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Abstract

A texture descriptor based on the shape index and the
accompanying curvedness measure is proposed, and it is
evaluated for the automated analysis of astronomical im-
age data. A representative sample of images of low-redshift
galaxies from the Sloan Digital Sky Survey (SDSS) serves
as a testbed. The goal of applying texture descriptors to
these data is to extract novel information about galaxies;
information which is often lost in more traditional analy-
sis. In this study, we build a regression model for predict-
ing a spectroscopic quantity, the specific star-formation rate
(sSFR). As texture features we consider multi-scale gradi-
ent orientation histograms as well as multi-scale shape in-
dex histograms, which lead to a new descriptor. Our re-
sults show that we can successfully predict spectroscopic
quantities from the texture in optical multi-band images.
We successfully recover the observed bi-modal distribution
of galaxies into quiescent and star-forming. The state-of-
the-art for predicting the sSFR is a color-based physical
model. We significantly improve its accuracy by augment-
ing the model with texture information. This study is the first
step towards enabling the quantification of physical galaxy
properties from imaging data alone.

1. Introduction
This paper investigates a novel combination of tex-

ture descriptors and applies them for automated analysis

of galaxy images. We follow the line of filter-based ap-

proaches [25, 31, 32] to texture analysis. Specifically, we

focus on derivative filters. We construct differential in-

variants from these filters and agglomerate this informa-

tion in histogram representations [23]. Descriptors such

as SIFT, HoG, and DAISY [26, 12, 30] capture the local

structure in images using first order differential structure in

the form of gradient orientation histograms. We propose

to extend these descriptors by a representation of the sec-

ond order differential structure. To this end, we suggest us-

ing the shape index and the accompanying curvedness mea-

sure [21] as the basis for our descriptor, since they provide

a summary of the second order structure. The novelty of

our approach lies in using localized shape index histograms

combined with gradient orientation histrograms both mea-

sured at multiple scales. For texture analysis, adding this

higher order information will in some applications be nec-

essary in order to improve the discriminative performance

of texture representations—and quantifying physical prop-

erties of galaxies from imaging data is such an application.

Galactic structure (i.e. how the mass is generally dis-

tributed within galaxies) and morphology (i.e. how that

mass is arranged on smaller scales) are important diag-

nostics of the formation and evolutionary mechanisms and

timescales for galaxies. It is well known that this structure

is correlated with other physical properties of the galax-

ies such as star-formation rate and dust content (e.g. [7]).

However, the means to formalize these relationships are

yet to be realized. Extremely large galaxy surveys from

the ground, such as the SDSS, have compiled vast, ho-

mogeneous imaging of millions of galaxies. Furthermore,

ever since the launch of the Hubble Space Telescope (HST)

and the advent of adaptive-optics (AO) on large aperture

ground-based telescopes enabling high physical-resolution

images of galaxies, the study of galaxy structure and mor-

phology has entered a data-rich era.

Galaxies are made of stars, gas and dust. Each of these

components emits light over different wavelength ranges

and with different intensities. To use the observed light,

for example, to determine the mass of stars or the rate at

which new stars are being formed, we need to be able to

disentangle the various luminous contributions. To do so,

astronomers build models of the emission for each source.

Gas will primarily emit in emission lines, which appear at

a set of discrete wavelengths associated with the emitting

element. These emission lines can only be observed spec-

troscopically and give the most direct measurement of the

rate at which new stars are being formed (SFR). Stars, on

the other hand, emit continuum radiation over a large range

of wavelengths. We can use models of populations of stars

as a function of time to extract the mass and age of the stars
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in a galaxy. These models can be used for spectroscopy as

well as (broad band) imaging in multiple filters (colors).

The mass and SFR of a galaxy can therefore be

(coarsely) measured by comparing a set of models with the

shape of the spectral energy distribution traced by multiple

filters. The specific star formation rate (sSFR) is simply the

current SFR divided by the mass of stars. Usually, even

if the SFR is determined from emission lines spectroscopi-

cally, the mass is determined from the colors of the galaxy

in multi-filter imaging. The dominant approach for estimat-

ing sSFR from imaging data alone is based on analysis of

the color of the galaxy.

Our current knowledge of galaxies is built on imaging

surveys and follow-up spectroscopy. Modern imaging sur-

veys will acquire data in several band-pass filters and can

be used to approximate galactic properties. However, bet-

ter determinations of these quantities require deep spec-

troscopy covering a significant wavelength baseline. Fur-

thermore, most surveys will only have a single band of high

angular-resolution imaging (e.g. from space). In such re-

solved galaxy images, it is possible to use the structure as a

proxy for internal dynamics that would require more time-

consuming spectroscopic data to observe. Indeed, many of

the future surveys will be imaging-only surveys that will not

allow for spectroscopic follow-up observations of the vast

majority of the observed galaxies. Therefore, being able to

fully exploit the most well-resolved images as proxies for

spectroscopic data is highly valuable.

Figure 1 illustrates examples of optical images of galaxy

from the subset of the SDSS dataset that is used in this pa-

per. The top row shows well-resolved galaxy images. No-

tice that the light profile of these galaxies contains intricate

texture. This texture is caused by the distribution of stars

and gas in the galaxy—an important cue for determining

the sSFR. We propose to investigate the predictive power

of texture when estimating sSFR from optical images. The

bottom row of Fig. 1 illustrates problematic cases for our

texture based analysis. These range from noise and nearby

stars to faint distant galaxies which are poorly resolved in

the images. At first glance, this may seem impossible. Af-

ter all, making the leap from single-band or a few bands

imaging data to spectroscopic quantities is a large jump.

However, the properties of galaxies are correlated. We have

known since the earliest galaxy surveys, that star-forming

galaxies have more internal morphological structure due to

dust obscuration and star-forming clumps than quiescent

(elliptical) galaxies, which tend to be smoother.

There has been some prior work on automated analysis

of optical images of galaxies [14, 9]. Much of this work,

however, focuses on classification of galaxies based on mor-

phology (e.g. [4]) and tends to ignore information found in

the texture. Furthermore, these approaches have used some-

what standard image features as input. Here we present new

Figure 1. Examples of low-redshift galaxies in our subset of the

SDSS dataset. We have mapped the gri-bands to the RGB color

space (gri →BGR). The top row shows well-resolved galaxies

and the bottom row shows problematic cases for our analysis.

These color images are best viewed electronically.

image features which we believe can capture heretofore ig-

nored information contained in resolved galaxy images.

The following section (§ 2) describes the galactic dataset

we use in our experiments. The new texture features are

introduced in § 3. Section § 4 explains how we perform re-

gression in order to predict sSFR values from our features.

The results are presented in § 5 before we discuss their im-

plications and future extensions of our work in § 6.

2. Galaxy data
The primary data used for the current work are a sam-

ple of low-redshift galaxies drawn from the SDSS DR7,

see Fig. 1. We use the g-, r-, and i-band images covering

the wavelengths from 4000–5500, 5500–7000 and 7000–

8500 Ångstroms, respectively. This sample is defined as all

spectroscopic galaxies within the GAMA DR1 region [13]

which also have entries in both the MPA-JHU and NYU-

VAGC catalogs [11, 8]. The overlap with GAMA for these

∼ 12000 galaxies is of particular interest because that sur-

vey will acquire spectroscopy of fainter targets and higher

quality imaging (including at different wavelengths) thus al-

lowing us, eventually, to extend our analysis to more galax-

ies and to longer wavelengths.

The images for our galaxy sample were obtained using

the skyview software provided by NASA/GSFC. For each

galaxy position, as defined in the SDSS DR 7, we down-

loaded a 100 × 100 pixel region (covering 39.6′′ × 39.6′′)
around that position. These images are not background sub-

tracted and do not include an object segmentation map. We

used SExtractor [6] on each image to generate and subtract

an estimate of the background and to produce a segmenta-

tion map including both the target and neighboring galaxies.

We have not applied any additional smoothing to the galaxy

pixels at this stage because that is a core part of our follow-

ing analysis. We however compress the intensity range by

applying a logarithmic function of the intensities.
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The last step in the pre-processing of the images was

to construct a refined and well-defined pixel segmentation

mask indicating which pixels belonged to the galaxy of

interest in each frame. We used a generalized Petrosian

method to build these masks, similar to that presented in

[3]. We first rank-order the pixels in the SExtractor seg-

mentation map for the target from bright to faint. At each

intensity level we calculate the average intensity brighter

than that pixel. When the ratio of the pixel’s intensity to that

average reach a pre-determined value (the Petrosian η) we

set that intensity as the lower limit for a pixel to be included

in the following analysis. For some galaxies, even with low

η, the resulting number of included pixels may be too small

for proper analysis (see below for further details). We note

that smoothing the data first and then creating the mask will

push more pixels above η and create a more inclusive mask.

However, these lower significance pixels will not add to the

textural features at small scales because they will be highly

correlated in a way determined by the smoothing kernel.

Each band image leads to slightly different masks, not

only due to noise but also because some galaxy structure is

only visible at certain wavelengths. We construct a com-

bined mask by taking the union of the masks for each band.

We use this combined mask for processing all of the bands.

The mask extraction (segmentation) occasionally leads

to incorrect masks which includes non-galaxy pixels. In

order to remove some of these outliers from the analysis, we

apply a threshold on the ratio of galaxy pixels and pixels in

the convex hull of the galaxy mask. We discard all images

where this ratio is less than 0.7.

The galaxy images were extracted such that each galaxy

is in the image center. We discard images from the analy-

sis if the mask processing leads to a mask not overlapping

with the image center. This may be caused by a faulty mask

extraction that latches onto objects in the vicinity such as

nearby stars.

In order to remove noise at the boundary of the produced

masks and holes inside these, the masks where processed

by applying a morphological closing followed by an open-

ing operation with a disk structure element with radius 1

pixel. Following this the masks have been filtered with a lin-

ear Gaussian filter with σ = 0.5 and filter mask size equal

to 3σ. This produces a cleaned galaxy mask with smooth

boundaries.

Prior to applying the Gaussian filter, we estimate the Pet-

rosian radius of the galaxy by

Rp =

√
Ngal

π
, (1)

where Ngal denotes the number of galaxy pixels in the

mask. Furthermore, we estimate a fiducial orientation of

the galaxy from the binary mask, which we use to make the

gradient orientation feature invariant to rotation. This esti-

mation is based on the masks prior to Gaussian filtering. We

compute the spatial covariance of the galaxy pixels by

Cgal =
1

Ngal − 1

∑
xgal

(xgal − μ)T (xgal − μ) , (2)

where xgal ∈ R
2 is the position of galaxy pixels in the

mask, the sum runs over all galaxy pixels in the mask, and

μ =
1

Ngal

∑
xgal

xgal (3)

is the mean position of all galaxy pixels. We define the fidu-

cial orientation of the galaxy as the eigenvector correspond-

ing to the largest eigenvalue of the covariance matrix. This

direction of most spatial variance in galaxy pixels usually

corresponds to the major axis of ellipsoidal shaped galax-

ies. Since the eigenvector is computed up to a change of

sign, we flip the sign of any eigenvector with a negative x-

component in order to make the orientation consistent. In

case of isotropic galaxies this way of picking a fiducial ori-

entation will lead to a random choice, but as there is no

natural orientation in this case, this is acceptable.

We note here that our image analysis does not strongly

depend on the precise background level (as long as it does

not vary greatly on galaxy scales), the choice of η, or on

the absolute flux level in the galaxy pixels themselves. Our

image features are dependent solely on the intensity texture

within the galaxies—not the specific intensity level. That

said, objects for which the number of pixels in the mask

is smaller than ∼ 100 will have insufficient data to reliably

measure histogram based image features. We do, however,

not remove such images from our study, which potentially

leads to outliers in the analysis.

3. Texture descriptors
Discriminative information in textures may appear on

several different scales—this is certainly the case for galaxy

images—hence using a multi-scale representation appears

to be a necessity when performing analysis of texture im-

ages. We use the linear scale-space representation [20, 29],

where the scale-space of an image I : Ω �→ R, Ω ⊂ R
2 is

defined as L(x, y;σ) = (I ∗ G)(x, y;σ) , where ∗ denotes

convolution with a Gaussian filter

G(x, y;σ) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
. (4)

The parameter σ > 0 is the scale of the representation. In

this representation we can compute image derivatives of or-

der n and m by

Lxnym(x, y;σ) =

(
I ∗ ∂(n+m)G

∂xn∂ym

)
(x, y;σ) . (5)
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Image derivatives form the basic components of our de-

scriptors, but we will introduce non-linearity in the features

by applying functions of these derivatives.

Common descriptors such as SIFT, HoG and DAISY

[26, 12, 30] use first order differential structure in the form

of gradient orientation histograms as the basis of the de-

scriptor. In smooth scale space derivatives the gradient ori-

entation may be defined as

θ(x, y;σ) = tan−1

(
Ly(x, y;σ)

Lx(x, y;σ)

)
, (6)

and the scale normalized gradient magnitude as

M(x, y;σ) = σ2
√
L2
x(x, y;σ) + L2

y(x, y;σ) . (7)

We need to perform this scale normalisation in order to be

able to compare M across different scales σ [29].

We also add a representation of the second order differ-

ential structure—namely the shape index and the accompa-

nying curvedness measure [21]. The shape index is based

on the eigenvalues κ1 and κ2 of the Hessian matrix of the

image function. It is defined as the angle between the vector

of the eigenvalues (κ1, κ2) and the first axis in this eigen-

value space. In terms of image derivatives we may express

the shape index as

S(x, y;σ) =
2

π
tan−1

⎛
⎝ −Lxx − Lyy√

4L2
xy + (Lxx − Lyy)2

⎞
⎠ . (8)

The shape index represents the basic second order shapes

with dark blobs (S = −1), over saddle points (S = 0), to

bright blobs (S = 1), with valley- and ridge-like structure in

between. For the detailed geometric interpretation see [21].

The curvedness is simply defined as the length of the

eigenvalue vector (κ1, κ2) and expresses how pronounced

the second order structure is, similar to the role of the gra-

dient magnitude for the first order structure. In terms of

image derivatives the scale normalized curvedness may be

defined as

C(x, y;σ) =
1

2
σ2
√
L2
xx + 2L2

xy + L2
yy . (9)

The shape index is rotational invariant by design, contrary

to gradient orientation which depends on the choice of co-

ordinate system.

The exact spatial ordering of the texture is not necessar-

ily important, hence it is common (e.g. [26, 12, 30]) to intro-

duce an agglomeration step such as statistical moments or

histograms. Here we choose to use smooth histograms in-

spired by the concept of locally orderless images [22]. This

formulation makes the intrinsic parameters of the histogram

representation explicit and provides a more robust estimate

compared to the traditional histogram formulation.

We define a smooth histogram as a function of the feature

f in question and its magnitude F ,

H(fi) =

∫
F (x, y)A(x, y)B(fi, x, y; f) dxdy , (10)

where fi denotes the histogram binning variable and will

act as the bin center for a specific choice of binning aper-

ture function B. The function A localizes the descriptor to

specific parts of the image. We propose to use the Gaussian

function of β bin width as smooth bin aperture function for

histograms of the shape index S(x, y;σ)

Bβ,σ(Si, x, y;S) = exp

(
− (S(x, y;σ)− Si)

2

2β2

)
. (11)

The Gaussian bin aperture is not a good choice for gra-

dient orientation histograms, since it does not incorporate

the fact that θ is periodic. A better choice is to use the von

Mises density function as aperture function, since this is the

extension of the Gaussian distribution to the unit circle. We

therefore propose to use the following smooth bin aperture

function for the gradient orientation θ(x, y;σ)

Bβ,σ(θi, x, y; θ) = exp

(
1

β
cos (θ(x, y;σ)− θi − θ0)

)
,

(12)

where θ0 denotes a fiducial orientation.

As feature magnitude F for shape index we will use the

curvedness measure C from (9) and for the gradient orien-

tation we will use the gradient magnitude M from (7). The

rationale is that we would like local structure with a large

magnitude to count more in the histogram. This also has the

effect of reducing noise in the histograms caused by noise

in the derivative measurements.

We propose to construct texture features by combin-

ing histograms of gradient orientation with histograms of

shape index and to measure these histograms at different

scales σ. As a concrete discretization of this representation

we choose an equidistant binning in the histograms and fix

the number of bins to 8 for gradient orientation and to 9 for

shape index histogram features. The bin width β is chosen

such that with the specific choice of number of bins, we tile

and cover the complete range of the feature. Equation (10)

weights each data point that is added to the histogram by

its feature magnitude and each bin window, thus each point

casts a vote in every bin of the histogram.

For our specific application to galaxy images we set θ0 in

the gradient orientation feature to be the fiducial orientation

of the galaxy as defined in § 2. Furthermore, we choose

the window function A in (10) to be identical to the galaxy

mask as outlined in § 2. This localizes the feature to include

features from only galaxy pixels. In addition, a histogram

at a specific scale σ is always normalized so that the bin

counts H sum to one.
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Notice that our gradient orientation histogram is similar

to SIFT-like descriptors, except that we do not include a

spatial pooling step (i.e. we only employ a single histogram

for the region of interest).

Choosing measurement scales. Using the scale space

representation we can compute features at a range of scales

capturing pixel correlations across these scales. Selected

scales should cover the range of characteristic scales for the

particular galaxy image. The inner scale is given by the

pixel scale, but since we want to compute derivatives up to

second order we need to be careful with the numerics. By

choosing the smallest inner scale to be σi = 0.88 pixels we

will have less than 1% numerical error in the estimation of

the second order derivatives [29]. This inner scale will mea-

sure geometry at near pixel level corresponding to 0.396′′.
We approximate the effective outer scale for a particular

galaxy image with the Petrosian radius (1). For isotropic

galaxies this will be a good estimate, however, for elon-

gated ellipsoidal galaxies this will be a poor over-estimate.

We have opted for the simple heuristics of picking the ef-

fective outer scale as a function of the Petrosian radius. Let

w be the smallest of the image width and height measured

in pixels. We then use the Petrosian radius as outer scale

σo = Rp if 4Rp/w ≤ 1, and otherwise choose σo such

that 4σo/w = 1. In order to avoid artifacts in the computed

scale space derivatives introduced by boundary effects, it

is common to discard pixels that are close to the boundary.

The heuristic ensures at least a one σo distance from the

galaxy to the image boundary. This definition of the outer

scale will measure the geometry at galaxy scale. If σi > σo,

we discard the image from the analysis.

We sample the range of effective scales [σi;ασo] in ex-

ponentially growing steps. We found experimentally that

α = 0.2 is a good value for the fraction of the outer scale,

which focuses the descriptor on the range of scales where

relevant structure occurs in galaxy images. We note that

this specific choice is application dependent. We choose to

use 8 scale levels in the interest of minimizing the compu-

tational effort and at the same time achieving good results.

4. SSFR Prediction Experiments
We use regression to predict specific star formation rate

(sSFR) from combinations of the texture descriptors out-

lined above.

Evaluation. We consider different models and feature

combinations to predict the sSFR value for each galaxy im-

age. We perform 10-fold cross validation (CV) on our sub-

set of the SDSS dataset. As measure of the prediction error

we report the root mean square error (RMSE) averaged over

the 10 CV folds. We also report the standard deviation of

the RMSE computed from the RMSE on each fold (when

interpreting these values it has to be kept in mind that the

CV folds are strictly speaking not fully independent).

Models. Because scatter plots indicated a near linear

relation between our features and the sSFR, we consider

a standard linear least squares regressor as predictor (Lin-
ear). To further improve the performance, we employ non-

linear regression techniques using the Shark machine learn-

ing library [18]. We initially considered Gaussian process

regression with radial Gaussian kernels, where the band-

width parameter of the kernel and the precision of the noise

were adapted by grid-search as well as gradient-based opti-

mization of the logarithmic marginal likelihood function (or

evidence) [27]. However, because the Gaussian processes

did not significantly improve over the linear regression, we

apply multi-layer perceptron neural networks (MLP). Each

MLP has a single hidden layer with 100 units with logistic

activation functions and a linear output unit. We add short-

cut connections linking the inputs directly to the output unit.

The training data of each CV fold was further split into an

MLP-training and an MLP-validation set using a 9:1 split

ratio. The network was trained starting from small weights

by minimizing the squared error on the MLP-training set

using the iRProp+ first-order optimization algorithm [19].

The weight configuration with the smallest squared error on

the MLP-validation set was considered to be the final hy-

pothesis. This “early stopping” of a training process that

increases the complexity starting from an (almost) linear

model typically fosters good generalizing hypothesis (note

that the actual number of hidden units is of lesser impor-

tance if chosen large enough, see [5]). In the following, we

only report the linear regressor and MLP results.

As a baseline, we use the constant model predicting the

sSFR value to be the average sSFR value of the training set

(later referred to as Average).

We also include a color-based model of the sSFR which

was provided together with the SDSS dataset (Color). The

method is based on the approach described in [16, 15, 28,

10], which employs a physical model of the relations be-

tween sSFR and spectrum of a galaxy.

Finally, we augment the color-based physical model by

our texture features. This is done by fitting the residuals

of Color. We refer to the resulting additive models [17] as

either Linear-AM or MLP-AM depending on whether linear

regression or our neural network approach was used.

Features. As input features, we consider gradient orien-

tation (GO) and shape index (SI) features as well as their

combination (referred to as All). Each feature consists of

histograms at 8 scale levels.

Furthermore, for reference we include the best results

achieved using a feature set consisting of histograms of fil-

ter responses for second order directional derivatives and

the Laplacian (2nd), i.e. the filters used in [31]. These fea-

tures were implemented using the smooth histograms de-

fined by (10)-(11), and computed at multiple scales using

the same choices as for our features.
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Figure 2. Plot of RMSE (error bars indicate 1 standard deviation

of the CV error) of Linear gri (SI) across the 8 scale levels for the

four masks. Notice for masks 1–2 the curve has a dip indicating

that for single scale features an optimal scale exists.

We use 4 different mask sizes in decreasing size with

mask 4 being the smallest. The amount of galaxy images

that passes all inclusion criteria outlined in § 3 for all masks

can be found in Table 1.

5. Results and Discussion

Table 1 summarizes our results for different combina-

tions of features extracted from either a single band (g, r,

and i) or all bands (gri) and different regressors. The addi-

tive models (AM) yield more accurate predictions (2 stan-

dard deviations better) than the standard color-based predic-

tor. Thus, the texture features provide information orthogo-

nal to the color model.

Even in single bands the texture information is correlated

with the sSFR value, see the Linear and MLP (All) results.

Notice that we obtain slightly better accuracies in the g-

band. However, the best texture-only results are obtained

on the combined gri-bands.

Using gradient orientation features alone does not pro-

vide enough information in this particular application. In-

stead we need to include the shape index feature or use the

shape index feature alone. We only include results for the

Linear gri predictor, but the tendency is the same for the

single bands and the MLP predictor. This is consistent with

similar observations made in [24], in which it is argued that

increasing differential order of the features can be beneficial

for discriminability. The results on the second order fea-

tures gri (2nd) are comparable to the (all) and (SI) results

for mask 1 but with an increased variance, and for masks 2–

3 these features are inferior to the shape index (SI) results.

Fig. 2 show the RMSE of the linear regressor based on

shape index (SI) features using single scale levels applied

to the combined gri features. Remember that, due to our

Figure 3. Plot of the distributions of predicted sSFR values for

different predictors and the ground truth for mask 1, using the gri
and shape index (SI) features. It is seen that all models but the

linear recover the bimodal sSFR distribution.

scale range selection procedure (§ 3) for each image the ex-

act scale used at each scale level will vary as a function of

the galaxy size. Notice for masks 1–2 the curve has a dip,

indicating that for single scale features an optimal scale ex-

ists. However the results of Table 1 show that by combining

information at several scales simultaneously we are able to

obtain better predictions than with a single scale.

The reason for the generally poor results on mask 4 is

that these masks tend to only include the galaxy nuclei

which usually appears as a bright saturated blob of light.

Our texture features does therefore not provide much infor-

mation at this part of the galaxy.

Our results also indicate that a linear model actually does

a good job of fitting the data, but we do get a slight improve-

ment by introducing the non-linear MLP.

To provide some additional insight Fig. 3 show his-

tograms of the spectroscopic sSFR values together with the

results of the predictors Linear gri (SI), MLP gri (SI), and

MLP-AM gri (SI). All predictors but the linear are able to

recover the two known classes of star-forming and quies-

cent galaxies seen by the two modes in the histograms. No-

tice how the color-based predictor systematically underesti-

mates the sSFR value (seen by the shift of the histogram to

the left) and that the MLP has a tendency to push the modes

towards the mean of the dataset. It is evident that the MLP

does a better job at recovering the true sSFR distribution

than the linear predictor. It can be nicely seen how fitting

the residual (MLP-AM) corrects the Color model.

6. Conclusions

We propose to combine gradient orientation and shape

index histograms measured at several scales to describe im-

age texture. SIFT-like descriptors include a spatial pooling
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Table 1. Summary of our results for different model-feature pairs applied to either single bands (g, r, and i) or all bands (gri) using four

different masks (in decreasing size). The results are based on 6880 images passing the inclusion criteria. The numbers in the table indicate

RMSE and cross validation standard deviation. Average refers to predicting the training data mean (i.e. an estimator of the data variance)

and Color is the current state-of-the-art physical model (see § 4). Linear and MLP denote linear and non-linear regression. Linear-AM and

MLP-AM are the additive models combining Color with Linear and MLP, respectively. Gradient orientation (GO) and shape index (SI)

features as well as their combination All and second order features (2nd) are considered. For more results see the supplementary material.

Method Band (features) Mask 1 Mask 2 Mask 3 Mask 4

Average 0.88± 0.02 0.88± 0.01 0.88± 0.01 0.88± 0.01
Color 0.33± 0.01 0.33± 0.02 0.33± 0.02 0.33± 0.02

Linear

g (all) 0.61± 0.01 0.62± 0.02 0.62± 0.01 0.65± 0.01
r (all) 0.65± 0.02 0.63± 0.02 0.63± 0.01 0.67± 0.02
i (all) 0.65± 0.02 0.64± 0.02 0.64± 0.02 0.67± 0.01
gri (all) 0.53± 0.02 0.54± 0.02 0.55± 0.02 0.59± 0.02

Linear gri (SI) 0.53± 0.02 0.54± 0.02 0.55± 0.02 0.59± 0.01

Linear gri (GO) 0.81± 0.02 0.83± 0.01 0.84± 0.01 0.85± 0.02

Linear gri (2nd) 0.53± 0.03 0.57± 0.05 0.68± 0.31 0.64± 0.05

MLP

g (all) 0.55± 0.01 0.57± 0.02 0.58± 0.02 0.61± 0.01
r (all) 0.61± 0.02 0.59± 0.02 0.61± 0.02 0.63± 0.01
i (all) 0.61± 0.02 0.60± 0.02 0.61± 0.01 0.64± 0.02
gri (all) 0.49± 0.02 0.50± 0.01 0.52± 0.01 0.55± 0.02

MLP gri (SI) 0.50± 0.02 0.50± 0.01 0.52± 0.01 0.56± 0.01

Linear-AM gri (SI) 0.29± 0.02 0.29± 0.01 0.29± 0.02 0.29± 0.01
MLP-AM gri (SI) 0.29± 0.02 0.29± 0.02 0.29± 0.02 0.29± 0.02

step collecting information from a grid of histograms tiling

the region of interest (ROI). This allows SIFT descriptors

to some extend code spatial structure in the ROI beyond

first order differential structure. Our gradient orientation

feature can be thought of as a single histogram SIFT de-

scriptor. Contrary to general SIFT-like descriptors, we have

the luxury of having a segmentation of the object of inter-

est. Instead of applying a spatial pooling step we choose to

increase the differential order.

The descriptor introduced in this paper is tuned to-

wards the specific application, predicting the specific star-

formation rate (sSFR) from galaxy images, by confining the

descriptor to only include information from the galaxy pix-

els mask. Based on the mask we fix the outer scale used in

the scale-space as well as the dominating orientation used in

the gradient orientation histogram. However, the descriptor

can easily be reconfigured to be constrained to a local image

patch and even be extended to a collection of histograms

extracted from a spatial pooling scheme such as used in

descriptors such as SIFT, HoG and DAISY [26, 12, 30].

The dominating orientation may be estimated following the

same approach as in SIFT. Fixing the scale range is appli-

cation dependent and requires an analysis of the concrete

problem under consideration.

The power of the new descriptor is demonstrated in the

application of predicting sSFR from imaging data. We ob-

tain good results when using the texture features alone. By

combining the color-based physical model with texture in-

formation, we outperform the state-of-the-art for sSFR pre-

diction.

The success of the shape index feature can be explained

by realizing that what distinguishes a quiescent galaxy from

a star-forming one is the distribution of stars, gas, and dust.

This leads to the presence or absence of blob-like structures,

as well as the occurrance of ridge-like structures caused by

spiral arms and stripe patterns formed by the distribution

of gas and dust—the shape index is tuned to this type of

second order structure.

A current limitation of the approach is that we extract

features independently from each band image ignoring the

natural correlation across bands. A future extension would

be to extract color descriptors by extending the shape index

descriptor to be based on the Hessian matrix of the 2D in-

tensity manifold embedded in the spatio-color space. This

strategy would also be readily applicable on other types of

color image data.

One of the challenges for computer vision and machine

learning in astrophysics is to take models and knowledge
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gained from one training set (i.e. a particular survey) and

apply it to data taken using different telescopes, instruments

and techniques. For our current efforts, the primary differ-

ence will be the absence of the spectroscopic ground truth

for current and future galaxy surveys. Many of the largest

planned surveys are indeed imaging-only and while some

spectroscopic follow-up will be done, it will be impossible

to obtain complete spectroscopic coverage of the more nu-

merous (and often fainter) galaxies being imaged. Against

this background, this study is the first step towards enabling

the quantification of physical galaxy properties from imag-

ing data alone. We expect that this mapping of galaxy ap-

pearance and properties will prove extremely useful when

applied to future large scale imaging-only surveys such as

the Large Synoptic Survey Telescope (LSST).
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