
3DNN: Viewpoint Invariant 3D Geometry Matching for Scene Understanding

Scott Satkin
Google Inc.∗

satkin@google.com

Martial Hebert
Carnegie Mellon University

hebert@ri.cmu.edu

Abstract

We present a new algorithm 3DNN (3D Nearest-
Neighbor), which is capable of matching an image with 3D
data, independently of the viewpoint from which the image
was captured. By leveraging rich annotations associated
with each image, our algorithm can automatically produce
precise and detailed 3D models of a scene from a single im-
age. Moreover, we can transfer information across images
to accurately label and segment objects in a scene.

The true benefit of 3DNN compared to a traditional 2D
nearest-neighbor approach is that by generalizing across
viewpoints, we free ourselves from the need to have training
examples captured from all possible viewpoints. Thus, we
are able to achieve comparable results using orders of mag-
nitude less data, and recognize objects from never-before-
seen viewpoints. In this work, we describe the 3DNN algo-
rithm and rigorously evaluate its performance for the tasks
of geometry estimation and object detection/segmentation.
By decoupling the viewpoint and the geometry of an image,
we develop a scene matching approach which is truly 100%
viewpoint invariant, yielding state-of-the-art performance
on challenging data.

1. Introduction

Data-driven scene matching is at the forefront of the
computer vision field. Researchers have demonstrated the
capability of simple nearest-neighbor based approaches to
match an input image (or patches of an image) with a cor-
pus of annotated images, to “transfer” information from one
image to another. These non-parametric approaches have
been shown to achieve amazing performance for a wide va-
riety of complex computer vision and graphics tasks rang-
ing from object detection [32] and scene categorization [24]
to motion synthesis [20] and even image localization [10].

Although these 2D nearest-neighbor approaches are
powerful, a fundamental limitation of these techniques is
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Figure 1. Extreme viewpoint differences. Traditional appearance
based image matching approaches fail to generalize across such
extreme viewpoint differences; however, our approach is able to
match the geometry of these two scenes, and transfer object labels.

the need for vast amounts of data. For a traditional im-
age matching approach to succeed, there must be an image
in the recall corpus which is very similar to the input im-
age (i.e., captured from a similar viewpoint, lighting con-
ditions, etc.). This has propelled the growth of datasets,
which now measure in the millions of images [9, 33]. More-
over, despite these massive datasets, 2D nearest-neighbor
approaches cannot generalize to never-before-scene view-
points.

Recently, we demonstrated a proof-of-concept method
for matching images with 3D models to estimate the geom-
etry of a scene [28]. Building upon this work, we present a
viewpoint invariant approach to match images based solely
on each scene’s geometry. Consider the pair of scenes in
Figure 1. Note that the images were captured from drasti-
cally different viewpoints. A traditional appearance-based
image matching approach such as [20, 24] would fail to
generalize across such extreme viewpoint differences. Al-
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though the scenes appear quite different from the view-
points they were captured, they have a lot in common: both
scenes contain a couch facing a fireplace at approximately
the same distance from each other. In this work, we show
that we are able to automatically match these images by
comparing the appearance of one image with the geometry
of another. By decoupling the viewpoint and the geometry
of an image, we develop a scene matching approach which
is truly 100% viewpoint invariant.

Our algorithm, 3DNN (3D Nearest-Neighbor), is ca-
pable of producing detailed and precise 3D models of
a scene from a single image. The problem of monoc-
ular 3D scene understanding has recently been gaining
tremendous attention from the computer vision community
(e.g.: [4, 13, 17, 18, 26, 28, 29, 30, 36, 38]). The com-
mon goal of this research is to estimate the full geometry
of a scene from a single viewpoint. The ability to infer the
geometry of a scene has enabled a variety of applications
in both the vision and graphics fields. For example, Gupta
et al. [8] use coarse geometry estimates to predict what lo-
cations in an environment afford various actions. Karsch et
al. [16] use scene geometry to realistically render additional
objects into a scene. Similarly, Zheng et al. [39] utilize
knowledge of scene geometry to create an interactive 3D
image editing tool. It is important to note, that these graph-
ics applications require precise geometry estimates, which
traditionally have involved manual annotation.

Current approaches for monocular geometry estimation
typically produce coarse results, modeling each object with
bounding cuboids (e.g.: [4, 13, 18, 25]). More recently, we
proposed matching images with 3D models harvested from
the Internet, to generate results with greater detail [28].
However, because this approach aims to match the exact
configuration of objects in an image, with an identical fur-
niture configuration from a library of 3D models, the al-
gorithm does not have the flexibility required to precisely
reconstruct the diversity of object configurations found in
natural scenes. Additionally, many scene understanding
approaches such as [7, 8, 28] make limiting assumptions
regarding the robustness of existing monocular autocali-
bration algorithms. When this preliminary stage of their
pipelines fail, the algorithms are unable to recover and pro-
duce a reasonable result.

Our work addresses these fundamental limitations by si-
multaneously searching over both the camera parameters
used to capture an image, as well as the underlying scene
geometry. In addition, we present a refinement algorithm
which takes a rough initial estimate of the structure of a
scene, and adjusts the locations of objects in 3D, such that
their projections align with predicted object locations in the
image plane.

In this paper, we describe the 3DNN algorithm and

evaluate its performance for the tasks of object detec-
tion/segmentation, as well as monocular geometry recon-
struction. We show that 3DNN is capable of not only pro-
ducing state-of-the-art geometry estimation results, but is
also capable of precisely localizing and segmenting objects
in an image. Our experiments compare 3DNN with tradi-
tional 2D nearest-neighbor approaches to demonstrate the
benefits of viewpoint invariant scene matching.

2. Approach

We estimate the viewpoint from which an image was
captured, and search for a 3D model that best matches the
input image when rendered from this viewpoint. This builds
upon the analysis via synthesis approach introduced in [28].
Rather than limiting ourselves to a fixed set of object con-
figurations, our approach begins with a 3D model which
closely matches an image, and then undergoes a geometry
refinement stage, which adjusts the locations of each ob-
ject in the hypothesized geometry to produce a result which
more precisely matches the input image.

This type of fine-grained geometry refinement is chal-
lenging, and requires a set of features which are sufficiently
discriminative to identify when rendered objects are preci-
cely aligned in the image plane. Thus, we present a new
set of features which improve the overall accuracy of our
scene matching algorithm, enabling this geometry refine-
ment stage.

In addition, we introduce a viewpoint selection process
which does not commit to a single viewpoint estimate. We
consider many camera pose hypotheses and use a learned
cost function to select the camera parameters which enable
the best scene geometry match.

At the core of our approach is the use of datasets of
images with corresponding 3D descriptions. This immedi-
ately raises natural questions as to where this data is coming
from, and whether or not there exists sufficient quantities of
images with corresponding 3D models. In fact, the devel-
opment of such 3D content is exploding, in large part due
to the availability of low-cost RGBD cameras (Microsoft
Kinect [2]), which has been a catalyst for the rapid increase
in 2.5D data. Researchers are now working on automated
methods for inferring the full 3D geometry of a scene given
a 2.5D projection [31]. As these approaches become more
effective, there will be massive amounts of images with as-
sociated 3D models, allowing for the first time the exciting
possibilities afforded by using the full power of geometric
information in conjunction with conventional appearance-
based techniques. Our work shows how these emerging
new sources of data can be used by quantifying their ef-
fectiveness in terms of matching efficiency (dataset size),
generalization to unseen viewpoints, geometry estimation,
and object segmentation.



2.1. Similarity Features

Many vision researchers have emphasized and demon-
strated the importance of high-quality features for various
image matching tasks. For example, the SIFT descriptor
of Lowe [21] and Oliva et al.’s GIST descriptor [24] have
been shown to outperform many other descriptors for com-
mon vision tasks [6, 22]. Given the novelty of 3D scene
matching approaches, there still remains substantial room
for improvement via feature engineering.

Therefore, we develop a series of features which are
specifically designed to achieve our goal of precisely de-
tecting objects and delineating their boundaries. To accu-
rately predict the locations of objects in an image, we train
a probabilistic classifier using the algorithm of Munoz et
al. [23].1 For each pixel, we estimate the likelihood of an
object being present. This p(object) descriptor is compared
to hypothesized object locations via rendering to compute a
similarity feature indicating how well hypothesized objects
align with predicted object locations. This similarity feature
is akin to [28]’s use of geometric context [11, 15]; however,
it is more robust to the diversity of object colors, textures
and illumination conditions seen in the SUN database [37].
Figure 2 shows an example of a relatively simple scene for
which [11] is unable to accurately estimate the locations of
objects; however, our approach succeeds. We incorporate
this new p(object) feature into the existing set of similarity
features from [28].

In addition, we design another similarity feature that
aims to find 3D models which, when projected onto the im-
age plane, produce edges which closely align with edges
in the input image. For each hypothesized 3D model, we
first analyze its surface normals to identify edges (which
we define as discontinuities greater than 20◦). We compare
the projection of these edges onto the image plane, with
edges extracted from an input image using the globalPb al-
gorithm [3]. We use an oriented chamfer distance, which
matches only edges which are within 30◦ of each other.
This reduces the effects of spurious edges which are spa-
tially close, but not properly oriented in the image. We
use the same edge penalty truncation approach as [28], to
reduce the influence of outlier edges, resulting in a four-
dimensional similarity feature (corresponding to different
thresholds).

These new similarity features are combined with the
seven features from [28] to produce a 12-dimensional sim-
ilarity feature vector. We train a support vector ranker [14]
using the approach of [28] to learn weights for the aug-
mented set of features with an added ℓ1 penalty term to per-
form feature selection and enforce sparseness in the learned
weights.

1Training was performed using 10-fold cross validation on a subset of
the SUN Database [37], for which there exist LabelMe annotations [34].

Figure 2. Comparison of p(object) features for the image on the
left computed using (center) [11] and our approach (right).

2.2. Viewpoint Selection
The problem of viewpoint estimation is very challeng-

ing. Estimating the layout of a room, especially in situations
where objects such as furniture occlude the boundaries be-
tween the walls and the floor remains unsolved. Recently,
researchers such as [12, 18, 25] proposed mechanisms for
adjusting the estimated locations of walls and floors to en-
sure that objects (represented by cuboids) are fully con-
tained within the boundaries of the scene. Inspired by these
approaches, we aim to intelligently search over viewpoint
hypotheses. Intuitively, if we can fit an object configura-
tion using a particular viewpoint hypothesis with high con-
fidence, then that room layout is likely correct (i.e., it allows
for objects to be properly matched). By searching over pos-
sible viewpoints, we aim to alleviate the brittleness of algo-
rithms such as [7, 8, 28], which rely on hard decisions for
the estimated viewpoint of an image. These types of geom-
etry estimation algorithms are unable to recover when the
room layout estimation process fails. Thus, in this work,
we do not assume any individual viewpoint hypothesis is
correct. Rather, we use our learned cost function to re-rank
a set of room layout hypotheses, by jointly selecting a com-
bination of furniture and camera parameters, which together
best match the image.

We search over the top N room layout hypotheses, re-
turned by the algorithm of [11]. For each individual room
layout, we use the estimated camera parameters correspond-
ing to that room layout to render every 3D model from [1].
This approach scales linearly with the number of viewpoint
hypotheses explored, and is trivially parallelizable. In all
our experiments, we consider the top 20 results from [11]’s
room layout algorithm. However, our approach is agnostic
to the source of these viewpoint hypotheses, and additional
hypotheses from [19, 27, 30] or any other algorithm could
easily be incorporated to improve robustness.

Figure 3 illustrates the benefit of searching over various
camera parameters. The top row shows the result of 3DNN
using only the top-ranking room layout from [11]. Note
that the failure to accurately estimate the height of the cam-
era causes inserted objects to be incorrectly scaled. How-
ever, by not limiting ourselves to a single camera param-
eter hypothesis, we can automatically select a better room
layout estimate, enabling a higher-scoring geometry match
to be found. Figure 3(b) uses the 10th-ranking hypothesis
from [11], and has the highest matching score using our
learned cost function.



(a) Result using only the top-ranking camera parameters from [11].

(b) Result after re-ranking the top-20 hypotheses from [11].

Figure 3. Example results highlighting the benefit of searching
over viewpoint hypotheses. The top row shows the best match-
ing scene geometry using the top-ranking room layout hypothesis
of [11] (note the incorrect camera height estimate, causing ob-
jects to be rendered at the wrong scale). The bottom row show
the best matching scene geometry after intelligently selecting the
best room layout. For each result, matching 3D model surface nor-
mals are shown on the right next to the input image with overlayed
object masks.

2.3. Geometry Refinement

In order to accurately segment objects in an image,
and reason about their occlusions, we must precisely es-
timate their positions. However, a fundamental limitation
of nearest-neighbor approaches is that their outputs are re-
stricted to the space of object configurations seen in train-
ing data. This is a problem which has affected both 2D
and 3D non-parametric methods. Recently, algorithms such
as SIFT flow [20] have been developed to address this is-
sue. The SIFT flow algorithm perturbs a matched image
by warping the pixels to better align with the input image.
However, because this approach warps pixels in the image
plane, there is no longer a coherent 3D interpretation of
the result. Thus, we propose a geometry refinement algo-
rithm which is inherently 3D. Our method begins with a
top-ranking 3D model for an image and searches for the
best location of each object in 3D, such that the projection
of these objects best align in the image plane, producing a
more precise result.

We search for local refinements of the objects’ locations
which improve the overall geometric scene matching score,
using a stochastic algorithm. In each iteration of the refine-
ment, the locations of objects on the x–y plane are perturbed
(height off the ground remains fixed), by adding Gaussian
noise (σ=1in) to the current objects’ locations. If the ad-

(a) Input image (b) Preliminary object locations

(c) Final refined geometry (d) Final refined object locations

Figure 4. Effects of the geometry refinement process. Note that
object boundaries are well-delineated after refinement.

justed objects’ locations match the image better than the
previous locations, the new locations are saved. This pro-
cess repeats until convergence. In practice, a few hundred
iterations are required to reach a final refined scene geome-
try.

Figure 4 highlights the effects of our geometry refine-
ment process. Note the initial object locations in 4(b), when
projected into the image plane do not align with the actual
object boundaries. However, after refinement, in 4(d) the
objects very precisely align with the image boundaries. The
projected objects produce an excellent segmentation mask,
and because the scene interpretation is inherently 3D, we
can properly reason about occlusions and depth ordering.

3. Evaluation
We now evaluate the performance of our 3DNN ap-

proach. The goals of these experiments are three-
fold: Firstly, we compare 3DNN with state-of-the-art
appearance-based scene matching approaches. Addition-
ally, we analyze the added benefit of each component of
the 3DNN system: improved similarity features, geometry
refinement and viewpoint selection. Lastly, we explore how
the viewpoint invariance of 3DNN enables scene matching
and the transfer of object labels using limited amounts of
data.

We perform all experiments using the CMU 3D-
Annotated Scene Database [1], containing 526 images of
bedrooms and living rooms. All training was performed us-
ing 5-fold cross-validation to evaluate performance on all
images in the dataset. Figure 5 includes example results of
3DNN on a wide variety of scenes. Note that we are able
to produce accurate 3D models shown in the surface nor-



Figure 5. Qualitative results. From left to right: input images, sur-
face normal renderings and overlaid object segmentation masks.

mal renderings beside each input image. In addition, each
object’s boundaries are well-delineated due to our geometry
refinement stage, as indicated in the overlaid object segmen-
tation masks.

3.1. Geometry Estimation

We now quantify the performance of 3DNN with a vari-
ety of baseline scene matching approaches, including state-
of-the-art 2D nearest-neighbor approaches. We report per-
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Figure 6. Comparison of 3DNN with state-of-the-art 2D nearest-
neighbor approaches and the geometry matching algorithm
of [28].

formance using the two “Pixelwise Surface Normal Accu-
racy” metrics from [28], one measuring how accurately the
surface normals of all pixels are predicted, the second eval-
uating only those pixels which correspond to objects in the
ground-truth annotations.

Although these metrics are informative for the task of
surface normal prediction, they are unable to capture how
accurately objects in an image are localized. For example, a
horizontal surface corresponding to a bed in an image may
be scored as “correct” even if the predicted scene contains
no objects. This is because the horizontal floor has the same
orientation as the bed’s surface. Thus, we present results
computed using a new metric, “Matched Objects Surface
Normal Accuracy.” This is a strict metric which requires
two criteria to be met: For each pixel corresponding to ob-
jects in the ground-truth annotation, we must first correctly
predict that there is an object at that location. We compute
the dot product between ground-truth and predicted surface
normals only at those pixels for which we “match” an ob-
ject. Unmatched object pixels receive a score of 0. This
metric is more sensitive to correctly predicting the exact lo-
cations and geometries of objects in a scene.

In [13] and [28], the authors present various metrics
for how accurately their algorithms can predict the 3D
freespace of a scene. These metrics require rectifying the
predicted scene geometry, and are ill-posed when the es-
timated viewpoint deviates substantially from the ground-
truth camera parameters. Thus, we develop another new



metric to measure freespace prediction in the image plane:
“Floorplan Overlap Score.” For each object in the scene, we
render its “footprint” by setting the height of each polygon
to 0. A simple pixel-wise overlap score (intersection/union)
of the object footprints can now be used to compare the
ground-truth floorplan of a scene with our estimated scene
geometry.

We compare 3DNN with our previous geometry match-
ing approach [28] as well as two popular 2D nearest-
neighbor approaches: GIST [24] and HoG [5] matching.2

Figure 6, reports the results for 3DNN compared to each
baseline, for the task of geometry estimation. Note that
the geometry matching algorithm from [28] does not of-
fer substantial improvements over the 2D nearest-neighbor
approaches on the more challenging metrics (matched ob-
ject surface normals and floorplan overlap score); however,
3DNN exhibits dramatic improvement on each of these met-
rics.

3.2. Object Detection and Segmentation

Our mechanism for inferring the structure of a scene in
3D provides us with rich information about the depth order-
ing and the occlusions of objects when projected onto the
image plane. Thus, we should be able to not only detect
the locations of objects, but also segment their spatial sup-
port in the image by precisely identifying their boundaries.
To verify that using 3D cues is an attractive alternative for
pixel-based object segmentation, we evaluate the per-pixel
overlap score of the ground-truth and the object labels esti-
mated by 3DNN.

Figure 7 analyzes the detection rate of 3DNN, com-
pared to various appearance-based image matching base-
lines. We measure performance for the “bed” and “couch”
categories, two of the most prominent objects in the CMU
3D-Annotated Scene Database. We vary the pixelwise over-
lap score threshold, and compute what percentage of beds
are detected at each threshold. Note that at a stricter thresh-
old of overlap score ≥ .75, the baseline appearance-based
approaches detect very few beds; however, 3DNN still per-
forms well.

Naturally, 3DNN’s ability to precisely segment objects
is due in part to the geometry refinement stage. To analyze
the benefits of this process, we measure the performance
of 3DNN with and without the refinement stage. As an-
ticipated, by refining the predicted locations of objects, we
achieve a significant (on the order of 5%) boost in detection
rate. For fair comparison, we run the SIFT flow algorithm
(the state-of-the-art 2D refinement process) as a baseline.
The SIFT flow algorithm of Liu et al. [20] has been shown
to be a robust technique for aligning matched images. By
warping each matched scene, SIFT flow refines the location

2GIST: 4 × 4 blocks, 8 orientations (code from [24]). HoG: 20 × 20
blocks, 8 orientations (code from [35]).
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Figure 7. Object detection rate as a function of overlap score strict-
ness for the “bed” and “couch” categories.

of objects in the image plane, akin to our geometry refine-
ment process. We apply the SIFT flow algorithm using code
from [20]; this process takes the top-10 scene matches (us-
ing either GIST or HoG), warps each matched image, and
computes the energy of each warping. We then re-rank the
top-10 scene matches according to their SIFT flow energy,
and score the top-ranking warped recall image. Although
the SIFT flow process yields a significant boost in perfor-
mance, the algorithm is still not as effective in accurately
identifying and segmenting objects compared to 3DNN.

3.3. Viewpoint Selection and Geometry Refinement

In Section 2.2, we described our approach to automati-
cally identify the viewpoint from which an image was cap-
tured, and in Section 2.3, we presented an algorithm to re-
fine the locations of objects in 3D. We now evaluate how
each of these stages affect the overall performance of the
3DNN algorithm.

Figure 8 shows the distribution of performance gains
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Figure 8. Distribution of improvements resulting from the View-
point Selection (top) and Geometry Refinement (bottom) pro-
cesses. Performance is measured using the matched object sur-
face normal scores. Green indicates a performance increase and
examples in red resulted in a marginal performance decrease.

seen across all images in the CMU 3D-Annotated Scene
Database as a result of the viewpoint selection and geom-
etry refinement stages. The y-axis indicates how much
the matched object surface normal score was affected via
refinement or viewpoint selection. Note that for approx-
imately two-thirds of the images, both the viewpoint se-
lection and the refinement processes result in an improved
scene geometry (indicated in green). Not only does view-
point selection result in more accurate object geometries, it
also improves the accuracy of room box estimation by re-
ranking viewpoint hypotheses based on which room layout
affords for the best 3D model matching (14.0% per-pixel
error with viewpoint selection versus 16.4% error without
viewpoint selection).

3.4. Dataset Size
It is well known that for appearance-based image match-

ing to be effective, there must be a large recall corpus of
images to match with [9, 33]. This is because the data set
needs to include recall images captured from a similar view-
point as the query image. On the contrary for 3DNN, the
viewpoint and the geometry of the recall images are decou-
pled. Thus, each scene provides an exemplar which can be
matched to images from any viewpoint.

We evaluate this by experimenting with the size of the re-
call corpus. Figure 9 shows how the performance of 3DNN
increases as a function of dataset size, compared to GIST
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Figure 9. Accuracy as a function of dataset size. Solid lines indi-
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“floorplan overlap score.” Note the logarithmic x-axis.

and HoG matching. We report results using two of the
more challenging metrics: “matched object surface normal
scores” (solid lines) and “floorplan overlap scores” (dashed
lines). In these experiments, we consider recall dataset
sizes between 1 and 500 images. For each dataset size,
we select random subsets of images from the the full recall
set, and report the performance of each algorithm on the
smaller datasets. Due to the high variance in performance
using small recall sets, we average performance across one-
thousand random subsets of each size.

There are two important properties of 3DNN we can
identify from this graph. Firstly, note that the red plots for
3DNN start out with a higher accuracy (even for a dataset
size of one image). This is because our algorithm starts by
estimating the room layout of each image, identifying the
locations of floors and walls. On the contrary, GIST and
HoG matching do not incorporate this knowledge directly,
and must infer the viewpoint of the scene by finding a sim-
ilar image from the recall corpus.

Secondly, note that the curves for 3DNN are steeper than
for the appearance-based approaches. This is because on
average, each additional training image provides more in-
formation in its geometric form, than the raw pixels used in
GIST or HoG matching. This indicates that performance is
increasing more quickly as a function of the dataset size,
and that fewer training examples are required to achieve
the same level of performance using 3DNN compared to
a traditional appearance-based 2D nearest-neighbor scene
matching approach. Remarkably, 3DNN is able to achieve a
noticeable performance boost using a recall set size of only
10 images or fewer, due to the algorithm’s ability to gener-
alize across never-before-seen viewpoints.



4. Conclusion
In this paper, we presented the 3DNN algorithm.

This approach differs from traditional 2D nearest-neighbor
methods by decoupling the pose of the camera capturing
an image and the underlying scene geometry, enabling the
transfer of information across extreme viewpoint differ-
ences. We described our robust mechanism for simultane-
ously searching over camera parameters and scene geome-
tries. In addition, we presented an algorithm for refining the
locations of objects in 3D to produce precise results, and
the features necessary to achieve this level of fine-grained
alignment.

Because our approach is inherently 3D, we can prop-
erly reason about depth ordering and occlusions to pro-
duce accurate segmentations of detected objects. Thus,
3DNN achieves dramatic improvement over state-of-the-art
approaches for the tasks of object detection, segmentation
and geometry estimation. In addition, we demonstrated the
ability of 3DNN to generalize to never-before-seen view-
points, enabling non-parametric scene matching to be ef-
fective using orders of magnitude less data than traditional
approaches.
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