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Fast Neighborhood Graph Search using
Cartesian Concatenation

Jingdong Wang Jing Wang Gang Zeng Rui Gan ShipengLi Bainung G

Abstract In this paper, we propose a new data structure for approgimear-
est neighbor search. This structure augments the neigbbdidraph with a bridge
graph. We propose to exploit Cartesian concatenation tdym®a large set of vec-
tors, called bridge vectors, from several small sets of sators. Each bridge vector
is connected with a few reference vectors near to it, fornairgidge graph. Our
approach finds nearest neighbors by simultaneously tiagetise neighborhood
graph and the bridge graph in the best-first strategy. Theesscof our approach
stems from two factors: the exact nearest neighbor searehaolarge number of
bridge vectors can be done quickly, and the reference \v@ctomected to a bridge
(reference) vector near the query are also likely to be rieaqtiery. Experimental
results on searching over large scale datasets (SIFT, GI& H®G) show that our
approach outperforms state-of-the-art ANN search algadtin terms of efficiency
and accuracy. The combination of our approach with the IVEAdYstem (] also
shows superior performance over the BIGANN dataset of 10hilSIFT features
compared with the best previously published result.
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1 Introduction

Nearest neighbor (NN) search is a fundamental problem irhmeadearning, in-
formation retrieval and computational geometry. It is adsorucial step in many
vision and graphics problems, such as shape matchiflg ¢bject retrieval 1],
feature matchingd, 37], texture synthesis’[H], image completion16] and so on.
Recently, the nearest neighbor search problem attracts attantions in computer
vision because of the popularity of large scale and highedisional multimedia
data.

The simplest solution to NN search is linear scan, comparaui reference vec-
tor to the query vector. The search complexity is linear wéhpect to both the
number of reference vectors and the data dimensionalitgafgntly, it is too time-
consuming and does not scale well in large scale and higlestsional problems.
Algorithms, including the KD treed, 5, 6, 17], BD trees [, cover tree ], non-
linear embeddingl8] and so on, have been proposed to improve the search effi-
ciency. However, for high-dimensional cases it turns oat 8uch approaches are
not much more efficient than linear scan and cannot satigfyptactical require-
ment. Therefore, a lot of efforts have been turned to appraté nearest neighbor
(ANN) search, such as KD trees with its variants, hashingritlyms, neighborhood
graph search, and inverted indices.

In this paper, we propose a new data structure for approgimearest neigh-
bor search. This structure augments the neighborhood graph with aybrgtaph
that is able to boost approximate nearest neighbor searétrpence. Inspired by
the product quantization technolog¥, [20], we adopt Cartesian concatenation (or
Cartesian product), to generate a large set of vectors jwihdgccallbridge vectors
from several small sets of subvectors to approximate thereate vectors. Each
bridge vector is then connected to a few reference vectatsatre near enough
to it, forming a bridge graph. Combining the bridge graphhvifie neighborhood
graph built over reference data vectors yields an augmergaghborhood graph.
The ANN search procedure starts by finding the nearest bridg®r to the query
vector, and discovers the first set of reference vectorsexed to such a bridge
vector. Then the search simultaneously traverses thedgdiph and the neighbor-
hood graph in the best-first manner using a shared priorigygu

The advantages of adopting the bridge graph lie in two-fBldst, computing
the distances from bridge vectors to the query is very efficifor instance, the
computation for 1000000 bridge vectors that are formed bst8af 100 subvectors
takes almost the same time as that for 100 vectors. Secanbde#t bridge vector is
most likely to be very close to true NNs, allowing the ANN s#ato quickly reach
true NNs through bridge vectors.

We evaluate the proposed approach by the feature matchirfigrpance on
SIFT and HOG features, and the performance of searchinggsiimages over tiny
images Bg with GIST features. We show that our approach achievesfgignt
improvements compared with the state-of-the-art in terfrscouracy and search

1 A conference version appeared ],
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time. We also demonstrate that our approach in combinatitntixe IVFADC sys-
tem [20] outperforms the state-of-the-art over the BIGANN datasétbillion SIFT
vectors P1].

2 Literaturereview

Nearest neighbor search in thaimensional metric spad@® is defined as follows:
given a queryg, the goal is to find an element NYy) from the database?” =
{X1,--,%n} so that NNq) = argmin 2 dist(q,x). In this paper, we assume that
RY is an Euclidean space and digtx) = ||q — |2, which is appropriate for most
problems in multimedia search and computer vision.

There are two types of ANN search problems. One is erroricained ANN
search that terminates the search when the minimum disfanod up to now lies
in some scope around the true minimum (or desired) distareeother one is time-
constrained ANN search that terminates the search wheretirelsreaches some
prefixed time (or equivalently examines a fixed number of gaiiats). The latter
category is shown to be more practical and give better padace. Our proposed
approach belongs to the latter category.

The ANN search algorithms can be roughly divided into fodegaries: partition
trees, neighborhood graph, compact codes (hashing anckesoaating), and inverted
index. The following presents a short review of the four gatees.

2.1 Partition trees

The partition tree based approaches recursively splitpheesinto subspaces, and
organize the subspaces via a tree structure. Most appr@aelext hyperplanes or
hyperspheres according to the distribution of data pomtditide the space, and
accordingly data points are partitioned into subsets.

The KD trees §, 17], using axis-aligned hyperplane to partition the spaceeha
been modified to find ANNs. Other trees using different partischemes, such
as BD tress J], metric trees §, 26, 28, 51], hierarchicalk-means treed(], and
randomized KD trees?, 35, 47], have been proposed. FLANNY] aims to find
the best configuration of the hierarchical k-means treesrandomized KD trees,
and has been shown to work well in practice.

In the query stage, the branch-and-bound methodolépis[usually adopted
to search (approximate) nearest neighbors. This schends te&averse the tree in
the depth-first manner from the root to a leaf by evaluatieghery at each internal
node, and pruning some subtrees according to the evaluatobtihe currently-found
nearest neighbors. The current state-of-the-art seanategy, priority searchi] or
best-first ], maintains a priority queue to access subtrees in orddradtie data
points with large probabilities being true nearest neighlame first accessed. It has
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been shown that best-first search (priority search) achigneebest performance for
ANN search, while the performance might be worse for Exactd¢dirch than the
algorithms without using best-first search.

2.2 Neighborhood graph search

The data structure of the neighborhood graph is a directaphgconnecting each
vector and its nearest neighbors. UsualR-BN graph, that connects each vector to
its Rnearest neighbors, is used. Various algorithms based ghin@ihood graphi],
2,5,15, 33, 34, 41] are developed for ANN search has been.

The basic procedure of neighborhood graph search starts dree or several
seeding vectors, and puts them into a priority queue wittdtsance to the query
being the key. Then the process proceeds by popping the ®mdhe queue, i.e.,
the nearest one to the query, and expanding its neighbonexidrs (from neigh-
borhood graph), among which the vectors that have not begediare pushed into
the priority queue. This process iterates till a fixed nundfesectors are accessed.

Using neighborhood vectors of a vector as candidates haadwantages. One
is that extracting the candidates is very cheap and onlyst@ke) time. The other
is that if one vector is close to the query, its neighborhoecters are also likely to
be close to the query. The main research efforts consistsmaspects. One is to
build an effective neighborhood graph, [33]. The other is to design efficient and
effective ways to guide the search in the neighborhood griapluding presetting
the seeds created via clusteririgg[34], picking the candidates from KD tresg][
iteratively searching between KD trees and the neighbattgraph [11]. In this
paper, we present a more effective way, combining the neidtdnd graph with a
bridge graph, to search for approximate nearest neighbors.

2.3 Compact codes

The compact code approaches transform each data vecta srm@ll code, using
the hashing or source coding techniques. Usually the srodl takes much less
storage than the original vector, and particularly theagtise in the small code space,
e.g., hamming distance or using lookup table can be much efficeently evaluated
than in the original space.

Locality sensitive hashing (LSH)L[], originally used in a manner similar to
inverted index, has been shown to achieve good theory giggram finding near
neighbors with probability, but it is reported not as goo&Bstrees in practice{9).
Multi-probe LSH [27] adopts the search algorithm similar to priority searcihjec
ing a significant improvement. Nowadays, the popular usébasghing is to use the
hamming distance between hash codes to approximate ttaacksin the original
space and then adopt linear scan to conduct the search. Te tmalbest of the
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data, recently, various data-dependent hashing algacsittma proposed by learn-
ing hash functions using metric learning-like techniquesluding optimized ker-
nel hashing 7], learned metrics19), learnt binary reconstructior2f], kernelized
LSH [24], and shift kernel hashin@l], semi-supervised hashing(], (multidimen-
sional) spectral hashind§, 49, spectral hashing/[], iterative quantization14],
complementary hashing({] and order preserving hashing/.

The source coding approach, product quantizatiai, [divides the vector into
several (e.g.M) bands, and quantizes reference vectors for each bandaselgar
Then each reference vector is approximated by the neamggrée each band, and
the index for the center is used to represent the refererstervéccordingly, the
distance in the original space is approximated by the distaver the assigned
centers in all bands, which can be quickly computed usinggmputed lookup
tables storing the distances between the quantizatioeissotteach band separately.

2.4 Inverted index

Inverted index is composed of a set of inverted lists eachhoélvcontains a subset
of the reference vectors. The query stage selects a smalhewaf inverted lists,
regards the vectors contained in the selected invertaddssthe NN candidates, and
rerank the candidates, using the distance computed frooridieal vector or using
the distance computed from the small codes followed by argkceranking step
using the distance computed from the original vector, to firedbest candidates.

The inverted index algorithms are widely used for very ladg&asets of vectors
(hundreds of million to billions) due to its small memory toSuch algorithms
usually load the inverted index (and possibly extra code&) the memory and
store the raw features in the disk. A typical inverted indeuilt by clustering
algorithms, e.g.,4, 20, 30, 36, 47], and is composed of a set of inverted lists, each
of which corresponds to a cluster of reference vectors.tlierted indices include
hash tables][(], tree codebooksi and complementary tree codebooks]|

3 Preliminaries

This section gives short introductions on several algor#four approach depends
on: neighborhood graph search, product quantization fsahtlti-sequence search
algorithm.
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3.1 Neighborhood graph search

A neighborhood graph of a set of vecta#s = {xi,--- ,Xn} is a directed graph that
organizes data vectors by connecting each data point \githeiighboring vectors.
The neighborhood graph is denotedas- { (vi,Ad jjvi])}{;, wherev; corresponds
to a vectorx; andAd j[vi] is a list of nodes that correspond to its neighbors.

The ANN search algorithm proposed if],[ we call local neighborhood graph
search, is a procedure that starts from a set of seedingspagninitial NN can-
didates and propagates the search by continuously acgehsiin neighbors from
previously-discovered NN candidates to discover more Nhditates. Théest-
first strategy P] is usually adopted for local neighborhood expansidio this end,
apriority queues used to maintain the previously-discovered NN candxlateose
neighborhoods are not expanded yet, and initially contaihgseeds. The best can-
didate in the priority queue is extracted out, and the pamits neighborhood are
discovered as new NN candidates and then pushed into thétyrdaeue. The re-
sulting search path, discovering NN candidates, may not @eotone, but always
attempts to move closer to the query point without repeataigts. As a local search
that finds better solutions only from the neighborhood ofdheent solution, the
local neighborhood graph search will be stuck at a localyneg@l point and has to
conduct exhaustive neighborhood expansions to find bettetiens. Both the pro-
posed approach and the iterated approachdim efficiently find solutions beyond
local optima.

3.2 Product quantization

The idea of product quantization is to decomposes the sp#oeai Cartesian
product of M low dimensional subspaces and to quantize each subspaae sep
rately. A vectorx is then decomposed intM subvectorsx?,---,xM, such that

xT = [(xHT x®)T-.-(xM)T]. Let the quantization dictionaries over thé sub-
spaces b&1,%5,---,%m with €, being a set of center§cyy, -+ ,Cmk}. A vec-

tor x is represented by a short code composed of its subspacezgiiamt indices,
{Kky, ko, -+ ,km }. Equivalently,

c® o ... 0 b

o c@... o b2
; 1)

whereb(™ is a vector in which thé, entry is 1 and all others are 0.

2 The depth-first search strategy can also be used. Our exg@srshow that the performance is
much worse than the best-first search.
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Given a queryg, the asymmetric scheme dividgsinto M subvectorgy®, g™,
and computeM distance array$ds,--- ,dw } (for computation efficiency, store the
square of the Euclidean distance) with the centers dftlsebspaces. For a database
point encoded akj, ko, -- , kv }, the square of the Euclidean distance is approxi-
mated agM_; d., which is called asymmetric distance.

The application of product quantization in our approachifieent from appli-
cations to fast distance computaticit] and code book constructior]| the goal
of Cartesian product in this paper is to build a bridge to emtithe query and the
reference vectors through bridge vectors.

3.3 Multi-sequence search

Given several monotonically increasing sequen{:as},E:1 wheres§ is a sequence,
$(1),%(2),...,%(Lp), with s5(1) < (I + 1), the multi-sequence search algo-
rithm [4] is able to efficiently traverse the setBftuples{ (si(i1), (i), ..., Ss(ig))|ip =
1...Lp} in order of increasing the sum(i1) + S(i2) + -+ Ss(ig).

The algorithm uses a min-priority queue of the tuplesio,...,ig) with the
key being the suns;(i1) + s2(i2) + --- +sa(ig). It starts by initializing the queue
with a tuple(1,1,...,1). At stept, the tuple with top priority (the minimum sum),
(i(lt> , i(zt), e ig)), is popped from the queue and regarded astthbest tuple whose
sum is theth smallest. At the same time, the tugle,io,...,ig), if all its preceding
tuples,{(i3,i5,...,ig)|i, = ip,ib — 1} — {(i1,i2,...,ig)} have already been pushed
into the queue is pushed into the queue. As a result, the-srdtience algorithm
produces a sequence®ituples in order of increasing the sum and can stop at step
t — 1 if the bestt B-tuples are required. It is shown ir][that the time cost of ex-
tracting the best B-tuples ist logt.

4 Approach

The databas€” containaN d-dimensional reference vector®; = {x1,X2,--- ,Xn},

xi € RY. Our goal is to build an index structure using the bridge brapch that,
given a query vectaq, its nearest neighbors can be quickly discovered. In this se
tion, we first describe the index structure and then showehech algorithm.

4.1 Data structure

Our index structure consists of two components: a bridggtgtiaat connects bridge
vectors and their nearest reference vectors, and a neigbbdgraph that connects
each reference vector to its nearest reference vectors.
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Bridge vectors. Cartesian concatenation is an operation that builds a neause
of a number of given sets. Givensets {.71,.%2,--- ,.m}, where each set, in our
case, contains a setdfdimensional subvectors such thygt ; d = d, the Cartesian
concatenation of those sets is defined as follows,

Y =x ALy =y, Y], - YTV € A}

Herey; is ad-dimensional vector, and there exj3f’, n; vectors @ = |.#] is the
number of elements ir¥}) in the Cartesian concatenatigh. Without loss of gen-
erality, we assume that; = n, = --- = ny, = n for convenience. There is a nice
property that identifying the nearest one fréhto a query only take®©(dn) time
rather tharO(dn™), despite that the number of elementg4his n™. Inspired by this
property, we use the Cartesian concatena#fqrralled bridge vectors, as bridges to
connect the query vector with the reference vectors.

Computing bridge vectors. We propose to use product quantizati@n][ which
aims to minimize the distance of each vector to the nearesiatenated center de-
rived from subquantizers, to compute bridge vectors. Tihgsiges that the reference
vectors discovered through one bridge vector are not fay dxean the query and
hence the probability that those reference vectors areNNgis high.

Itis also expected that the number of reference vectorsatieatiose enough to
at least one bridge vector should be as large as possibleajte sure that enough
good reference vectors can be discovered merely throudlgdriectors) and that
the average number of the reference vectors discoveredghreach bridge vector
should be small (to make sure that the time cost to accessithlem). To this end,
we generate a large amount of bridge vectors. Such a reqaitamsimilar to 20
for source coding and different frond][for inverted indices.

Augmented neighborhood graph. The augmented neighborhood graph is a com-
bination of the neighborhood graover the reference databagé and the bridge
graphB between the bridge vectof® and the reference vectog&™. The neighbor-
hood graphG is a directed graph. Each node corresponds to a pgiind is also
denoted ag; for convenience. Each nodg is connected with a list of nodes that
correspond to its neighbors, denoted\olj[x;].

The bridge graplB is constructed by connecting each bridge vegtoin % to
its nearest vectorad j[y;] in 2. To avoid expensive computation cost, we build the
bridge graph approximately by finding toftypically 100 in our experiments) near-
est bridge vectors for each reference vector and then kgégi nearest (typically
5in our experiments) reference vectors for each bridgeveeshich is efficient and
takesO(Nt(logt + b)) time.

The bridge graph is different from the inverted multi-indek In the inverted
multi-index, each bridge vectgrcontains a list of vectors that are closeytthan
all other bridge vectors, while in our approach each bridgessociated with a list
of vectors that are closer fothan all other reference data points.
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Yy XX Yy XX Yy XX Yy XX
(a) lteration 1 (b) Iteration 2 (c) lteration 3 (d) Iteration 4

Fig. 1 An example illustrating the search procegs.— 2": the bridge graph, and®™ — 2":
the neighborhood graph. The white numbers are the distaodée query. Magenta denotes the
vectors in the main queue, green represents the vector pepmed out from the main queue, and
black indicates the vectors whose neighborhoods havedgltezen expanded

4.2 Query the augmented neighborhood graph

To make the description clear, without loss of generality,agsume there are two
sets ofh subvectors; = {y1,y3, - ,Yi} and%2 = {y2,y3,--- ,ya}. Given a query
q consisting of two subvectorg andg?, the goal is to generate a list of(T < N)
candidate reference points frofir where the true NNs off are most likely to lie.
This is achieved by traversing the augmented neighborhoaphgin a best-first
strategy.

We give a brief overview of the ANN search procedure over gmabrhood
graph before describing how to make use of bridge vectors.alporithm begins
with a set of (one or several) vectatgs = {p} that are contained in the neighbor-
hood graph. It maintains a set of nearest neighbor candi¢at®se neighborhoods
have not been expanded), using a min-priority queue, whechall the main queue,
with the distance to the query as the key. The main queualigitontains the vec-
tors in Zs. The algorithm proceeds by iteratively expanding the nieéghoods in
a best-first strategy. At each step, the vegtowith top priority (the nearest one to
q) is popped from the queue. Then each neighborhood vectud jfp*] is inserted
to the queue if it is not visited, and at the same time it is ddwethe result set
(maintained by a max-priority queue with a fixed length dejyeg on how many
nearest neighbors are expected).

To exploit the bridge vectors, we present an extractiordemand strategy, in-
stead of fetching all the bridge vectors to the main queud;imieads to expensive
cost in sorting them and maintaining the main queue. Outegjyais to maintain
the main queue such that it consists of only one bridge vétwailable. To be
specific, if the top vectop* in the main queue is a reference vector, the algorithm
proceeds as usual, the same to the above procedure withogtugige vectors. If
the top vector is a bridge vector, we first insert its neigkl#at j[p*] into the main
queue and the result set, and in addition we find the next sgatidge vector (to the
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queryq) and insert it to the main queue. The pseudo code of the salgahithm is
given in Algorithm1 and an example process is illustrated in Figlire

Before traversing the augmented neighborhood graph, vi@fwsess the bridge
vectors, and compute the distances (the square of the Eaalidistance) from?*
to the subvectors 4 and fromg? to the subvectors i%s, and then sort the
subvectors in the order of increasing distances, resmdgtWwe denote the sorted
subvectors agy;,---,yi } and{y5 ,---,y$ }. As the sizen of .1 and.7; is typi-
cally not large (e.g., 100 in our case), the computationisostry small (See details
in Section6).

The extraction-on-demand strategy needs to visit the bridgtor one by one
in the order of increasing distance from It is easily shown that diétq,y) =
dist(qt,yt) + disf(g?,y?), wherey is consists of/* andy?. Naturally,y;, j,, com-
posed ofyill andyizl, is the nearest one . The multi-sequence algorithm (corre-
sponding to ExtractNextNearestBridgeVector() in Alglonit1) is able to fast pro-
duce a sequence of palfig, ;) so that the corresponding bridge vectors are visited
in the order of increasing distances to the querirhe algorithm is very efficient
and producing thé-th bridge vector only take®(log(t)) time. Slightly different
from extracting a fixed number of nearest bridge vectors ¢ficeur algorithm au-
tomatically determines when to extract the next one, thahisn there is no bridge
vector in the main queue.

5 Experiments

5.1 Setup

We perform our experiments on three large datasets: theofiestwith local SIFT
features, the second one with global GIST features, andhittedne with HOG fea-
tures, and a very large dataset, the BIGANN dataset of bhilIFT features{1].

The SIFT features are collected from the Caltech 101 dafasgtWe extract
maximally stable extremal regions (MSERS) for each imagéd, @mpute a 128-
dimensional byte-valued SIFT feature for each MSER. We oarig sample 100Q
SIFT features and 1@0SIFT features, respectively as the reference and query set.
The GIST features are extracted on the tiny imageZ#@t The GIST descriptoris a
384-dimensional byte-valued vector. We sample K0Gages as the reference set
and 10K images as the queries. The HOG descriptors are extractediokr im-
ages, and each HOG descriptor is a 512-dimensional byteegakector. We sample
10M HOG descriptors as the reference set andk188 the queries. The BIGANN
dataset? 1] consists of B 128-dimensional byte-valued vectors as the reference set
and 1& vectors as the queries.

We use the accuracy score to evaluate the search qualiti-ANIN search, the
accuracy is computed agk, wherer is the number of retrieved vectors that are
contained in the tru& nearest neighbors. The true nearest neighbors are computed
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Algorithm 1 ANN search over the augmented neighborhood graph

/* q: the query;Z": the reference data vector®;: the set of bridge vector§: the augmented
neighborhood graphQ: the main queueR: the result setT : the maximum number of discov-
ered vectors; */

Procedure ANNSearchq, 2°,%,G,Q,R T)

1. /* Mark each reference vector undiscovered */

2. for eachx € 2" do

3 Colorf] < white;

4. end for

5. /* Extract the nearest bridge vector */

6

7

8

9

. (y,D) « ExtractNextNearestBridgeVectd¥();
- Q«(y,D);
.10
. [* Start the search */
10. while(Q#0&& t < T)do
11.  /* Pop out the best candidate vector and expand its neightors
12. (p,D) + Q.pop();
13.  for eachx € Ad j[p] do

14. if Color[x] = white then

15. D « dist(q, x);

16. Q<+ (x,D);

17. Colork] « black;/* Mark it discovered */
18. R+« (x, D); /* Update the result set */
19. tt+1;

20. end if

21.  endfor

22.  [* Extract the next nearest bridge vectorpifis a bridge vector */
23.  ifpe # then

24. (y,D) < ExtractNextNearestBridgeVectd();

25. Q< (y.D);

26. endif

27. end while

28. return R;

Table 1 The parameters of our approach and the statistics. #refemmeans the number of ref-
erence vectors associated with the bridge vectors,camdeans the average number of unique
reference vectors associated with each bridge vector

| | size | #partitions| #clusters|| #referencdl o |

SIFT || 1M 4 50 71K 114%
GIST|[ 1M 4 50 59K 9.59%
HOG || 10M 4 100 573K 5.73%

by comparing each query with all the reference vectors irdtta set. We compare
different algorithms by calculating the search accuragggihe same search time,
where the search time is recorded by varying the number efssed vectors. We
report the performance in terms of search time vs. searalracy for the first three
datasets. Those results are obtained with 64 bit progranas33#G Hz quad core
Intel PC with 245 memory.
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5.2 Empirical analysis

The index structure construction in our approach includasitmning the vector

into msubvectors and grouping the vectors of each partitionnrasters. We con-
duct experiments to study how they influence the search pedioce. The results
over the M SIFT and M GIST datasets are shown in FiguteConsidering two

partitions, it can be observed that the performance becdmitsr with more clus-

ters for each partition. This is because more clusters p@duwre bridge vectors
and thus more reference vectors are associated with brielcgerg and their dis-
tances are much smaller. The result with 4 partitions andl&&ters per partition

gets the best performance as in this case the propertieeddsr bridge vectors
described in Sectios.1are more likely to be satisfied.

5.3 Comparisons

We compare our approach with state-of-the-art algoritimetding iterative neigh-
borhood graph search!]], original neighborhood graph search (AryaM93],[
trinary projection (TP) trees?p], vantage point (VP) tree5[l], Spill trees P4,
FLANN [29], and inverted multi-index4]. The results of all other methods are
obtained by well tuning parameters. We do not report theltefowm hashing al-
gorithms as they are much worse than tree-based approaith istalso reported
in [29, 47]. The neighborhood graphs of different algorithms are #vaes, and each
vector is connected with 20 nearest vectors. We constrymtoapmate neighbor-
hood graphs using the algorithrif]. Table 1 shows the parameters for our ap-
proach, together with some statistics.

The experimental comparisons are shown in Figuréhe horizontal axis cor-
responds to search time (milliseconds), and the vertidal@tresponds to search
accuracy. From the results over the SIFT dataset shown ifirgt@ow of Figure3,
our approach performs the best. We can see that, given thet accuracy 90%
1-NN and 10-NN, our approach takes ab@um'me of the second best algorithm,
iterative neighborhood graph search.

The second row of Figuré shows the results over the GIST dataset. Compared
with the SIFT feature (a 128-dimensional vector), the disi@mof the GIST feature
(384) is larger and the search is hence more challengingnibe observed that our
approach s still consistently better than other approsidhearticular, the improve-
ment is more significant, and for the target precision 70%agmuoroach takes only
half time of the second best approach, from 1 to 100 NNs. Tine tow of Figure3
shows the results over the HOG dataset. This data set is thedifficult because it
contains more (1) descriptors and its dimension is the largest (512). Agaum,
approach achieves the best results. For the target accti@asythe search time in
the case of 1 NN is abo@t of the time of the second best algorithm.

All the neighborhood graph search algorithms outperforendtiher algorithms,
which shows that the neighborhood graph structure is goaddex vectors. The
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Fig. 2 Search performances with different number of partitior$ @osters over (a)Nl SIFT and
(b) IM GIST. ¥': y means #partitions andis #clusters
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@
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Fig. 3 Performance comparison on (aM1128-dimensional SIFT features, (b)M1384-
dimensional GIST features, and (c)M®12-dimensional HOG featurdsis the number of target
nearest neighbors

superiority of our approach to previous neighborhood g@gbrithms stems from
that our approach exploits the bridge graph to help the be&reerted multi-index
does not produce competitive results because its advaigeyeall index struc-
ture size but its search performance is limited by an untvertrade-off between
the search accuracy and the time overhead in quantizatisrsiown in /] that in-
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Fig. 4 Search performances comparison with IVFADCT][over (a) M SIFT and (b) M GIST.
The parametes! (the number of inverted lists visited) (the number of candidates for re-ranking)
are given beside each marker of IVFADC

verted multi-index works the best when using a second-ondéti-index and a large
codebook, but this results in high quantization cost. Ini@st, our approach bene-
fits from the neighborhood graph structure so that we can insghaorder product
quantizer to save the quantization cost.

In addition, we also conduct experiments to compare thecgocoding based
ANN search algorithmZ(]. This algorithm compresses each data vector into a short
code using product quantization, resulting in the fast apipnate distance computa-
tion between vectors. We report the results from the IVFAD&eam that performs
the best as pointed ir2[] over the 1M SIFT and GIST features. To compare V-
FADC with our approach, we follow the scheme 1] to add a verification stage
to the IVFADC system. We cluster the data points iKtanverted lists and use a
64-bits code to represent each vector as don&lh [Given a query, we first find
its M nearest inverted lists, then compute the approximateraistrom the query
to each of the candidates in the retrieved inverted listsalii we re-rank the top
L candidates using Euclidean distance and compute the ll{r&tpof the nearest
neighbor (the same to the definition of the search accuradykN). Experimental
results show thaK = 2048 gets superior performance. Figdrshows the results
with respect to the parametaévsandL. One can see that our approach gets superior
performance.

5.4 Experiments over the BI GANN dataset

We evaluate the performance of our approach when combininigh the IVFADC
system P for searching very large scale datasets. The IVFADC systgganizes
the data using inverted indices built via a coarse quanéimdirepresents each vec-
tor by a short code produced by product quantization. Duttiegsearch stage, the
system visits the inverted lists in ascending order of tistadices to the query and
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re-ranks the candidates according to the short codes. Tgi@arimplementation
only uses a small number of inverted lists to avoid the expertisne cost in finding
the exact nearest inverted indices. The inverted multexnd] is used to replace
the inverted indices in the IVFADC system, which is showrtdrethan the original
IVFADC implementation 20].

We propose to replace the nearest inverted list identifinatsing our approach.
The good search quality of our approach in terms of both aoyuand efficiency
makes it feasible to handle a large number of inverted l\&ts.quantize the B
features into millions (81 in our implementation) of groups using a fast approxi-
mate k-means clustering algorithrj, and compute the centers of all the groups
forming the vocabulary. Then we use our approach to assigm wector to the in-
verted list corresponding to the nearest center, produbtiadgnverted indices. The
residual displacement between each vector and its cendgraistized using prod-
uct quantization to obtain extra bytes for re-ranking. Dgrthe search stage, we
find the nearest inverted lists to the query using our appraad then do the same
reranking procedure as ir,[2(]

Following [4, 20] we calculate the recall@ scores of the nearest neighbor with
respect to different length of the visited candidatellisind different numbers of ex-
tra bytesm=8,16. The recall@ score is equivalent to the accuracy for the nearest
neighbor if a short list o vectors is verified using exact Euclidean distances [
The performance is summarized in TaBldt can be seen that our approach con-
sistently outperforms Multi-D-ADC4] and IVFADC [2(] in terms of both recall
and time cost when retrieving the same number of visitedidates. The superior-
ity over IVFADC stems from that our approach significantlgri@ases the number
of inverted indices and produces space partitions with lem@oarse) quantization
errors and that our system accesses a few coarse centegsgwhiiantees relatively
accurate inverted lists. For inverted multi-index apprpaithough the total number
of centers is quite large the data vectors are not evenlgelivinto inverted lists. As
reported in the supplementary material 6f, [61% of the inverted lists are empty.
Thus the quantization quality is not as good as ours. Coresgtylit performs worse
than our approach.

6 Analysisand discussion

Index structuresize. In addition to the neighborhood graph and the reference vec-
tors, the index structure of our approach includes a bridgptgand the bridge
vectors. The number of bridge vectors in our implementasdd(N), with N be-

ing the number of the reference vectors. The storage cosedbridge vectors are
thenO(¥/N), and the cost of the bridge graph is aB(N). In the case of W 384-
dimensional GIST byte-valued features, without optimaatthe storage complex-

ity (125M bytes) of the bridge graph is smaller than the referenceove¢B84M
bytes) and the neighborhood graph (I60ytes). The cost of KD trees, VP trees,
and TP trees are’180M, ~180M, and~560M bytes. In summary, the storage cost
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Table 2 The performance
(recall for the top-1, top-10,

System

ListlenflR@1 R@10 R@10dime]

BIGANN, 1 billion SIFTs, 8 bytes per vector

and top-100 candidates after IVFADC 4 million]0.100 0280 Q600 | 960
reranking and average search MUli-D-ADC 10000 |0.165 0492 Q726 | 29
time in milliseconds) compar- Multi-D-ADC 30000 [0.172 0526 0824 | 44
ison between IVFADC 11], Multi-D-ADC  100000|0.173 Q536 Q870 | 98
Multi-D-ADC [4] and Our Graph-D-ADC _10000(0.199 0562 Q802 | 24
approach (Graph-D-ADC). Graph-D-ADC  30000[0.201 0584 0873 | 39
IVFADC uses inverted lists Graph-D-ADC 10000q0.201 0589 Q896 | 90

with K = 1024, Multi-D-ADC
uses the second-order multi-
index withK = 21 and our
approach use inverted lists
with K = 6M

BIGANN, 1 billion SIFTs, 16 bytes per vector

IVFADC 4 million|0.220 0610 0890 [1135
Multi-D-ADC 10000 |0.324 0685 Q755]| 30
Multi-D-ADC 30000 |0.347 Q777 Q891 | 47
Multi-D-ADC 100000/0.354 Q813 Q959 | 109
Graph-D-ADC 10000/0.374 Q764 0831 24
Graph-D-ADC 30000(0.391 0829 0924 | 39
Graph-D-ADC 10000Q0.395 0851 Q964 | 92

of our index structure is comparable with those neighbodgraph and tree-based
structures.

In comparison to source coding(, 21] and hashing without using the origi-
nal features, and inverted indices (e4])[ our approach takes more storage cost.
However, the search quality of our approach in terms of amyuand time is much
better, which leaves users for algorithm selection acogrth their preferences to
less memory or less time. Moreover the storage costsNbGIST and SIFT fea-
tures K 1G bytes) and even N HOG features<{ 8G bytes) are acceptable in most
today’s machines. When applying our approach to the BIGAldMset of B SIFT
features, the index structure size for our approach is abtlafor m= 8 and 2%
for m= 16, which is similar with Multi-D-ADC ] (13G for m= 8 and 2% for
m= 16) and IVFADC P0] (12G for m= 8 and 2@ for m= 16).

Construction complexity. The most time-consuming process in constructing the
index structure in our approach is the construction of thighimrhood graph. Re-
cent research/[f] shows that an approximate neighborhood graph can be built i
O(NlogN) time, which is comparable to the cost of constructing thedigraph.

In our experiments, using a5 Hz quad core Intel PC, the index structures of the
1M SIFT data, the M GIST data, and the M HOG data can be built within half
an hour, an hour, and 10 hours, respectively. These tims aostelatively large but
acceptable as they are offline processes.

The algorithm of combining our approach with the IVFADC syst[2(] over
the BIGANN dataset of size 1 billion requires the similar swaction cost with the
state-of-the-art algorithm!]. Because the number of data vectors is very lar@,(1
the most time-consuming stage is to assign each vector tovbeed lists and both
take about 2 days. The structure of our approach organibim@\l centers takes
only a few hours, which is relatively small. These consinrcstages are all run
with 48 threads on a server with 12 AMD Optero®GHz quad core processors.
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Search complexity. The search procedure of our approach consists of the déstanc
computation over the subvectors, the traversal over thigbrgraph and the neigh-
borhood graph. The distance computation over the subwwectorery cheap and
takes small constant time (about the distance computatisiwveith 100 vectors in
our experiments). Compared with the number of referencmwethat are required

to reach an acceptable accuracy (e.g., the number is ab60tfdBaccuracy 90%

in the 1M 384-dimensional GIST feature data set), such time costgkgiele.

Besides the computation of the distances between the qaetgnand the visited
reference vectors, the additional time overhead comesifinamtaining the priority
queue and querying the bridge vectors using the multi-sezpialgorithm. Given
there arel reference vectors that have been discovered, it can bg sasivn that
the main queue is no longer th@n Consider the worst case that all theeference
vectors come from the bridge graph, where each bridge véctassociated with
o unique reference vectors on average (the statisticer for our experiments is
presented in Tabl&), we have thatg bridge vectors are visited. Thus, the mainte-
nance of the main queue takes(1+ %)T logT) time. Extracting% bridge vectors
using the multi-sequence algorithri [takesO(% Iog(g)). Consequently the time
overhead on average®((1+ 2)TlogT — Lloga) = O(T logT).

Figure5 shows the time cost of visiting KOreference vectors in different al-
gorithms on two datasets. Linear scan represents the tisteof@omputing the
distances between a query and all reference vectors. Theeac of a method is
the difference between the time cost of this method and thiatemar scan. We can
see that the inverted multi-index takes the minimum ovedteaal our approach is
the second minimum. This is because our approach includes @gerations over
the main queue.

Relations to source coding [20] and inverted multi-index [4]. Product quan-
tization (or generally Cartesian concatenation) has twactive properties. One
property is that it is able to produce a large set of conca¢ehaectors from several
small sets of subvectors. The other property is that thetexaarest vectors to a
query vector from such a large set of concatenated vectarseguickly found us-
ing the multi-sequence algorithm. The application to sewading P (] exploits the
first property, thus results in fast distance approximafitre application to inverted
multi-index [4] makes use of the second property to fast retrieve concagqaan-
tizers. In contrast, our approach exploits both the two ertgs: the first property
guarantees that the approximation error of the concatdwatetors to the reference
vectors is small with small sets of subvectors, and the sbpooperty guarantees
that the retrieval from the concatenated vectors is vergiefit and hence the time
overhead is small.
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Fig. 5 Average time cost of visiting ¥0reference vectors. The time overhead (difference between
the average time cost and the cost of liner scan) of our apprisacomparably small

7 Conclusions

The key factors contribute to the superior performance opooposed approach in-
clude: (1) Discovering NN candidates from the neighborhafdzbth bridge vectors

and reference vectors is very cheap; (2) The NN candidates tthe neighborhood
of the bridge vector have high probability to be true NNs lusesthere are a large
number of effective bridge vectors generated by Cartesimtatenation; (3) Re-
trieving nearest bridge vectors is very efficient. The atpan is very simple and

is easily implemented. The power of our algorithm is demmstl by the superior
ANN search performance over large scale SIFT, HOG, and GEgadsets, as well
as over a very large scale dataset, the BIGANN dataset ofi@arbBIFT features

through the combination of our approach with the IVFADC syt
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