col is the difference between their av-
erage RGB color. The factor that differs from the standard



definition is φ, which is the percentage of pixels within the
two superpixels that are connected by the optical flow. This
is a better weight than the Euclidean distance, as it is invari-
ant of the speed of the motion.
Appearance model At. The appearance model consists
of two Gaussian Mixture Models over RGB colour values1,
one for the foreground (fg) and one for the background
(bg). In the task of interactive segmentation [21], where
this methodology originated, the appearance model param-
eters are estimated from some manually labelled pixels. In
this paper instead, we estimated them automatically based
on the inside-outside maps M t (sec. 3.1).

We estimate appearance models At for each frame t.
However, since the appearance of the fg and bg typically
changes smoothly over time, these models are tightly cou-
pled as their estimation integrates information over the
whole video. Hence, the collection of per-frame models can
be seen as a single dynamic appearance model.

At each frame t we estimate a fg model from all super-
pixels in the video, weighted by how likely they are to be
foreground and by how close in time they are to t. More
precisely, the weight of each superpixel st

′

i in frame t′ is

exp(−λA · (t− t′)2) · rt
′
i (10)

The first factor discounts the weight of st
′

i over time. The
second factor is the percentage of pixels of st

′

i that are inside
the object according to the inside-outside map M t′ . The
estimation of bg appearance models is analogous, with the
second factor replaced by 1 − rt

′

i (i.e. the ratio of pixels
considered to be outside the object).

After estimating the foreground-background appearance
models, the unary potential Ati(l

t
i) is the log-probability of

sti to take label lti under the appropriate model (i.e. the fore-
ground model if lti = 1 and the background one otherwise).

Having these appearance models in the segmentation en-
ergy (6) enables to segment the object more accurately than
possible from motion alone, as motion estimation is inher-
ently inaccurate near occlusion boundaries. Moreover, the
appearance models are integrated over large image regions
and over many frames, and therefore can robustly estimate
the appearance of the object, despite faults in the inside-
outside maps. The appearance models then transfer this
knowledge to other positions within a frame and to other
frames, by altering towards foreground the unary potential
of pixels with object-like appearance, even if the inside-
outside maps missed them. This enables completing the
segmentation in frames where only part of the object is
moving, and helps segmenting it even in frames where it
does move at all.
Location model Lt. When based only on appearance, the
segmentation could be distracted by background regions

1As the basic units are superpixels, all measurements refer to their av-
erage RGB value.

with similar colour to the foreground (even with perfect ap-
pearance models). Fortunately, the inside-outside maps can
provide a valuable location prior to anchor the segmenta-
tion to image areas likely to contain the object, as they move
differently from the surrounding region. However, in some
frames (part of) the object may be static, and in others the
inside-outside map might miss it because of incorrect opti-
cal flow estimation (fig. 4, middle row). Therefore, directly
plugging the inside-outside maps as unary potentials in Lt

would further encourage an all-background segmentation in
frames where they missed the object.

We propose here to propagate the per-frame inside-
outside maps over time to build a more complete location
prior Lt. The key observation is that ‘inside’ classifications
are more reliable than ‘outside’ ones: the true object bound-
aries might not form a near-closed motion boundary due
to the reasons above, but accidental near-closed boundaries
rarely form out of noise. Therefore, our algorithm accumu-
lates inside points over the entire video sequence, following
the optical flow (fig. 4, bottom row).

The algorithm proceeds recursively. The value of the lo-
cation prior at a superpixel sti is initially Lti := rti , i.e. the
percentage of its pixels that are inside the object according
to the inside-outside map M t. We start propagating from
frame 1 to frame 2, then move to frame 3 and so on. At
each step, the value of the location prior for a superpixel
st+1
j in frame t+ 1 gets updated to

Lt+1
j := Lt+1

j + γ

∑
i φ(s

t
i, s

t+1
j ) · ψ(sti) · Lti∑

i φ(s
t
i, s

t+1
j )

(11)

where the summation runs over all superpixels in frame t;
the connection weight φ is the percentage of pixels in su-
perpixel sti that connect to superpixel st+1

j by following the
optical flow (fig. 3); γ ∈ [0, 1] controls the rate of accu-
mulation; ψ is a transfer quality measure, down-weighting
propagation if the optical flow for sti is deemed unreliable

ψ(sti) = exp(−λψ
∑
p∈sti

||∇ ~fp||) (12)

In essence, ψ measures the sum of the flow gradients in sti;
large gradients can indicate depth discontinuities, where the
optical flow is often inaccurate, or that sti might cover bits
of two different objects.

We run the forward propagation step above and an analo-
gous backward step, starting from the last frame towards the
first one. These two steps are run independently. The final
location prior Lt is the normalised sum of the two steps.

4. Experimental evaluation
We evaluate our method on two datasets: SegTrack [24]

and YouTube-Objects [19]. The parameters λ, T, β, γ are
kept fixed to the same values in all experiments.



Figure 4. Location model. Top row: three video frames. Middle
row: likelihood of foreground based on the inside-outside maps
in individual frames. They miss large parts of the person in the
second and third frames, as the head and torso are not moving.
Bottom row: the location model based on propagating the inside-
outside maps. It includes most of the person in all frames.

4.1. SegTrack

Dataset. SegTrack [24] was originally introduced to eval-
uate tracking algorithms, and it was adopted to benchmark
video object segmentation by [14]. It contains 6 videos
(monkeydog, girl, birdfall, parachute, cheetah, penguin)
and pixel-level ground-truth for the foreground object in ev-
ery frame. Following [14], we discard the penguin video,
since only a single penguin is labelled in the ground-truth,
amidst a group of penguins. The videos offer various chal-
lenges, including objects of similar color to the background,
non-rigid deformations, and fast camera motion (fig. 5).

Setup. As in [14, 24], we quantify performance with the
number of wrongly labeled pixels, averaged over all frames
of a video. We set the weights α of the energy function (6)
by two-fold cross-validation. We split the dataset into two
sets of 3 and 2 videos respectively, and train the α weights
in each set. When testing our method on the videos in one
set, we use the weights trained on the other.

We compare to several methods [14, 16, 27, 6, 18, 4].
The video object segmentation method of Lee at al. [14] re-
turns a ranked list of spatio-temporal segments likely to be
objects. We report the results from their paper, which eval-
uates the segment corresponding to the ground-truth object,
out of the top 4 segments returned by the algorithm ([14],
fig. 6). In contrast, our method directly returns a single fore-
ground segment, as it discovers the foreground object auto-
matically. We also report the results of another two methods
based on ranking object proposals [16, 27].

We also compare to a state-of-the-art background sub-
traction method [4] and with two state-of-the-art clustering
point tracks based methods [6, 18]. We used the implemen-

precision ours [14] [16] [27] [6] [18] [4]
birdfall 217 288 189 155 468 468 606

cheetah 890 905 806 633 1968 1175 11210(34228)
girl 3859 1785 1698 1488 7595 5683 26409

monkey 284 521 472 365 1434 1434 12662(64339)
parachute 855 201 221 220 1113 1595 40251

Table 1. Results on SegTrack. The entries show the average num-
ber of mislabelled pixels per frame. For [14], the numbers in
parenthesis refer to the single top ranked hypothesis, as given to
us by the authors in personal communication.

tations provided by the respective authors2. As the latter are
designed to return multiple segments, we report results for
the segment best matching the ground-truth segmentation.
Results. As table 1 shows, even the recent background-
subtraction method [4] performs poorly on this data, since
it cannot handle fast camera motion. The point clustering
methods [6, 18] produce better results, as they can better
cope with these conditions.

Our method considerably outperforms [6, 4, 18] in all
videos, as it handles non-rigid objects better, and tightly
integrates appearance along with motion as segmentation
cues. Overall, our performance is about on par with [14].
This is remarkable, given that our approach is simpler, does
not require manual selection of the output segment, and is
two orders of magnitude faster (sec. 4.3). For reference, we
also reports the accuracy of the single top-ranked segment
by [14]. In this fully automatic mode, their method com-
pletely misses the object in cheetah and monkey. The very
recent method [27] achieves lower errors than ours on aver-
age, but is much slower (sec. 4.3).

Fig. 5 shows example frames from all 5 videos. Our
method accurately segments all videos but girl, as it misses
parts of her legs and arms. The higher error on parachute is
due to including the paratrooper in the segmentation, as it is
not annotated in the ground-truth. Note the high quality of
the segmentation on monkeydog and cheetah, which feature
fast camera motion and strong non-rigid deformations.

In general, inspecting the results reveals that all of [14,
16, 27] and our method solve this dataset well. All methods
lock on the object in all videos and accuracy differences
between methods are due to finer localization of the object
boundaries. When also taking into account that it contains
only 5 very short videos, we believe this dataset is saturated.

4.2. YouTube-Objects

Dataset. YouTube-Objects [19]3 is a large database col-
lected from YouTube containing many videos for each of

2http://www2.ulg.ac.be/telecom/research/vibe/
http://lmb.informatik.uni-freiburg.de/resources/
software.php

3http://groups.inf.ed.ac.uk/calvin/
learnfromvideo

http://www2.ulg.ac.be/telecom/research/vibe/
http://lmb.informatik.uni-freiburg.de/resources/software.php
http://lmb.informatik.uni-freiburg.de/resources/software.php
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aero bird boat car cat cow dog horse mbike train avg
Clustering tracks [6] 53.9 19.6 38.2 37.8 32.2 21.8 27.0 34.7 45.4 37.5 34.8

Automatic segment selection [19] 51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5
ours 65.4 67.3 38.9 65.2 46.3 40.2 65.3 48.4 39.0 25.0 50.1

Table 2. Results on YouTube-Objects. The entries show the average per-class CorLoc (‘aero’ to ‘train’) as well as the average over all
classes (‘avg’). Top row: the best segment returned by the method of [6]. Middle row: the segment automatically selected by the method
of [19], out of those produced by [6]. Bottom row: the segment output by our method.

10 diverse object classes. The videos are completely uncon-
strained and very challenging, featuring large camera mo-
tion, diverse backgrounds, illumination changes and editing
effects (e.g. fade-ins, flying logos). The objects undergo
rapid movement, strong scale and viewpoint changes, non-
rigid deformations, and are sometimes clipped by the im-
age border (fig. 5). The dataset also provides ground-truth
bounding-boxes on the object of interest in one frame for
each of 1407 video shots.
Setup. We adopt the CorLoc performance measure
of [19], i.e. the percentage of ground-truth bounding-boxes
which are correctly localized up to the PASCAL crite-
rion [11] (intersection-over-union ≥ 0.5). For the purpose
of this evaluation, we automatically fit a bounding-box to
the largest connected component in the pixel-level segmen-
tation output by our method. We set the α weights by man-
ual inspection on a few shots (about 5). The same weights
are then used for all 1407 shots in the database.

We compare to [6, 19] and report their performance as
originally stated in [19]. For [6] they report results for the
segment with the maximum overlap with the ground-truth
bounding-box (analogous to our experiment on SegTrack).
Prest et al. [19] automatically select one segment per shot
among those produced by [6], based on its appearance sim-
ilarity to segments selected in other videos of the same ob-
ject class, and on how likely it is to cover an object accord-
ing to a class-generic objectness measure [2]. As it returns a
single foreground segment per shot, this method is directly
comparable to ours.

We also run [14] on 50 videos (5/class) using the imple-
mentation by their authors4, as it is too slow to run on the
whole database. For evaluation we fit a bounding-box to the
top ranked output segment.
Results. As table 2 shows, our method substantially im-
proves over the result of [19], from 28.5% to 50.1% on av-
erage over all classes. Moreover, our method also outper-
forms the best segment produced by [6], confirming what
we observed on the SegTrack dataset. On the 50-video
subset, our method produces 42.0% CorLoc, considerably
above the 28.0% reached by [14]. This departs from what
observed on SegTrack and suggests that our method gener-
alizes better to a wide variety of videos.

Fig. 5 shows example results. The cat, dog, and mo-
torbike examples show fast camera motion, large scale and

4https://webspace.utexas.edu/yl3663/˜ylee/

viewpoint changes, and non-rigid deformations. On the bird
video our method segments both the bird and the hand,
as it considers them both foreground. The horse example
shows our method correctly segment objects even if largely
clipped by the image border in some frames, as it automati-
cally transfers object appearance learned in other frames.

4.3. Runtime

Given optical flow and superpixels, our method takes
0.5 sec/frame on SegTrack (0.05 sec for the inside-outside
maps and the rest for the foreground-background labelling
refinement). In contrast, [14] takes > 300 sec/frame,
with about 120 sec/frame for generating the object propos-
als [10]. The point track clustering method [6] takes 7-44
sec/frame depending on the video, and [18] takes 43-360
sec/frame. While [16, 27] do not report timings nor have
code available for us to measure, their runtime must be >
120 sec/frame as they also use the object proposals [10].

All timings were measured on the same computer (In-
tel Core i7 2.0GHz), and exclude optical flow computation,
which all methods require as input. High quality optical
flow can be computed rapidly using [22] (< 1 sec/frame).
Currently, we use TurboPixels as superpixels [15] (1.5
sec/frame), but even faster alternatives are available [1].

This analysis shows that our method is a lot faster than
these competitors and is in fact efficient enough to be ap-
plied to very large collections of videos.
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