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Abstract

We present a model for intrinsic decomposition of

RGB-D images. Our approach analyzes a single RGB-D

image and estimates albedo and shading fields that explain

the input. To disambiguate the problem, our model esti-

mates a number of components that jointly account for the

reconstructed shading. By decomposing the shading field,

we can build in assumptions about image formation that

help distinguish reflectance variation from shading. These

assumptions are expressed as simple nonlocal regularizers.

We evaluate the model on real-world images and on a chal-

lenging synthetic dataset. The experimental results demon-

strate that the presented approach outperforms prior mod-

els for intrinsic decomposition of RGB-D images.

1. Introduction

The intrinsic image decomposition problem calls for fac-

torizing an input image into component images that separate

the intrinsic material properties of depicted objects from il-

lumination effects [6]. The most common decomposition

is into a reflectance image and a shading image. For every

pixel, the reflectance image encodes the albedo of depicted

surfaces, while the shading image encodes the incident illu-

mination at corresponding points in the scene.

Intrinsic image decomposition has been studied exten-

sively, in part due to its potential utility for applications

in computer vision and computer graphics. Many com-

puter vision algorithms, such as segmentation, recogni-

tion, and motion estimation are confounded by illumina-

tion effects in the image. The performance of these algo-

rithms may benefit substantially from reliable estimation of

illumination-invariant material properties for all objects in

the scene. Furthermore, advanced image manipulation ap-

plications such as editing the scene’s lighting, editing the

material properties of depicted objects, and integrating new

objects into photographs would all benefit from the ability

to decompose an image into material properties and illumi-

nation effects.

Despite the practical relevance of the problem, progress

on intrinsic decomposition of single images has been lim-

ited. Until recently, the state of the art was set by algo-

rithms based on the classical Retinex model of image for-

mation, which was developed in the context of flat painted

canvases and is known to break down in the presence of

occlusions, shadows, and other phenomena commonly en-

countered in real-world scenes [17]. Part of the difficulty

is that the problem is ill-posed: a single input image can

be explained by a continuum of reflectance and illumina-

tion combinations. Researchers have thus turned to addi-

tional sources of input that can help disambiguate the prob-

lem, such as using a sequence of images taken from a fixed

viewpoint [34, 24, 23], using manual annotation to guide

the decomposition [10, 27], and using collections of images

[22, 32, 19]. While the use of temporal sampling, human

assistance, and image collections has been shown to help,

the problem of automatic intrinsic decomposition of a sin-

gle image remains difficult and unsolved.

In this work, we consider this problem in light of the

recent commoditization of cameras that acquire RGB-D

images: simultaneous pairs of color and range images.

RGB-D imaging sensors are now widespread, with tens of

millions shipped since initial commercial deployment and

new generations being developed for integration into mo-

bile devices. While the availability of depth cues makes in-

trinsic image decomposition more tractable, the problem is

by no means trivial, as demonstrated by the performance of

existing approaches to intrinsic decomposition of RGB-D

images (Figure 1).

Our approach is based on a simple linear least squares

formulation of the problem. We decompose the shading

component into a number of constituent components that

account for different aspects of image formation. Specifi-

cally, the shading image is decomposed into a direct irra-

diance component, an indirect irradiance component, and a

color component. These components are described in detail

in Section 3. We take advantage of well-known smoothness

properties of direct and indirect irradiance and design sim-

ple nonlocal regularizers that model these properties. These

regularizers alleviate the ambiguity of the decomposition by
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(a) Input (b) Lee et al. [21] (c) Barron et al. [5] (d) Our approach

Figure 1. Intrinsic decomposition of an RGB-D image from the NYU Depth dataset [29]. (a) Input color and depth image. (b-d) Albedo

and shading images estimated by two recent approaches for intrinsic decomposition of RGB-D images and by our approach.

encoding specific assumptions about image formation and

substantially improve the fidelity of estimated reflectance

and shading.

We evaluate the presented model on real-world images

from the NYU Depth dataset [29] and on synthetic images

from the MPI-Sintel dataset [11]. The presented model

outperforms prior models for intrinsic decomposition of

RGB-D images both qualitatively and quantitatively.

2. Background

The problem of estimating the intrinsic reflectance of ob-

jects depicted in an image was studied by Land and McCann

[20], whose Retinex model formed the basis for subsequent

work on the problem. The Retinex model captures image

formation for Mondrian images: images of a planar canvas

that is covered by patches of constant reflectance and illu-

minated by multiple light sources. In such images, strong

luminance gradients can be assumed to correspond to re-

flectance boundaries. Based on this assumption, Land and

McCann described an algorithm that can compute the rel-

ative reflectance of two points in an image by integrating

strong luminance gradients along a path that connects the

points. The algorithm was extended to two-dimensional

images by Horn [18], who observed that a complete de-

composition of an image into reflectance and shading fields

can be obtained by zeroing out high Laplacians in the input

and solving the corresponding Poisson equation to obtain

the shading field. This approach was further extended by

Blake [9], who advocated for operating on gradients instead

of Laplacians and by Funt et al. [14], who applied the ap-

proach to color images by analyzing chromaticity gradients.

Related ideas were developed for the removal of shadows

from images [13, 12].

The Retinex model is based on a heuristic classification

of image derivatives into derivatives caused by changes in

reflectance and derivatives caused by shading. Subsequent

work proposed the use of statistical analysis to train clas-

sifiers for this purpose [8, 31]. Alternatively, a regression

function can be trained for finer-grained estimation of shad-

ing and albedo derivatives [30]. Researchers have also aug-

mented the basic Retinex model with nonlocal texture cues

[36] and global sparsity priors [28, 16]. Sophisticated tech-

niques that recover reflectance and shading along with a

shape estimate have been developed [2, 4, 3]. While these

developments have advanced the state of the art, the intrin-

sic image decomposition problem remains severely under-

constrained and the performance of existing algorithms on

complex real-world images remains limited.

The commoditization of RGB-D imaging sensors pro-

vides an opportunity to re-examine the intrinsic image de-

composition problem and a chance to obtain highly accurate

decompositions of complex scenes without human assis-

tance. Two recent works have explored this direction. The

first is due to Lee et al. [21], who developed a model for in-

trinsic decomposition of RGB-D video. Their model builds

on Retinex with nonlocal constraints [36], augmented by

constraints that regularize shading estimates based on nor-

mals obtained from the range data, as well as temporal con-

straints that improve the handling of view-dependent ef-

fects. This approach can also be applied to single RGB-D

images: the temporal constraints simply play no role in

this case. Our approach is likewise based on nonlocal

constraints, but the constraints in our formulation are soft,

which provides increased robustness to image noise and to

violations of modeling assumptions. Our formulation is

also based on a more detailed analysis of image formation,
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Figure 2. Left: the components produced by our model for an image from the NYU dataset. The top row shows the input image and the

reconstructed albedo and shading images. The bottom row shows the constituent illumination components. Right: albedo and shading

images produced by prior approaches.

which leads to improved discrimination between reflectance

and illumination effects.

The second recent work on intrinsic decomposition of

RGB-D images is due to Barron and Malik [5], who use

non-convex optimization to obtain a smoothed depth map

and a spatially varying illumination model. We observe

that improved decomposition into reflectance and shading

can be obtained without joint optimization of the provided

depth image. While the depth images produced by existing

commodity sensors are noisy, they can be smoothed by off-

the-shelf algorithms. We found such a priori smoothing to

be sufficient, in part because our formulation is designed to

be resilient to noisy input. Since we do not attempt to solve

the reflectance and shading decomposition problem while

also optimizing the underlying scene geometry, we can for-

mulate a much simpler convex objective that can be reliably

optimized.

We also refer the reader to the recent work of Yu et

al. [35] that uses RGB-D data to disambiguate the related

problem of shape-from-shading.

3. Model

Let I be the input RGB image. Our primary goal is to

decompose I into an albedo image A and a shading image

S. For every pixel p, the decomposition should approxi-

mately satisfy the equivalence Ip = ApSp, where the prod-

uct ApSp is performed separately in each color channel.

Our approach is based on the idea that the accuracy of this

decomposition can be improved if we factorize the shading

image into a number of components that can account for the

different physical phenomena involved. The advantage of

this approach is that each component can be regularized dif-

ferently. By considering the smoothness properties of each

factor in the scene’s illumination, we can design simple reg-

ularizers based on our understanding of image formation.

Specifically, we factorize I into four component images:

an albedo image A, a direct irradiance image D, an indi-

rect irradiance image N, and an illumination color image

C. These images are visualized in Figure 2. The albedo

image A encodes the Lambertian reflectance of surfaces in

the scene. The direct irradiance image D encodes the irra-

diance that each point in the scene would have received had

there been no other objects that occlude or reflect the radi-

ant flux emitted by the illuminants. The image D is thus

intended to represent the direct irradiance that is modeled

by local shading algorithms in computer graphics, which

do not take shadows or inter-reflections into account. The

indirect irradiance image N is the complement of D, in-

tended to absorb the contribution of shadows and indirect

illumination.

The factorization of irradiance into a direct component

and an indirect component is one of the features that dis-

tinguish our model from prior work on intrinsic image de-

composition. One of the pitfalls in intrinsic image decom-

position is the absorption of genuine albedo variation in the

shading images. A common approach to dealing with this is

to restrict the problem by reducing its dimensionality. We

take a different approach and deliberately increase the di-

mensionality of the problem by further decomposing the

shading image to distinguish between direct and indirect ir-

radiance. Our guiding observation is that these components

have different smoothness characteristics. Direct irradiance

varies slowly as a function of position and surface orienta-

tion [25, 7]. Indirect irradiance can have higher frequencies,

but is spatially smooth almost everywhere [1, 26]. We em-

ploy dedicated regularizers that model these characteristics.

The finer-grained decomposition of the shading image al-

lows us to regularize it more carefully and thus reduce the

leakage of albedo variation into the shading image and vice

versa.



For every pixel p, our factorization approximately satis-

fies

Ip = ApDpNpCp. (1)

As is common in intrinsic image decomposition, we operate

in the logarithmic domain. Taking logarithms on both sides

yields

ip = ap + dp + np + cp.

We formulate the decomposition as an energy minimization

problem, with a data term and a regularization term:

argmin
x=(a,d,n,c)

E(x)

E(x) = Edata(x) + Ereg(x).

These terms are described in detail in Sections 3.1 and 3.2.

3.1. Data Term

The data term is defined as

Edata =
∑

p

‖lum(Ip)(ip − ap − cp − 1dp − 1np)‖2. (2)

The objective on pixel p is weighted by the luminance

lum(Ip) of Ip. (In practice, we use lum(Ip)+ε to avoid ze-

roing out the data term.) Without this weight the data term

would be disproportionately strong for dark pixels, since

we operate in the logarithmic domain. (In the extreme,

Ip→0 ⇒ ip→−∞.) Weighting by the luminance of the

input balances out the influence of the data term across the

image.

The traditional approach in intrinsic image decomposi-

tion is to reduce the dimensionality of the problem by rep-

resenting one of the components strictly in terms of the oth-

ers. For example, it is common to solve for the shading S

and then to simply obtain the albedo by taking Ap = Ip/Sp

for every pixel (or vice versa) [17, 16, 36, 21, 5]. In our for-

mulation, this would mean omitting the variable ap from the

optimization and substituting ip−cp−1dp−1np in its place.

In other words, the decomposition assumption expressed by

the data term (2) is traditionally a hard constraint. In prac-

tice, however, this assumption clearly does not always hold.

Participating media, blur, chromatic distortion, and sensor

noise all invalidate the assumption that Ip = ApSp. For

this reason, our model expresses this assumption as a soft

constraint: the data term. Experimentally, the benefits of

this formulation seem to clearly outweigh the costs of some-

what increased dimensionality. In particular, this model is

considerably more stable in dealing with very dark input

pixels, whose chromaticity can be drastically perturbed by

sensor noise.

3.2. Regularization

The regularization objective comprises separate terms

for regularizing the albedo, the direct irradiance, the indi-

rect irradiance, and the illumination color:

Ereg =
∑

i∈{A,D,N,N′,C}

λiEi. (3)

We now describe each of these terms.

Albedo. Our regularizer for the albedo component is non-

local. It comprises pairwise terms that penalize albedo dif-

ferences between pixels in the image:

EA =
∑

{p,q}∈NA

αp,q‖ap − aq‖2.

The weight αp,q adjusts the strength of the regularizer based

on the chromaticity difference between p and q, and the lu-

minance of p and q:

αp,q =

(

1− ‖ch(Ip)−ch(Iq)‖
max

{p,q}∈NA

‖ch(Ip)−ch(Iq)‖

)√
lum(Ip)lum(Iq),

where ch(Ip) denotes the chromaticity of p. The left term

expresses the well-established assumption that pixels that

have similar chromaticity are likely to have similar albedo

[14, 12, 36, 15, 21]. The right term is the geometric mean of

the luminance values of p and q and attenuates the strength

of the regularizer for darker pixels, for which the chromatic-

ity is ill-conditioned.

The somewhat unorthodox aspect of the regularizer is

the construction of the set of pairs NA on which the regu-

larizer operates. Given our prior belief that pixels with sim-

ilar chromaticity are likely to have similar albedo, it would

make sense to identify such pairs and preferentially con-

nect them. In practice, such preferential connectivity strate-

gies are highly liable to create largely disconnected clus-

ters in the image with very poor communication between

them. When this happens, the association of a pixel with

a cluster is largely exclusive and is determined by its chro-

maticity. This again places too much confidence in chro-

maticity, which can be poorly conditioned. Instead, we

simply connect each pixel to k random pixels in the im-

age. The random connectivity strategy leads to reasonably

short graph distances between pixels, while not treating in-

put chromaticity as a hard constraint. Here too the intuition

is that our assumptions on image formation have limited

validity in practice. In particular, while input chromatic-

ity is correlated with the intrinsic reflectance of the imaged

surface, it is also affected by camera optics and other as-

pects of image formation that we do not model. Thus in-

stead of committing to a connectivity strategy that would

act as a hard constraint, we express our modeling assump-

tions through the weight αp,q . Note that this weight has no

free parameters that need to be tuned.



Direct irradiance. The direct irradiance regularizer mod-

els the spatial and angular coherence of direct illumination.

Specifically, if two points in the scene have similar positions

and similar normals, we expect them to have similar irradi-

ance if the contribution of other objects in the scene (in the

form of shadows and inter-reflections) is not taken into ac-

count [25, 7]. (Note again that the direct irradiance compo-

nent is meant to represent the “virtual” irradiance that every

point in the scene would have received had the scene con-

tained only the light sources and no other objects that cast

shadows or reflect light.) The regularizer has the following

form:

ED =
∑

{p,q}∈ND

(dp − dq)
2.

The set ND of pairwise connections is constructed as fol-

lows. For each pixel p we compute a feature vector

(x, y, z, nx, ny, nz). The vector (x, y, z) is the position

of p in three-dimensional space, which can be easily com-

puted from the image coordinates of p and the correspond-

ing depth value. The vector (nx, ny, nz) is the surface nor-

mal at p, computed from the depth values at p and nearby

points. We thus embed all input pixels in a six-dimensional

feature space. To normalize the feature values, we apply a

whitening transform to the (x,y,z) dimensions. (The other

three dimensions are normalized by construction.) Then,

for each pixel p, we find its k nearest neighbors in this fea-

ture space. (We use k = 5, 10, or 20 for all regularizers in

this paper.) For each such neighbor q, we add the pair {p, q}
to the set ND.

This strategy connects each pixel p to k other pixels in

the image that have similar spatial location and surface nor-

mal. This connectivity strategy is more confident than the

one we used for albedo regularization. This is a key advan-

tage of separating the direct and indirect irradiance compo-

nents. When occlusion effects are separated out, irradiance

becomes a simpler function that varies smoothly with posi-

tion and surface normal. The simple approach of connect-

ing nearest neighbors in the relevant feature space is thus

sufficient.

Indirect irradiance. We assume that the indirect irra-

diance component is smooth in three-dimensional space.

While irradiance is clearly not smooth in image space due

to occlusion, it is smooth almost everywhere in object space

[1, 26]. Our regularizer is a direct expression of this as-

sumption:

EN =
∑

{p,q}∈NN

(np − nq)
2.

To construct the set NN of pairwise connections, we simply

connect each pixel p to its k nearest neighbors in R
3, based

on its location in three-dimensional space.

We also include a simple L2 regularizer on the indirect

irradiance magnitude:

EN′ =
∑

p

n2
p.

Illumination color. The direct and indirect irradiance

components D and N are modeled as scalar fields. In ac-

tuality, illumination can have nontrivial chromaticity. It

would have thus been natural to model the direct irradi-

ance, for example, as trichromatic. In our experiments, this

choice led to diminished decomposition performance. The

reason is that the irradiance can change quite significantly

at relatively short distances when surface curvature is high.

On the other hand, it is less common for the color of the

incident illumination to vary as rapidly. Representing the

total irradiance and its spectral power distribution jointly as

a single trichromatic field would mean that the regularizer

cannot easily distinguish these terms. In practice, this leads

to unnatural swings in illumination color.

We thus represent the illumination color separately, as

a trichromatic field C, so that a distinct regularizer can be

applied:

EC =
∑

{p,q}∈NC

γp,q‖cp − cq‖2.

The weight γp,q adjusts the strength of the regularizer based

on the Euclidean distance between the positions of p and q
in R

3, which we denote by p̄ and q̄:

γp,q = 1− ‖p̄− q̄‖
max

{p,q}∈NC

‖p̄− q̄‖ ,

The set NC is constructed by connecting each pixel p to

k other pixels q in the image at random. That is, we use

random connectivity for regularizing the illumination color

component, akin to the albedo regularization. The reason

is that using nearest neighbor connectivity in 3-space can

split the pixels into multiple disconnected clusters, since oc-

clusion boundaries in image space correspond to jump dis-

continuities in 3-space. Since the factorization into surface

albedo and illumination color is ill-defined, the inferred il-

lumination color can vary sharply from cluster to cluster.

Using random connectivity instead leads to a globally con-

nected graph in which all pixels communicate and the com-

puted illumination color varies smoothly across the scene.

4. Experiments

Our approach is implemented in Matlab and uses the

lsqlin function to optimize the linear least-squares objec-

tive. (The log-albedo and log-color components are con-

strained to be ≤ 0 for each pixel and each color channel.

This encodes the constraint that the value of each color
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Figure 3. Results on two images from the NYU dataset. For each image (top and bottom), the results are organized as in Figure 2.

channel in A and C has to be between 0 and 1.) Run-

ning times were measured on a laptop with an Intel Core

i7-3610QM 2.3 GHz CPU and 16GB of RAM.

NYU dataset. We evaluated the presented model on the

16 images used by Barron and Malik in the main body and

the supplementary material of their paper [5]. Results on

one of these images are shown in Figure 1. Results on

the other fifteen images are provided in supplementary ma-

terial. For these images, the albedo and shading images

shown for the approach of Barron and Malik are taken di-

rectly from their paper. The results for the approach of Lee

et al. [21] are computed using the implementation provided

by the authors.

We also tested the different approaches on additional

randomly sampled images from the dataset. Three such im-

ages are shown in Figures 2 and 3. Results for the prior

approaches were computed using code provided by the au-

thors. The average running times were 12 minutes for our

approach, 3 seconds for the approach of Lee et al., and 2

hours for the approach of Barron and Malik. (The maxi-

mal number of L-BFGS iterations in the implementation of

Barron and Malik was set to 500.)

We used λA = λN′ = 0.1 and λD = λN = λC = 1.

MPI-Sintel dataset. For quantitative evaluation, we used

the MPI-Sintel dataset. This is a set of complex computer-

generated images that were found to have similar statistics

to natural images [11]. We used the “clean pass” images as

input. (Infinite depth of field, no motion blur, and no atmo-

spheric effects like fog.) This dataset was not intended for

evaluation of intrinsic image algorithms, but we use it for

lack of a readily apparent alternative that would reproduce

many of the challenges of real-world scenes, such as com-

plex object shapes, occlusion, and complex lighting, and

would be accompanied by the requisite ground truth data.

We are grateful to the creators of the dataset for providing us

with the depth maps and for improving the accuracy of the

ground-truth albedo maps. They also created the ground-

truth shading images by rendering all the scenes with uni-

form grey albedo on all objects.

A number of scenes from the dataset could not be used

due to software issues that resulted in defects in the pro-

vided ground-truth albedo maps. In total, we used 15

scenes. A list is provided in supplementary material. We

pruned the set of images automatically by taking every fifth

image from each scene. This yielded a set of 141 images.

For each of these input images, we obtained albedo and

shading images using our approach, the approach of Lee

et al. [21], the approach of Barron and Malik [5], the color



MSE MSE MSE LMSE LMSE LMSE DSSIM DSSIM DSSIM

albedo shading average albedo shading average albedo shading average

Baseline 1 0.0531 0.0488 0.0510 0.0326 0.0284 0.0305 0.214 0.206 0.210

Baseline 2 0.0369 0.0378 0.0373 0.0240 0.0303 0.0272 0.228 0.187 0.207

Retinex [17] 0.0606 0.0727 0.0667 0.0366 0.0419 0.0392 0.227 0.240 0.234

Lee et al. [21] 0.0463 0.0507 0.0485 0.0224 0.0192 0.0208 0.199 0.177 0.188

Barron et al. [5] 0.0452 0.0420 0.0436 0.0298 0.0264 0.0281 0.210 0.206 0.208

Our approach 0.0307 0.0277 0.0292 0.0185 0.0190 0.0188 0.196 0.165 0.181

Table 1. Quantitative evaluation of the albedo and shading images produced by different approaches on the MPI-Sintel dataset.

Retinex algorithm (using the implementation of [17]), and

two baselines. The first baseline used the input image as the

albedo image and a uniform grey image as the shading im-

age. The second baseline did the opposite, using the input

as shading and a constant image as albedo.

Table 1 provides a quantitative evaluation of the results

obtained by the different approaches. We used three er-

ror measures for evaluation. Following Grosse et al. [17],

we use scale-invariant measures, such that the absolute

brightness of each image is adjusted to minimize the er-

ror. The first error measure is the standard mean-squared

error (MSE). The second is the local mean-squared error

(LMSE), introduced by Grosse et al. [17]. Specifically, we

cover the image by overlapping windows of size 10% of

the image in every dimension, adjust the brightness sepa-

rately for each window to fit the corresponding part of the

ground truth image, compute the MSE for each window,

and average the results. This is a finer-grained measure, but

it still suffers from many of the defects of MSE. For this

reason, we also use the structural similarity index (SSIM),

developed specifically to provide a better image similarity

measure [33]. Since the SSIM is a similarity measure (i.e.,

higher is better), while MSE and LMSE are dissimilarity

measures (i.e., lower is better), we report the DSSIM for

consistency, defined as (1-SSIM)/2.

The average running times were 15 minutes for our ap-

proach, 8 seconds for the approach of Lee et al., and 3 hours

for the approach of Barron and Malik. Weights for our ap-

proach and for the approach of Lee et al. were set using ran-

domized two-fold cross-validation. The approaches were

trained on the SSIM measure. We did not train separately

for MSE and LMSE. Due to the running time and the num-

ber of parameters for the approach of Barron and Malik,

we did not perform cross-validation for this approach. We

tried to adjust key parameters for this approach manually to

maximize performance.

5. Discussion

We view the presented work as a step towards high-

fidelity estimation of reflectance properties and scene illu-

mination from single RGB-D images. We believe that the

problem is solvable (in a practically interesting sense), but

is far from solved. Our results are still far from the ground

truth and our model does not attempt to explicitly account

for specular reflectance, translucency, participating media,

camera optics, and other factors. We believe that the key to

progress lies in increasingly careful and detailed modeling

and simulation of image formation. We hope that the sim-

plicity of our model will encourage subsequent work on this

problem. All code will be made freely available.
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