
ar
X

iv
:1

31
2.

30
62

v1
 [

cs
.C

V
]

11
 D

ec
 2

01
3

Fast Neighborhood Graph Search using
Cartesian Concatenation

Jingdong Wang Jing Wang Gang Zeng Rui Gan Shipeng Li Baining Guo

Abstract In this paper, we propose a new data structure for approximate near-
est neighbor search. This structure augments the neighborhood graph with a bridge
graph. We propose to exploit Cartesian concatenation to produce a large set of vec-
tors, called bridge vectors, from several small sets of subvectors. Each bridge vector
is connected with a few reference vectors near to it, forminga bridge graph. Our
approach finds nearest neighbors by simultaneously traversing the neighborhood
graph and the bridge graph in the best-first strategy. The success of our approach
stems from two factors: the exact nearest neighbor search over a large number of
bridge vectors can be done quickly, and the reference vectors connected to a bridge
(reference) vector near the query are also likely to be near the query. Experimental
results on searching over large scale datasets (SIFT, GIST and HOG) show that our
approach outperforms state-of-the-art ANN search algorithms in terms of efficiency
and accuracy. The combination of our approach with the IVFADC system [20] also
shows superior performance over the BIGANN dataset of 1 billion SIFT features
compared with the best previously published result.

Jingdong Wang
Microsoft Research e-mail:jingdw@microsoft.com

Jing Wang,
Peking University e-mail:cis.wangjing@pku.edu.cn

Gang Zeng,
Peking University e-mail:g.zeng@ieee.org

Rui Gan
Peking University e-mail:rui_gan@ieee.org

Shipeng Li
Microsoft Research e-mail:spli@microsoft.com

Baining Guo
Microsoft Research e-mail:bainguo@microsoft.com

1

http://arxiv.org/abs/1312.3062v1
jingdw@microsoft.com
cis.wangjing@pku.edu.cn
g.zeng@ieee.org
rui_gan@ieee.org
spli@microsoft.com
bainguo@microsoft.com

2 Jingdong Wang Jing Wang Gang Zeng Rui Gan Shipeng Li BainingGuo

1 Introduction

Nearest neighbor (NN) search is a fundamental problem in machine learning, in-
formation retrieval and computational geometry. It is alsoa crucial step in many
vision and graphics problems, such as shape matching [13], object retrieval [31],
feature matching [8, 37], texture synthesis [25], image completion [16] and so on.
Recently, the nearest neighbor search problem attracts more attentions in computer
vision because of the popularity of large scale and high-dimensional multimedia
data.

The simplest solution to NN search is linear scan, comparingeach reference vec-
tor to the query vector. The search complexity is linear withrespect to both the
number of reference vectors and the data dimensionality. Apparently, it is too time-
consuming and does not scale well in large scale and high-dimensional problems.
Algorithms, including the KD tree [3, 5, 6, 12], BD trees [3], cover tree [7], non-
linear embedding [18] and so on, have been proposed to improve the search effi-
ciency. However, for high-dimensional cases it turns out that such approaches are
not much more efficient than linear scan and cannot satisfy the practical require-
ment. Therefore, a lot of efforts have been turned to approximate nearest neighbor
(ANN) search, such as KD trees with its variants, hashing algorithms, neighborhood
graph search, and inverted indices.

In this paper, we propose a new data structure for approximate nearest neigh-
bor search1. This structure augments the neighborhood graph with a bridge graph
that is able to boost approximate nearest neighbor search performance. Inspired by
the product quantization technology [4, 20], we adopt Cartesian concatenation (or
Cartesian product), to generate a large set of vectors, which we callbridge vectors,
from several small sets of subvectors to approximate the reference vectors. Each
bridge vector is then connected to a few reference vectors that are near enough
to it, forming a bridge graph. Combining the bridge graph with the neighborhood
graph built over reference data vectors yields an augmentedneighborhood graph.
The ANN search procedure starts by finding the nearest bridgevector to the query
vector, and discovers the first set of reference vectors connected to such a bridge
vector. Then the search simultaneously traverses the bridge graph and the neighbor-
hood graph in the best-first manner using a shared priority queue.

The advantages of adopting the bridge graph lie in two-fold.First, computing
the distances from bridge vectors to the query is very efficient, for instance, the
computation for 1000000 bridge vectors that are formed by 3 sets of 100 subvectors
takes almost the same time as that for 100 vectors. Second, the best bridge vector is
most likely to be very close to true NNs, allowing the ANN search to quickly reach
true NNs through bridge vectors.

We evaluate the proposed approach by the feature matching performance on
SIFT and HOG features, and the performance of searching similar images over tiny
images [38] with GIST features. We show that our approach achieves significant
improvements compared with the state-of-the-art in terms of accuracy and search

1 A conference version appeared in [45].

Fast Neighborhood Graph Search using Cartesian Concatenation 3

time. We also demonstrate that our approach in combination with the IVFADC sys-
tem [20] outperforms the state-of-the-art over the BIGANN datasetof 1 billion SIFT
vectors [21].

2 Literature review

Nearest neighbor search in thed-dimensional metric spaceRd is defined as follows:
given a queryq, the goal is to find an element NN(q) from the databaseX =
{x1, · · · ,xn} so that NN(q) = argminx∈X dist(q,x). In this paper, we assume that
R

d is an Euclidean space and dist(q,x) = ‖q− x‖2, which is appropriate for most
problems in multimedia search and computer vision.

There are two types of ANN search problems. One is error-constrained ANN
search that terminates the search when the minimum distancefound up to now lies
in some scope around the true minimum (or desired) distance.The other one is time-
constrained ANN search that terminates the search when the search reaches some
prefixed time (or equivalently examines a fixed number of datapoints). The latter
category is shown to be more practical and give better performance. Our proposed
approach belongs to the latter category.

The ANN search algorithms can be roughly divided into four categories: partition
trees, neighborhoodgraph, compact codes (hashing and source coding), and inverted
index. The following presents a short review of the four categories.

2.1 Partition trees

The partition tree based approaches recursively split the space into subspaces, and
organize the subspaces via a tree structure. Most approaches select hyperplanes or
hyperspheres according to the distribution of data points to divide the space, and
accordingly data points are partitioned into subsets.

The KD trees [6, 12], using axis-aligned hyperplane to partition the space, have
been modified to find ANNs. Other trees using different partition schemes, such
as BD tress [3], metric trees [9, 26, 28, 51], hierarchicalk-means tree [30], and
randomized KD trees [22, 35, 47], have been proposed. FLANN [29] aims to find
the best configuration of the hierarchical k-means trees andrandomized KD trees,
and has been shown to work well in practice.

In the query stage, the branch-and-bound methodology [6] is usually adopted
to search (approximate) nearest neighbors. This scheme needs to traverse the tree in
the depth-first manner from the root to a leaf by evaluating the query at each internal
node, and pruning some subtrees according to the evaluationand the currently-found
nearest neighbors. The current state-of-the-art search strategy, priority search [3] or
best-first [5], maintains a priority queue to access subtrees in order so that the data
points with large probabilities being true nearest neighbors are first accessed. It has

4 Jingdong Wang Jing Wang Gang Zeng Rui Gan Shipeng Li BainingGuo

been shown that best-first search (priority search) achieves the best performance for
ANN search, while the performance might be worse for Exact NNsearch than the
algorithms without using best-first search.

2.2 Neighborhood graph search

The data structure of the neighborhood graph is a directed graph connecting each
vector and its nearest neighbors. Usually aR-NN graph, that connects each vector to
its Rnearest neighbors, is used. Various algorithms based on neighborhood graph [1,
2, 5, 15, 33, 34, 41] are developed for ANN search has been.

The basic procedure of neighborhood graph search starts from one or several
seeding vectors, and puts them into a priority queue with thedistance to the query
being the key. Then the process proceeds by popping the top one in the queue, i.e.,
the nearest one to the query, and expanding its neighborhoodvectors (from neigh-
borhood graph), among which the vectors that have not been visited are pushed into
the priority queue. This process iterates till a fixed numberof vectors are accessed.

Using neighborhood vectors of a vector as candidates has twoadvantages. One
is that extracting the candidates is very cheap and only takes O(1) time. The other
is that if one vector is close to the query, its neighborhood vectors are also likely to
be close to the query. The main research efforts consists of two aspects. One is to
build an effective neighborhood graph [1, 33]. The other is to design efficient and
effective ways to guide the search in the neighborhood graph, including presetting
the seeds created via clustering [33, 34], picking the candidates from KD tress [2],
iteratively searching between KD trees and the neighborhood graph [41]. In this
paper, we present a more effective way, combining the neighborhood graph with a
bridge graph, to search for approximate nearest neighbors.

2.3 Compact codes

The compact code approaches transform each data vector intoa small code, using
the hashing or source coding techniques. Usually the small code takes much less
storage than the original vector, and particularly the distance in the small code space,
e.g., hamming distance or using lookup table can be much moreefficiently evaluated
than in the original space.

Locality sensitive hashing (LSH) [10], originally used in a manner similar to
inverted index, has been shown to achieve good theory guarantee in finding near
neighbors with probability, but it is reported not as good asKD trees in practice [29].
Multi-probe LSH [27] adopts the search algorithm similar to priority search, achiev-
ing a significant improvement. Nowadays, the popular usage of hashing is to use the
hamming distance between hash codes to approximate the distance in the original
space and then adopt linear scan to conduct the search. To make the best of the

Fast Neighborhood Graph Search using Cartesian Concatenation 5

data, recently, various data-dependent hashing algorithms are proposed by learn-
ing hash functions using metric learning-like techniques,including optimized ker-
nel hashing [17], learned metrics [19], learnt binary reconstruction [23], kernelized
LSH [24], and shift kernel hashing [32], semi-supervised hashing [40], (multidimen-
sional) spectral hashing [48, 49], spectral hashing [49], iterative quantization [14],
complementary hashing [50] and order preserving hashing [44].

The source coding approach, product quantization [20], divides the vector into
several (e.g.,M) bands, and quantizes reference vectors for each band separately.
Then each reference vector is approximated by the nearest center in each band, and
the index for the center is used to represent the reference vector. Accordingly, the
distance in the original space is approximated by the distance over the assigned
centers in all bands, which can be quickly computed using precomputed lookup
tables storing the distances between the quantization centers of each band separately.

2.4 Inverted index

Inverted index is composed of a set of inverted lists each of which contains a subset
of the reference vectors. The query stage selects a small number of inverted lists,
regards the vectors contained in the selected inverted lists as the NN candidates, and
rerank the candidates, using the distance computed from theoriginal vector or using
the distance computed from the small codes followed by a second-reranking step
using the distance computed from the original vector, to findthe best candidates.

The inverted index algorithms are widely used for very largedatasets of vectors
(hundreds of million to billions) due to its small memory cost. Such algorithms
usually load the inverted index (and possibly extra codes) into the memory and
store the raw features in the disk. A typical inverted index is built by clustering
algorithms, e.g., [4, 20, 30, 36, 42], and is composed of a set of inverted lists, each
of which corresponds to a cluster of reference vectors. Other inverted indices include
hash tables [10], tree codebooks [6] and complementary tree codebooks [39].

3 Preliminaries

This section gives short introductions on several algorithms our approach depends
on: neighborhoodgraph search, product quantization, and the multi-sequence search
algorithm.

6 Jingdong Wang Jing Wang Gang Zeng Rui Gan Shipeng Li BainingGuo

3.1 Neighborhood graph search

A neighborhood graph of a set of vectorsX = {x1, · · · ,xn} is a directed graph that
organizes data vectors by connecting each data point with its neighboring vectors.
The neighborhood graph is denoted asG= {(vi ,Ad j[vi])}ni=1, wherevi corresponds
to a vectorxi andAd j[vi] is a list of nodes that correspond to its neighbors.

The ANN search algorithm proposed in [2], we call local neighborhood graph
search, is a procedure that starts from a set of seeding points as initial NN can-
didates and propagates the search by continuously accessing their neighbors from
previously-discovered NN candidates to discover more NN candidates. Thebest-
first strategy [2] is usually adopted for local neighborhood expansion2. To this end,
apriority queueis used to maintain the previously-discovered NN candidates whose
neighborhoods are not expanded yet, and initially containsonly seeds. The best can-
didate in the priority queue is extracted out, and the pointsin its neighborhood are
discovered as new NN candidates and then pushed into the priority queue. The re-
sulting search path, discovering NN candidates, may not be monotone, but always
attempts to move closer to the query point without repeatingpoints. As a local search
that finds better solutions only from the neighborhood of thecurrent solution, the
local neighborhood graph search will be stuck at a locally optimal point and has to
conduct exhaustive neighborhood expansions to find better solutions. Both the pro-
posed approach and the iterated approach [41] aim efficiently find solutions beyond
local optima.

3.2 Product quantization

The idea of product quantization is to decomposes the space into a Cartesian
product of M low dimensional subspaces and to quantize each subspace sepa-
rately. A vectorx is then decomposed intoM subvectors,x1, · · · ,xM, such that
xT = [(x1)T (x2)T · · · (xM)T]. Let the quantization dictionaries over theM sub-
spaces beC1,C2, · · · ,CM with Cm being a set of centers{cm1, · · · ,cmK}. A vec-
tor x is represented by a short code composed of its subspace quantization indices,
{k1,k2, · · · ,kM}. Equivalently,

x =











C(1) 0 · · · 0
0 C(2) · · · 0
...

...
...

...
0 0 · · · C(M)





















b(1)

b(2)

...
b(M)











, (1)

whereb(m) is a vector in which thekm entry is 1 and all others are 0.

2 The depth-first search strategy can also be used. Our experiments show that the performance is
much worse than the best-first search.

Fast Neighborhood Graph Search using Cartesian Concatenation 7

Given a queryq, the asymmetric scheme dividesq into M subvectorsq1,qM,
and computesM distance arrays{d1, · · · ,dM} (for computation efficiency, store the
square of the Euclidean distance) with the centers of theM subspaces. For a database
point encoded as{k1,k2, · · · ,kM}, the square of the Euclidean distance is approxi-
mated as∑M

m=1dmkm, which is called asymmetric distance.
The application of product quantization in our approach is different from appli-

cations to fast distance computation [20] and code book construction [4], the goal
of Cartesian product in this paper is to build a bridge to connect the query and the
reference vectors through bridge vectors.

3.3 Multi-sequence search

Given several monotonically increasing sequences,{Sb}Bb=1 whereSi is a sequence,
sb(1),sb(2), . . . ,sb(Lb), with sb(l) < sb(l + 1), the multi-sequence search algo-
rithm [4] is able to efficiently traverse the set ofB-tuples{(s1(i1),s2(i2), . . . ,sB(iB))|ib =
1. . .Lb} in order of increasing the sums1(i1)+ s2(i2)+ · · ·+ sB(iB).

The algorithm uses a min-priority queue of the tuples(i1, i2, . . . , iB) with the
key being the sums1(i1)+ s2(i2) + · · ·+ sB(iB). It starts by initializing the queue
with a tuple(1,1, . . . ,1). At stept, the tuple with top priority (the minimum sum),

(i(t)1 , i(t)2 , . . . , i(t)B), is popped from the queue and regarded as thetth best tuple whose
sum is thetth smallest. At the same time, the tuple(i1, i2, . . . , iB), if all its preceding
tuples,{(i′1, i′2, . . . , i′B)|i′b = ib, ib− 1}− {(i1, i2, . . . , iB)} have already been pushed
into the queue is pushed into the queue. As a result, the multi-sequence algorithm
produces a sequence ofB-tuples in order of increasing the sum and can stop at step
t−1 if the bestt B-tuples are required. It is shown in [4] that the time cost of ex-
tracting the bestt B-tuples ist logt.

4 Approach

The databaseX containsN d-dimensional reference vectors,X = {x1,x2, · · · ,xN},
xi ∈ R

d. Our goal is to build an index structure using the bridge graph such that,
given a query vectorq, its nearest neighbors can be quickly discovered. In this sec-
tion, we first describe the index structure and then show the search algorithm.

4.1 Data structure

Our index structure consists of two components: a bridge graph that connects bridge
vectors and their nearest reference vectors, and a neighborhood graph that connects
each reference vector to its nearest reference vectors.

8 Jingdong Wang Jing Wang Gang Zeng Rui Gan Shipeng Li BainingGuo

Bridge vectors. Cartesian concatenation is an operation that builds a new set out
of a number of given sets. Givenm sets,{S1,S2, · · · ,Sm}, where each set, in our
case, contains a set ofdi-dimensional subvectors such that∑m

i=1di = d, the Cartesian
concatenation of those sets is defined as follows,

Y =×m
i=1Si , {y j = [yT

j1 yT
j2 · · · yT

jm]
T |y j i ∈Si}.

Herey j is ad-dimensional vector, and there exist∏m
i=1ni vectors (ni = |Si | is the

number of elements inSi) in the Cartesian concatenationY . Without loss of gen-
erality, we assume thatn1 = n2 = · · · = nm = n for convenience. There is a nice
property that identifying the nearest one fromY to a query only takesO(dn) time
rather thanO(dnm), despite that the number of elements inY is nm. Inspired by this
property, we use the Cartesian concatenationY , called bridge vectors, as bridges to
connect the query vector with the reference vectors.

Computing bridge vectors. We propose to use product quantization [20], which
aims to minimize the distance of each vector to the nearest concatenated center de-
rived from subquantizers, to compute bridge vectors. This ensures that the reference
vectors discovered through one bridge vector are not far away from the query and
hence the probability that those reference vectors are trueNNs is high.

It is also expected that the number of reference vectors thatare close enough to
at least one bridge vector should be as large as possible (to make sure that enough
good reference vectors can be discovered merely through bridge vectors) and that
the average number of the reference vectors discovered through each bridge vector
should be small (to make sure that the time cost to access themis low). To this end,
we generate a large amount of bridge vectors. Such a requirement is similar to [20]
for source coding and different from [4] for inverted indices.

Augmented neighborhood graph. The augmented neighborhood graph is a com-
bination of the neighborhood graph̄G over the reference databaseX and the bridge
graphB between the bridge vectorsY and the reference vectorsX . The neighbor-
hood graphḠ is a directed graph. Each node corresponds to a pointxi , and is also
denoted asxi for convenience. Each nodexi is connected with a list of nodes that
correspond to its neighbors, denoted byAd j[xi].

The bridge graphB is constructed by connecting each bridge vectory j in Y to
its nearest vectorsAd j[yi] in X . To avoid expensive computation cost, we build the
bridge graph approximately by finding topt (typically 100 in our experiments) near-
est bridge vectors for each reference vector and then keeping topb nearest (typically
5 in our experiments) reference vectors for each bridge vector, which is efficient and
takesO(Nt(logt +b)) time.

The bridge graph is different from the inverted multi-index[4]. In the inverted
multi-index, each bridge vectory contains a list of vectors that are closer toy than
all other bridge vectors, while in our approach each bridge is associated with a list
of vectors that are closer toy than all other reference data points.

Fast Neighborhood Graph Search using Cartesian Concatenation 9

1

Y X X

(a) Iteration 1
Y X X

2

4

6

8

(b) Iteration 2
Y X X

4

6

8

7

9

10

(c) Iteration 3
Y X X

6

8

7

9

5

11

12

10

(d) Iteration 4

Fig. 1 An example illustrating the search process.Y →X : the bridge graph, andX →X :
the neighborhood graph. The white numbers are the distancesto the query. Magenta denotes the
vectors in the main queue, green represents the vector beingpopped out from the main queue, and
black indicates the vectors whose neighborhoods have already been expanded

4.2 Query the augmented neighborhood graph

To make the description clear, without loss of generality, we assume there are two
sets ofn subvectors,S1 = {y1

1,y
1
2, · · · ,y1

n} andS2 = {y2
1,y

2
2, · · · ,y2

n}. Given a query
q consisting of two subvectorsq1 andq2, the goal is to generate a list ofT (T≪N)
candidate reference points fromX where the true NNs ofq are most likely to lie.
This is achieved by traversing the augmented neighborhood graph in a best-first
strategy.

We give a brief overview of the ANN search procedure over a neighborhood
graph before describing how to make use of bridge vectors. The algorithm begins
with a set of (one or several) vectorsPs = {p} that are contained in the neighbor-
hood graph. It maintains a set of nearest neighbor candidates (whose neighborhoods
have not been expanded), using a min-priority queue, which we call the main queue,
with the distance to the query as the key. The main queue initially contains the vec-
tors inPs. The algorithm proceeds by iteratively expanding the neighborhoods in
a best-first strategy. At each step, the vectorp∗ with top priority (the nearest one to
q) is popped from the queue. Then each neighborhood vector inAd j[p∗] is inserted
to the queue if it is not visited, and at the same time it is added to the result set
(maintained by a max-priority queue with a fixed length depending on how many
nearest neighbors are expected).

To exploit the bridge vectors, we present an extraction-on-demand strategy, in-
stead of fetching all the bridge vectors to the main queue, which leads to expensive
cost in sorting them and maintaining the main queue. Our strategy is to maintain
the main queue such that it consists of only one bridge vectorif available. To be
specific, if the top vectorp∗ in the main queue is a reference vector, the algorithm
proceeds as usual, the same to the above procedure without using bridge vectors. If
the top vector is a bridge vector, we first insert its neighborsAd j[p∗] into the main
queue and the result set, and in addition we find the next nearest bridge vector (to the

10 Jingdong Wang Jing Wang Gang Zeng Rui Gan Shipeng Li Baining Guo

queryq) and insert it to the main queue. The pseudo code of the searchalgorithm is
given in Algorithm1 and an example process is illustrated in Figure1.

Before traversing the augmented neighborhood graph, we first process the bridge
vectors, and compute the distances (the square of the Euclidean distance) fromq1

to the subvectors inS1 and fromq2 to the subvectors inS2, and then sort the
subvectors in the order of increasing distances, respectively. We denote the sorted
subvectors as{y1

i1
, · · · ,y1

in} and{y2
j1
, · · · ,y2

jn}. As the sizen of S1 andS2 is typi-
cally not large (e.g., 100 in our case), the computation costis very small (See details
in Section6).

The extraction-on-demand strategy needs to visit the bridge vector one by one
in the order of increasing distance fromq. It is easily shown that dist2(q,y) =
dist2(q1,y1)+dist2(q2,y2), wherey is consists ofy1 andy2. Naturally,yi1, j1, com-
posed ofy1

i1
andy2

i1
, is the nearest one toq. The multi-sequence algorithm (corre-

sponding to ExtractNextNearestBridgeVector() in Algorithm 1) is able to fast pro-
duce a sequence of pairs(ik, j l) so that the corresponding bridge vectors are visited
in the order of increasing distances to the queryq. The algorithm is very efficient
and producing thet-th bridge vector only takesO(log(t)) time. Slightly different
from extracting a fixed number of nearest bridge vectors once[4], our algorithm au-
tomatically determines when to extract the next one, that iswhen there is no bridge
vector in the main queue.

5 Experiments

5.1 Setup

We perform our experiments on three large datasets: the firstone with local SIFT
features, the second one with global GIST features, and the third one with HOG fea-
tures, and a very large dataset, the BIGANN dataset of 1 billion SIFT features [21].

The SIFT features are collected from the Caltech 101 dataset[11]. We extract
maximally stable extremal regions (MSERs) for each image, and compute a 128-
dimensional byte-valued SIFT feature for each MSER. We randomly sample 1000K
SIFT features and 100K SIFT features, respectively as the reference and query set.
The GIST features are extracted on the tiny image set [38]. The GIST descriptor is a
384-dimensional byte-valued vector. We sample 1000K images as the reference set
and 100K images as the queries. The HOG descriptors are extracted from Flickr im-
ages, and each HOG descriptor is a 512-dimensional byte-valued vector. We sample
10M HOG descriptors as the reference set and 100K as the queries. The BIGANN
dataset [21] consists of 1B 128-dimensional byte-valued vectors as the reference set
and 10K vectors as the queries.

We use the accuracy score to evaluate the search quality. Fork-ANN search, the
accuracy is computed asr/k, wherer is the number of retrieved vectors that are
contained in the truek nearest neighbors. The true nearest neighbors are computed

Fast Neighborhood Graph Search using Cartesian Concatenation 11

Algorithm 1 ANN search over the augmented neighborhood graph

/* q: the query;X : the reference data vectors;Y : the set of bridge vectors;G: the augmented
neighborhood graph;Q: the main queue;R: the result set;T: the maximum number of discov-
ered vectors; */

Procedure ANNSearch(q, X , Y , G, Q, R, T)
1. /* Mark each reference vector undiscovered */
2. for eachx ∈X do
3. Color[x] ← white;
4. end for
5. /* Extract the nearest bridge vector */
6. (y,D)← ExtractNextNearestBridgeVector(Y);
7. Q← (y,D);
8. t← 0
9. /* Start the search */

10. while (Q 6= /0 && t 6 T) do
11. /* Pop out the best candidate vector and expand its neighbors*/
12. (p,D)←Q.pop();
13. for eachx ∈ Ad j[p] do
14. if Color[x] = white then
15. D← dist(q,x);
16. Q← (x,D);
17. Color[x] ← black; /* Mark it discovered */
18. R← (x, D); /* Update the result set */
19. t← t +1;
20. end if
21. end for
22. /* Extract the next nearest bridge vector ifp is a bridge vector */
23. if p ∈ Y then
24. (y,D)← ExtractNextNearestBridgeVector(Y);
25. Q← (y,D);
26. end if
27. end while
28. return R;

Table 1 The parameters of our approach and the statistics. #reference means the number of ref-
erence vectors associated with the bridge vectors, andα means the average number of unique
reference vectors associated with each bridge vector

size #partitions #clusters #reference α
SIFT 1M 4 50 715K 11.4%
GIST 1M 4 50 599K 9.59%
HOG 10M 4 100 5730K 5.73%

by comparing each query with all the reference vectors in thedata set. We compare
different algorithms by calculating the search accuracy given the same search time,
where the search time is recorded by varying the number of accessed vectors. We
report the performance in terms of search time vs. search accuracy for the first three
datasets. Those results are obtained with 64 bit programs ona 3.4G Hz quad core
Intel PC with 24G memory.

12 Jingdong Wang Jing Wang Gang Zeng Rui Gan Shipeng Li Baining Guo

5.2 Empirical analysis

The index structure construction in our approach includes partitioning the vector
into msubvectors and grouping the vectors of each partition inton clusters. We con-
duct experiments to study how they influence the search performance. The results
over the 1M SIFT and 1M GIST datasets are shown in Figure2. Considering two
partitions, it can be observed that the performance becomesbetter with more clus-
ters for each partition. This is because more clusters produce more bridge vectors
and thus more reference vectors are associated with bridge vectors and their dis-
tances are much smaller. The result with 4 partitions and 50 clusters per partition
gets the best performance as in this case the properties desired for bridge vectors
described in Section4.1are more likely to be satisfied.

5.3 Comparisons

We compare our approach with state-of-the-art algorithms,including iterative neigh-
borhood graph search [41], original neighborhood graph search (AryaM93) [2],
trinary projection (TP) trees [22], vantage point (VP) tree [51], Spill trees [26],
FLANN [29], and inverted multi-index [4]. The results of all other methods are
obtained by well tuning parameters. We do not report the results from hashing al-
gorithms as they are much worse than tree-based approach, which is also reported
in [29, 47]. The neighborhood graphs of different algorithms are the same, and each
vector is connected with 20 nearest vectors. We construct approximate neighbor-
hood graphs using the algorithm [46]. Table 1 shows the parameters for our ap-
proach, together with some statistics.

The experimental comparisons are shown in Figure3. The horizontal axis cor-
responds to search time (milliseconds), and the vertical axis corresponds to search
accuracy. From the results over the SIFT dataset shown in thefirst row of Figure3,
our approach performs the best. We can see that, given the target accuracy 90%
1-NN and 10-NN, our approach takes about2

3 time of the second best algorithm,
iterative neighborhood graph search.

The second row of Figure3 shows the results over the GIST dataset. Compared
with the SIFT feature (a 128-dimensional vector), the dimension of the GIST feature
(384) is larger and the search is hence more challenging. It can be observed that our
approach is still consistently better than other approaches. In particular, the improve-
ment is more significant, and for the target precision 70% ourapproach takes only
half time of the second best approach, from 1 to 100 NNs. The third row of Figure3
shows the results over the HOG dataset. This data set is the most difficult because it
contains more (10M) descriptors and its dimension is the largest (512). Again,our
approach achieves the best results. For the target accuracy70%, the search time in
the case of 1 NN is about47 of the time of the second best algorithm.

All the neighborhood graph search algorithms outperform the other algorithms,
which shows that the neighborhood graph structure is good toindex vectors. The

Fast Neighborhood Graph Search using Cartesian Concatenation 13

0 0.5 1 1.5 2 2.5 3
0.8

0.85

0.9

0.95

1

average query time

ac
cu

ra
cy

1002

2002

3002

4002

204

504

(a)

0 1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average query time

ac
cu

ra
cy

1002

2002

3002

4002

204

504

(b)

Fig. 2 Search performances with different number of partitions and clusters over (a) 1M SIFT and
(b) 1M GIST.xy: y means #partitions andx is #clusters

Our Approach Iterative Graph Arya Inverted Multi−Index TP Tree FLANN Spill Tree VP Tree

(a) 0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average query time

ac
cu

ra
cy

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average query time

ac
cu

ra
cy

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average query time

ac
cu

ra
cy

(b) 0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average query time

ac
cu

ra
cy

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average query time

ac
cu

ra
cy

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average query time

ac
cu

ra
cy

(c) 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average query time

ac
cu

ra
cy

k= 1
0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average query time

ac
cu

ra
cy

k= 10
0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average query time

ac
cu

ra
cy

k= 100

Fig. 3 Performance comparison on (a) 1M 128-dimensional SIFT features, (b) 1M 384-
dimensional GIST features, and (c) 10M 512-dimensional HOG features.k is the number of target
nearest neighbors

superiority of our approach to previous neighborhood graphalgorithms stems from
that our approach exploits the bridge graph to help the search. Inverted multi-index
does not produce competitive results because its advantageis small index struc-
ture size but its search performance is limited by an unfavorable trade-off between
the search accuracy and the time overhead in quantization. It is shown in [4] that in-

14 Jingdong Wang Jing Wang Gang Zeng Rui Gan Shipeng Li Baining Guo

0.4 0.5 0.6 0.7 0.8 0.9 1

10
−1

10
0

recall

av
er

ag
e

qu
er

y
tim

e
(m

s)

2,10 2,100
3,100

4,300

8,1000
16,1000

Our Approach
IVFADC

(a)

0.2 0.4 0.6 0.8 1

10
−1

10
0

10
1

recall

av
er

ag
e

qu
er

y
tim

e
(m

s)

2,100 4,200 8,500
16,500

32,1000

 64,1000

128,5000

Our Approach
IVFADC

(b)

Fig. 4 Search performances comparison with IVFADC [20] over (a) 1M SIFT and (b) 1M GIST.
The parametersM (the number of inverted lists visited),L (the number of candidates for re-ranking)
are given beside each marker of IVFADC

verted multi-index works the best when using a second-ordermulti-index and a large
codebook, but this results in high quantization cost. In contrast, our approach bene-
fits from the neighborhood graph structure so that we can use ahigh-order product
quantizer to save the quantization cost.

In addition, we also conduct experiments to compare the source coding based
ANN search algorithm [20]. This algorithm compresses each data vector into a short
code using product quantization, resulting in the fast approximate distance computa-
tion between vectors. We report the results from the IVFADC system that performs
the best as pointed in [20] over the 1M SIFT and GIST features. To compare IV-
FADC with our approach, we follow the scheme in [20] to add a verification stage
to the IVFADC system. We cluster the data points intoK inverted lists and use a
64-bits code to represent each vector as done in [20]. Given a query, we first find
its M nearest inverted lists, then compute the approximate distance from the query
to each of the candidates in the retrieved inverted lists. Finally we re-rank the top
L candidates using Euclidean distance and compute the 1-recall [20] of the nearest
neighbor (the same to the definition of the search accuracy for 1-NN). Experimental
results show thatK = 2048 gets superior performance. Figure4 shows the results
with respect to the parametersM andL. One can see that our approach gets superior
performance.

5.4 Experiments over the BIGANN dataset

We evaluate the performance of our approach when combining it with the IVFADC
system [20] for searching very large scale datasets. The IVFADC systemorganizes
the data using inverted indices built via a coarse quantizerand represents each vec-
tor by a short code produced by product quantization. Duringthe search stage, the
system visits the inverted lists in ascending order of the distances to the query and

Fast Neighborhood Graph Search using Cartesian Concatenation 15

re-ranks the candidates according to the short codes. The original implementation
only uses a small number of inverted lists to avoid the expensive time cost in finding
the exact nearest inverted indices. The inverted multi-index [4] is used to replace
the inverted indices in the IVFADC system, which is shown better than the original
IVFADC implementation [20].

We propose to replace the nearest inverted list identification using our approach.
The good search quality of our approach in terms of both accuracy and efficiency
makes it feasible to handle a large number of inverted lists.We quantize the 1B
features into millions (6M in our implementation) of groups using a fast approxi-
mate k-means clustering algorithm [43], and compute the centers of all the groups
forming the vocabulary. Then we use our approach to assign each vector to the in-
verted list corresponding to the nearest center, producingthe inverted indices. The
residual displacement between each vector and its center isquantized using prod-
uct quantization to obtain extra bytes for re-ranking. During the search stage, we
find the nearest inverted lists to the query using our approach and then do the same
reranking procedure as in [4, 20]

Following [4, 20] we calculate the recall@T scores of the nearest neighbor with
respect to different length of the visited candidate listL and different numbers of ex-
tra bytes,m= 8,16. The recall@T score is equivalent to the accuracy for the nearest
neighbor if a short list ofT vectors is verified using exact Euclidean distances [21].
The performance is summarized in Table2. It can be seen that our approach con-
sistently outperforms Multi-D-ADC [4] and IVFADC [20] in terms of both recall
and time cost when retrieving the same number of visited candidates. The superior-
ity over IVFADC stems from that our approach significantly increases the number
of inverted indices and produces space partitions with smaller (coarse) quantization
errors and that our system accesses a few coarse centers while guarantees relatively
accurate inverted lists. For inverted multi-index approach, although the total number
of centers is quite large the data vectors are not evenly divided into inverted lists. As
reported in the supplementary material of [4], 61% of the inverted lists are empty.
Thus the quantization quality is not as good as ours. Consequently, it performs worse
than our approach.

6 Analysis and discussion

Index structure size. In addition to the neighborhood graph and the reference vec-
tors, the index structure of our approach includes a bridge graph and the bridge
vectors. The number of bridge vectors in our implementationis O(N), with N be-
ing the number of the reference vectors. The storage cost of the bridge vectors are
thenO(m

√
N), and the cost of the bridge graph is alsoO(N). In the case of 1M 384-

dimensional GIST byte-valued features, without optimization, the storage complex-
ity (125M bytes) of the bridge graph is smaller than the reference vectors (384M
bytes) and the neighborhood graph (160M bytes). The cost of KD trees, VP trees,
and TP trees are∼180M,∼180M, and∼560M bytes. In summary, the storage cost

16 Jingdong Wang Jing Wang Gang Zeng Rui Gan Shipeng Li Baining Guo

Table 2 The performance
(recall for the top-1, top-10,
and top-100 candidates after
reranking and average search
time in milliseconds) compar-
ison between IVFADC [21],
Multi-D-ADC [4] and Our
approach (Graph-D-ADC).
IVFADC uses inverted lists
with K = 1024, Multi-D-ADC
uses the second-order multi-
index withK = 214 and our
approach use inverted lists
with K = 6M

System List len.R@1 R@10 R@100Time
BIGANN, 1 billion SIFTs, 8 bytes per vector

IVFADC 4 million 0.100 0.280 0.600 960
Multi-D-ADC 10000 0.165 0.492 0.726 29
Multi-D-ADC 30000 0.172 0.526 0.824 44
Multi-D-ADC 100000 0.173 0.536 0.870 98
Graph-D-ADC 10000 0.199 0.562 0.802 24
Graph-D-ADC 30000 0.201 0.584 0.873 39
Graph-D-ADC 1000000.201 0.589 0.896 90

BIGANN, 1 billion SIFTs, 16 bytes per vector
IVFADC 4 million 0.220 0.610 0.890 1135

Multi-D-ADC 10000 0.324 0.685 0.755 30
Multi-D-ADC 30000 0.347 0.777 0.891 47
Multi-D-ADC 100000 0.354 0.813 0.959 109
Graph-D-ADC 10000 0.374 0.764 0.831 24
Graph-D-ADC 30000 0.391 0.829 0.924 39
Graph-D-ADC 1000000.395 0.851 0.964 92

of our index structure is comparable with those neighborhood graph and tree-based
structures.

In comparison to source coding [20, 21] and hashing without using the origi-
nal features, and inverted indices (e.g. [4]), our approach takes more storage cost.
However, the search quality of our approach in terms of accuracy and time is much
better, which leaves users for algorithm selection according to their preferences to
less memory or less time. Moreover the storage costs for 1M GIST and SIFT fea-
tures (< 1G bytes) and even 10M HOG features (< 8G bytes) are acceptable in most
today’s machines. When applying our approach to the BIGANN dataset of 1B SIFT
features, the index structure size for our approach is about14G for m= 8 and 22G
for m= 16, which is similar with Multi-D-ADC [4] (13G for m= 8 and 21G for
m= 16) and IVFADC [20] (12G for m= 8 and 20G for m= 16).

Construction complexity. The most time-consuming process in constructing the
index structure in our approach is the construction of the neighborhood graph. Re-
cent research [46] shows that an approximate neighborhood graph can be built in
O(N logN) time, which is comparable to the cost of constructing the bridge graph.
In our experiments, using a 3.4G Hz quad core Intel PC, the index structures of the
1M SIFT data, the 1M GIST data, and the 10M HOG data can be built within half
an hour, an hour, and 10 hours, respectively. These time costs are relatively large but
acceptable as they are offline processes.

The algorithm of combining our approach with the IVFADC system [20] over
the BIGANN dataset of size 1 billion requires the similar construction cost with the
state-of-the-art algorithm [4]. Because the number of data vectors is very large (1B),
the most time-consuming stage is to assign each vector to theinverted lists and both
take about 2 days. The structure of our approach organizing the 6M centers takes
only a few hours, which is relatively small. These construction stages are all run
with 48 threads on a server with 12 AMD Opteron 1.9GHz quad core processors.

Fast Neighborhood Graph Search using Cartesian Concatenation 17

Search complexity. The search procedure of our approach consists of the distance
computation over the subvectors, the traversal over the bridge graph and the neigh-
borhood graph. The distance computation over the subvectors is very cheap and
takes small constant time (about the distance computation cost with 100 vectors in
our experiments). Compared with the number of reference vectors that are required
to reach an acceptable accuracy (e.g., the number is about 4800 for accuracy 90%
in the 1M 384-dimensional GIST feature data set), such time cost is negligible.

Besides the computation of the distances between the query vector and the visited
reference vectors, the additional time overhead comes frommaintaining the priority
queue and querying the bridge vectors using the multi-sequence algorithm. Given
there areT reference vectors that have been discovered, it can be easily shown that
the main queue is no longer thanT. Consider the worst case that all theT reference
vectors come from the bridge graph, where each bridge vectoris associated with
α unique reference vectors on average (the statistics forα in our experiments is
presented in Table1), we have thatTα bridge vectors are visited. Thus, the mainte-
nance of the main queue takesO((1+ 1

α)T logT) time. ExtractingT
α bridge vectors

using the multi-sequence algorithm [4] takesO(T
α log(T

α)). Consequently the time
overhead on average isO((1+ 2

α)T logT− T
α logα) = O(T logT).

Figure5 shows the time cost of visiting 10K reference vectors in different al-
gorithms on two datasets. Linear scan represents the time cost of computing the
distances between a query and all reference vectors. The overhead of a method is
the difference between the time cost of this method and that of linear scan. We can
see that the inverted multi-index takes the minimum overhead and our approach is
the second minimum. This is because our approach includes extra operations over
the main queue.

Relations to source coding [20] and inverted multi-index [4]. Product quan-
tization (or generally Cartesian concatenation) has two attractive properties. One
property is that it is able to produce a large set of concatenated vectors from several
small sets of subvectors. The other property is that the exact nearest vectors to a
query vector from such a large set of concatenated vectors can be quickly found us-
ing the multi-sequence algorithm. The application to source coding [20] exploits the
first property, thus results in fast distance approximation. The application to inverted
multi-index [4] makes use of the second property to fast retrieve concatenated quan-
tizers. In contrast, our approach exploits both the two properties: the first property
guarantees that the approximation error of the concatenated vectors to the reference
vectors is small with small sets of subvectors, and the second property guarantees
that the retrieval from the concatenated vectors is very efficient and hence the time
overhead is small.

18 Jingdong Wang Jing Wang Gang Zeng Rui Gan Shipeng Li Baining Guo

�

�

��

��

��

��

�������	�
��
 �������	���

�
�
�
��
�
�
��
	

�
��
�

�
��

�

�������
���

������������

���������������

�� �

�������!���"�����!�#

$�
���

���%%

��""�
���

&$�
���

Fig. 5 Average time cost of visiting 10K reference vectors. The time overhead (difference between
the average time cost and the cost of liner scan) of our approach is comparably small

7 Conclusions

The key factors contribute to the superior performance of our proposed approach in-
clude: (1) Discovering NN candidates from the neighborhoodof both bridge vectors
and reference vectors is very cheap; (2) The NN candidates from the neighborhood
of the bridge vector have high probability to be true NNs because there are a large
number of effective bridge vectors generated by Cartesian concatenation; (3) Re-
trieving nearest bridge vectors is very efficient. The algorithm is very simple and
is easily implemented. The power of our algorithm is demonstrated by the superior
ANN search performance over large scale SIFT, HOG, and GIST datasets, as well
as over a very large scale dataset, the BIGANN dataset of 1 billion SIFT features
through the combination of our approach with the IVFADC system.

References

1. Aoyama, K., Saito, K., Sawada, H., Ueda, N.: Fast approximate similarity search based on
degree-reduced neighborhood graphs. In: KDD, pp. 1055–1063 (2011)4

2. Arya, S., Mount, D.M.: Approximate nearest neighbor queries in fixed dimensions. In: SODA,
pp. 271–280 (1993)4, 6, 12

3. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for
approximate nearest neighbor searching in fixed dimensions. J. ACM 45(6), 891–923 (1998)
2, 3

4. Babenko, A., Lempitsky, V.S.: The inverted multi-index.In: CVPR, pp. 3069–3076 (2012)2,
5, 7, 8, 10, 12, 13, 15, 16, 17

5. Beis, J.S., Lowe, D.G.: Shape indexing using approximatenearest-neighbour search in high-
dimensional spaces. In: CVPR, pp. 1000–1006 (1997)2, 3, 4

6. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun.
ACM 18(9), 509–517 (1975)2, 3, 5

Fast Neighborhood Graph Search using Cartesian Concatenation 19

7. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: ICML, pp.
97–104 (2006)2

8. Brown, M., Lowe, D.G.: Recognising panoramas. In: ICCV, pp. 1218–1227 (2003)2
9. Dasgupta, S., Freund, Y.: Random projection trees and lowdimensional manifolds. In: STOC,

pp. 537–546 (2008)3
10. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based

on p-stable distributions. In: Symposium on ComputationalGeometry, pp. 253–262 (2004)4,
5

11. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training ex-
amples: an incremental bayesian approach tested on 101 object categories. In: CVPR 2004
Workshop on Generative-Model Based Vision (2004)10

12. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarith-
mic expected time. ACM Trans. Math. Softw.3(3), 209–226 (1977)2, 3

13. Frome, A., Singer, Y., Sha, F., Malik, J.: Learning globally-consistent local distance functions
for shape-based image retrieval and classification. In: ICCV, pp. 1–8 (2007)2

14. Gong, Y., Lazebnik, S.: Iterative quantization: A procrustean approach to learning binary
codes. In: CVPR, pp. 817–824 (2011)5

15. Hajebi, K., Abbasi-Yadkori, Y., Shahbazi, H., Zhang, H.: Fast approximate nearest-neighbor
search with k-nearest neighbor graph. In: IJCAI, pp. 1312–1317 (2011)4

16. Hays, J., Efros, A.A.: Scene completion using millions of photographs. ACM Trans. Graph.
26(3), 4 (2007)2

17. He, J., Liu, W., Chang, S.F.: Scalable similarity searchwith optimized kernel hashing. In:
KDD, pp. 1129–1138 (2010)5

18. Hwang, Y., Han, B., Ahn, H.K.: A fast nearest neighbor search algorithm by nonlinear em-
bedding. In: CVPR, pp. 3053–3060 (2012)2

19. Jain, P., Kulis, B., Grauman, K.: Fast image search for learned metrics. In: CVPR (2008)5
20. Jégou, H., Douze, M., Schmid, C.: Product quantizationfor nearest neighbor search. IEEE

Trans. Pattern Anal. Mach. Intell.33(1), 117–128 (2011)1, 2, 3, 5, 7, 8, 14, 15, 16, 17
21. Jégou, H., Tavenard, R., Douze, M., Amsaleg, L.: Searching in one billion vectors: Re-rank

with source coding. In: ICASSP, pp. 861–864 (2011)3, 10, 15, 16
22. Jia, Y., Wang, J., Zeng, G., Zha, H., Hua, X.S.: Optimizing kd-trees for scalable visual de-

scriptor indexing. In: CVPR, pp. 3392–3399 (2010)3, 12
23. Kulis, B., Darrells, T.: Learning to hash with binary reconstructive embeddings. In: NIPS, pp.

577–584 (2009)5
24. Kulis, B., Grauman, K.: Kernelized locality-sensitivehashing for scalable image search. In:

ICCV (2009) 5
25. Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by patch-based

sampling. ACM Trans. Graph.20(3), 127–150 (2001)2
26. Liu, T., Moore, A.W., Gray, A.G., Yang, K.: An investigation of practical approximate nearest

neighbor algorithms. In: NIPS (2004)3, 12
27. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe lsh: Efficient indexing for

high-dimensional similarity search. In: VLDB, pp. 950–961(2007) 4
28. Moore, A.W.: The anchors hierarchy: Using the triangle inequality to survive high dimensional

data. In: UAI, pp. 397–405 (2000)3
29. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm config-

uration. In: VISSAPP (1), pp. 331–340 (2009)3, 4, 12
30. Nistér, D., Stewénius, H.: Scalable recognition witha vocabulary tree. In: CVPR (2), pp.

2161–2168 (2006)3, 5
31. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabu-

laries and fast spatial matching. In: CVPR (2007)2
32. Raginsky, M., Lazebnik, S.: Locality sensitive binary codes from shift-invariant kernels. In:

NIPS (2009)5
33. Samet, H.: Foundations of multidimensional and metric data structures. Elsevier, Amsterdam

(2006) 4

20 Jingdong Wang Jing Wang Gang Zeng Rui Gan Shipeng Li Baining Guo

34. Sebastian, T.B., Kimia, B.B.: Metric-based shape retrieval in large databases. In: ICPR (3),
pp. 291–296 (2002)4

35. Silpa-Anan, C., Hartley, R.: Optimised kd-trees for fast image descriptor matching. In: CVPR
(2008) 3

36. Sivic, J., Zisserman, A.: Efficient visual search of videos cast as text retrieval. IEEE Trans.
Pattern Anal. Mach. Intell.31(4), 591–606 (2009)5

37. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM
Trans. Graph.25(3), 835–846 (2006)2

38. Torralba, A.B., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data set for non-
parametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell.30(11),
1958–1970 (2008)2, 10

39. Tu, W., Pan, R., Wang, J.: Similar image search with a tinybag-of-delegates representation.
In: ACM Multimedia, pp. 885–888 (2012)5

40. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for scalable image retrieval. In:
CVPR 5

41. Wang, J., Li, S.: Query-driven iterated neighborhood graph search for large scale indexing. In:
ACM Multimedia, pp. 179–188 (2012)4, 6, 12

42. Wang, J., Wang, J., Hua, X.S., Li, S.: Scalable similar image search by joint indices. In: ACM
Multimedia, pp. 1325–1326 (2012)5

43. Wang, J., Wang, J., Ke, Q., Zeng, G., Li, S.: Fast approximate k-means via cluster closures.
In: CVPR, pp. 3037–3044 (2012)15

44. Wang, J., Wang, J., Yu, N., Li, S.: Order preserving hashing for approximate nearest neighbor
search. In: ACM Multimedia (2013)5

45. Wang, J., Wang, J., Zeng, G., Gan, R., Li, S., Guo, B.: Fastneighborhood graph search using
cartesian concatenation. In: ICCV, pp. 2128–2135 (2013)2

46. Wang, J., Wang, J., Zeng, G., Tu, Z., Gan, R., Li, S.: Scalable k-nn graph construction for
visual descriptors. In: CVPR, pp. 1106–1113 (2012)12, 16

47. Wang, J., Wang, N., Jia, Y., Li, J., Zeng, G., Zha, H., Hua., X.S.: Trinary-projection trees for
approximate nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. (2013)3, 12

48. Weiss, Y., Fergus, R., Torralba, A.: Multidimensional spectral hashing. In: ECCV (5), pp.
340–353 (2012)5

49. Weiss, Y., Torralba, A.B., Fergus, R.: Spectral hashing. In: NIPS, pp. 1753–1760 (2008)5
50. Xu, H., Wang, J., Li, Z., Zeng, G., Li, S., Yu, N.: Complementary hashing for approximate

nearest neighbor search. In: ICCV, pp. 1631–1638 (2011)5
51. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric

spaces. In: SODA, pp. 311–321 (1993)3, 12

