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Abstract

Action recognition has often been posed as a classifi-
cation problem, which assumes that a video sequence only
have one action class label and different actions are inde-
pendent. However, a single human body can perform mul-
tiple concurrent actions at the same time, and different ac-
tions interact with each other. This paper proposes a con-
current action detection model where the action detection
is formulated as a structural prediction problem. In this
model, an interval in a video sequence can be described by
multiple action labels. An detected action interval is de-
termined both by the unary local detector and the relations
with other actions. We use a wavelet feature to represent
the action sequence, and design a composite temporal logic
descriptor to describe the action relations. The model pa-
rameters are trained by structural SVM learning. Given a
long video sequence, a sequential decision window search
algorithm is designed to detect the actions. Experiments
on our new collected concurrent action dataset demonstrate
the strength of our method.

1. Introduction
In the vision literature, action recognition is usually

posed as a classification problem, i.e, a classifier assigns
one action label to a video sequence [18]. However, action
recognition is more than a classification problem.

First, a single human body can perform more than one
actions at the same time. As Figure 1 shows, the person is
sitting on the chair, drinking with the right hand, and mak-
ing a call with the left hand, simultaneously. The three ac-
tions concurrently proceed forward in the time axis. In this
case, the video sequence in the concurrent time interval can
not be simply classified into one action class.

Second, multiple actions performed by one human body
are semantically and temporally related to each other, as is
shown in Figure 1. A person usually sits to type on key-
board, and rarely stand to type on keyboard. So the ac-
tions sit and type on keyboard semantically advocate each
other while stand and type on keyboard are often exclusive.

The action turn on monitor occurs usually before the action
type on keyboard. Their locations and durations in the time
axis are closely related. We believe that such information
of action relations should play important roles in the action
recognition and localization.

We define the concurrent actions as the multiple actions
simultaneously performed by one human body. These ac-
tions can distribute in multiple intervals in a long video se-
quence, and they are semantically and temporally related to
each other. By concurrent action detection, we mean to rec-
ognize all the actions and localize their time intervals in the
long video sequence, as is shown in Figure 1.

In this paper, we propose a novel concurrent action de-
tection model (COA). Our model formulates the detection
of concurrent action as a structural prediction problem, sim-
ilar to the multi-class object layout in still image [5]. In this
formulation, the detected action instances are determined by
both the unary local detectors and the relations with other
actions. A multiple kernel learning method [2] is applied
to mining the informative body parts for different action
classes. With the informative parts mining, the human body
is softly divided into the weighted parts which perform the
concurrent actions. The parameters of the COA model are
learned in the framework of structural SVM [17]. Given a
video sequence, we propose an online sequential decision
window search algorithm to detect the concurrent actions.

We collect a new concurrent action dataset for evalua-
tion. Our dataset contains 3D human pose sequences cap-
tured by the Kinect camera [14]. It includes 12 action
classes, which are listed in Figure 1, and totally 61 long
video sequences. Each sequence contains many concurrent
actions. The complex structures of the actions and the large
noise of the human pose data make the dataset challenging.
The experimental results on this dataset prove the strength
of our method.

2. Related Work
Our work is related to four streams of researches in the

literature.
(1) Action recognition and detection techniques have

achieved remarkable progress in recent years [6, 8, 18, 20].
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Figure 1. The illustration of the concurrent actions. Each horizontal row corresponds to an action class. The small colorful blocks
correspond to the action intervals in the time axis.

Wang et al. [18] represented a 3D pose sequence by Fourier
features and mined the actionlet ensemble with multiple
kernel learning, which was then used to classify an new se-
quence. This method needs the video sequence to be pre-
segmented, and predicts one action class for each segment.
It is insufficient to interpret a video sequence with multi-
ple concurrent and dependent actions. Hoai and Torre [6]
trained an elaborate model to detect events in video before
the events ended. However, it is focused on the early de-
tection of an event and not applicable to detecting multiple
concurrent actions.

(2) Concurrent actions exist in the literatures of other
fields, like artificial intelligence [3, 12]. The work [12] rep-
resented the concurrent decision with a semi-Markov model
where plans were learned from concurrent actions. These
work are mainly for the robot planning, not for modeling
the visual concurrent actions as in computer vision.

(3) Temporal relations are used in some literatures to
facilitate the action modeling [1, 9, 10, 13, 16, 19]. The
work [9, 13] decomposed an high level activity into par-
tially ordered substructures which formed contexts of each
other. And the work [13] suggested the actions could occur
in parallel. However, they did not describe and learn the
relations between different actions in a unified framework.
Allen [1] introduced classical temporal logics to describe
the relations between actions, which were further applied
to representing the action structures and action detection in
[10]. These temporal logics are qualitative descriptions, like
before, meet, which are insufficient to describe complex re-
lations with different degrees of overlapping intervals.

(4) Structural prediction has been used for object de-
tection in still images. Desai et al. [5] modeled the multi-
class object layout (MCOL) as a structural prediction prob-

lem. They trained the model with the structural SVM learn-
ing (SSVM) [17]. Our model is inspired by the MCOL and
SSVM. But we modify and extend it to fit in with the motion
data. Actually, the problem of action detection in motion
data is more complex than the problem of object detection
in still image because the motion data always has more data
scales and more complex structures. Our COA model intro-
duces new formulations to overcome these challenges.

3. Concurrent Action Model
Suppose there are M overlapping action intervals in a

video sequence. These intervals are obtained by sliding the
local action detectors of all the 12 action classes along the
time axis in the video sequence, similar to the object de-
tection in image with sliding windows. The ith interval is
defined as di = [si, ei], where si and ei are respectively the
starting and ending time, as Figure 1 shows. xi is the feature
of the video clip in the interval di. yi ∈ Y is the action class
label of the interval di, whereY is the set of all action labels.
The entire video sequence is encoded as the M action inter-
vals, X = {xi|i = 1, ...,M}. Y = {yi|i = 1, ...,M} is
their label set. The score of interpreting the video sequence
X with labels Y is defined as

S(X,Y ) =
∑
i

ωTyiρyi(xi) +
∑

(i,j)∈N

ωTyi,yjrij (1)

where i = 1, ..,M, j = 1, ...,M . ρyi(xi) is the local detec-
tion model of the action yi. It is a 2-dimension vector which
encapsulates the local detection score and a constant 1 to
adjust the bias. ρyi is related to the action class yi, which
suggests that different actions correspond to different parts
of the body. ωyi is the parameter of the action yi.
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Figure 2. The wavelet feature of human action.

rij is the relation feature vector between the interval di
and the interval dj . ωyi,yj is the relation parameter, which
encodes the location and semantic relations between action
classes yi and yj . (i, j) ∈ N means the interval di and
dj are neighbors. If the distance in the temporal axis be-
tween di and dj is smaller than a threshold, then di and dj
are neighbors of each other. The introduction of the neigh-
borhood system N indicates that an action in a sequence is
only related to the actions which are close to it. This is be-
cause a video sequence can be very long. With the increase
of the distance between two intervals, their dependent rela-
tions decrease.

The Eq.(1) is similar to the multi-class object layout
model (MCOL) [5] in still image. However, our Eq.(1) in-
troduces the neighborhood system into the structural predic-
tion and accommodates the motion sequence data. Actually,
our COA model is an extension of the MCOL model. If the
size of the neighborhood is infinite, the Eq.(1) becomes the
MCOL like in still image. If the size of the neighborhood is
infinitesimal, the Eq.(1) shrinks to a local classifier model.
The introduction of the neighborhood also raises the effi-
ciency of inference. We will elaborate it later.

3.1. Wavelet Feature and Local Detection ρyi
(xi)

In our work, the input human action data is the sequence
of 3D human poses which are estimated by the Kinect [14].
Each pose contains K 3D joint points of human body. A
human action sequence forms K trajectories, as is shown in
Figure 2. All the human poses are normalized by aligning
the torsos and the shoulders. The estimated pose data is ex-
tremely noisy, which makes it very hard to characterize the
action. It should be noted that though we use the 3D pose
sequence as input in this work, our COA model is applica-
ble in other sequence of human actions, like RGB video.

Wavelet was previously applied to representing the hu-
man motion feature [4, 11]. Inspired by them, we use
the wavelet to describe the trajectories of the difference
vectors between the 3D joints. These difference vectors
present strong discriminative ability for action recognition
[18]. Our objective is to extract robust and discrimina-
tive features for the sequence clip in the interval [s, e]. At
time t, the relative location differences between the kth

joint and all other joints are concatenated into a vector htk.
hk = {htk|t = s, ..., e} is the feature sequence of the kth
joint in the interval [s, e]. hk is a temporal signal in the in-
terval [s, e]. It is interpolated into 128 frames. We apply the
symlet wavelet transform to the interpolated hk, and keep
the first V wavelet coefficients as the action feature of the
kth joint, denoted as Hk. Then the sequence feature x of all
the joints on the human body is x = (H1, ...,HK).

With the wavelet feature x, the local action detection
model is ρyi(xi) = (fyi , 1), where fyi is an action detector:

fyi = βTyix+ byi (2)

The wavelet transform has the attribute of time-
frequency localization. It can extract the action’s tempo-
ral structure. Also, the wavelet transform is multiscale. It
can describe the action at different scales. Furthermore, by
keeping the first V wavelet coefficients, we can eliminate
the noise in the original pose data, which makes the action
description more robust.

3.2. Composite Temporal Logic Descriptor for rij

rij represents the temporal location of interval dj rela-
tive to the interval di. In the famous work [1], Allen pro-
posed 13 classical temporal relations between two intervals
- before, equal, meet, overlap, during, start, finish and their
inverses. These relations are qualitative descriptions, which
cannot quantitatively describe the degree of temporal rela-
tions. For example, the action press button and turn on mon-
itor both occur before the action type on keyboard. How do
we measure and distinguish these two before relations?

We design a novel quantitative descriptor - composite
temporal logic descriptor - to encode rij , as Figure 3 shows.
It is decomposed into three components rij = (rSij , r

C
ij , r

E
ij):

1) rSij , the location of dj relative to the start point of di;
2) rCij , the location of dj relative to the center point of di;
3) rEij , the location of dj relative to the end point of di.
The first component rSij encodes start relations between

two actions. For example, human usually bends down to
pick up trash. The action bend down and pick up trash al-
ways start simultaneously. So the action pick up trash is
closely related to the start of bend down. rCij encodes the
entire relative location of two intervals.

The third component rEij encodes the sequential relation
of two intervals. For example, the action throw trash always
occurs after the action pick up trash ends. So the action
throw trash is closely related to the end of pick up trash.

We define a histogram with 8 uniform bins to describe
the location of an interval relative to a time point. As Figure
3 shows, the 8 bins define 8 relations relative to the zero
point O in the center of the histogram, before-far, before-3,
before-2, before-1, after-1, after-2, after-3, after-far. The
length of the histogram is set as 4 times the length of the
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Figure 3. The composite temporal logic descriptor of dj relative
to di. The blue bar is the interval di. The red bar is the interval dj .

interval di, which normalizes the histograms corresponding
to different lengths of di.

To parameterize rSij , we align the zero point O of the
histogram to the start point of the interval di, as Figure 3
shows. We compute the duration of interval dj falling in
each bin of the histogram. The values of the bins before-
far and after-far are the durations of interval dj outside the
before-3 and after-3, respectively. These bin values are di-
vided by the length of interval dj to form the normalized
descriptor rSij . r

C
ij and rEij are computed in a similar way

but by aligning the zero point O to the center and the end of
di, respectively.

Our descriptor decomposes the temporal relation into
three components, which makes it able to describe subtle
and complex temporal relations quantitatively. Because it
quantizes the duration of action interval, it also character-
izes the action’s duration information.

4. Learning

4.1. Mining Informative Parts with MKL

This subsection elaborates on how we learn the local ac-
tion detector fyi = βTyix + byi by mining the informative
body parts for different actions. An action is usually re-
lated to some specific parts of human body. For example,
the action drink is mainly performed by the hand and arms.
The movements of other body parts, like legs and feet, are
less important to this action. So for a specific action, the
‘weight’ of each body part is different. We use a multiple
kernel learning (MKL) [2] method to automatically mine
the informative parts for each action class. For clarity, we
simplify yi, βyi , and byi as y, β, and b, respectively.

We introduce a weight vector α = (α1, ..., αK) for
each action class y, where K is the number of human
body joints, and αk ≥ 0 corresponds to the kth joint.
Each wavelet action feature x is decomposed into K blocks
x = (H1, ...,HK). The blockHk corresponds to the feature
of the kth joint. The parameter β is correspondingly decom-
posed into the same format blocks as x, β = (β1, ..., βK).
Such decomposition makes it possible to differentiate the
effects of different joints on the action y.

Suppose {(xl, zl)|l = 1, ..., L} are L training samples
for the action y, where zl is the label of xl. zl = 1 if xl is
the positive sample of y, otherwise zl = −1. Our goal is to
learn the parameters (α, β, b) of the action y. This problem
is formulated as a l1-norm multiple kernel learning [2]:

min
1

2
(
∑K

k=1
αk||βk||2)2 + C

∑L

l=1
ζl

w.s.t. αk ≥ 0, ζl ≥ 0, β, b

s.t. zl(β
Txl + b) ≥ 1− ζl,∀l ∈ {1, ..., L}

(3)

This problem can be solved efficiently by the semi-infinite
linear program [15].

4.2. Learning with Max-Margin Optimization

Given N action sequences {Xn|n = 1, ..., N} and their
manually annotated structural labels {Yn|n = 1, ..., N}, the
goal is to learn the parameter ωyi and ωyi,yj in Eq.(1). Our
learning formulation is based on the max-margin structural
learning [5, 17]. We modify it to accommodate the sequen-
tial neighborhood-dependent data.

We rewrite the Eq. (1) as a compact form:

S(X,Y ) = ωTΦ(X,Y ) (4)

where

ω =

[
ωu
ωb

]
,Φ(X,Y ) =

[ ∑
i ϕ(ρyi(xi), yi)∑

(i,j)∈N ψ(rij , yi, yj)

]
(5)

ωu and ϕ(·) are unary parameter and feature mapping vec-
tors. ωb and ψ(·) are binary parameter and relation map-
ping vectors. ϕ(·) is a NuA dimension vector which en-
capsulates A blocks, where A is the number of all action
classes, and Nu is the dimension of feature ρyi(xi). Each
Nu-dimension block of ωu corresponds to an action class.
The elements ofϕ(ρyi(xi), yi) are all zeros except the block
corresponding to the action class yi, where it is ρyi(xi).
ψ(·) is a NbA2 dimension vector which encapsulates A2

blocks, where Nb is the dimension of feature rij . Each Nb-
dimension block corresponds to a pair of action classes. The
elements of ψ(rij , yi, yj) are all zeros except the block cor-
responding to the action class pair (yi, yj), where it is rij .

We formulate the parameter learning as a max-margin
optimization [5, 17]:

min
ω,ξn≥0

||ω||2 + C
∑N

n=1
ξn

s.t. ∀n = 1, ..., N,∀Ŷn,
ωT∆(Xn, Yn, Ŷn) ≥ δ(Yn, Ŷn)− ξn

(6)

where Ŷn is the false structural label of the sequence
Xn. δ(Yn, Ŷn) is a 0-1 loss function δ(Y, Ŷ ) =∑|Y |
i=1 1(yi 6= ŷi), where |Y | is the dimension of Y .
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∆(Xn, Yn, Ŷn) = Φ(Xn, Yn) − Φ(Xn, Ŷn) is the dif-
ference between compact features with the true label and
the false label. The inequation in model (6) means that in
all training sequences, the score of the true label should be
larger than all other false labels by a soft margin.

The problem (6) can be solved by a cutting-plane algo-
rithm [7]. Our model introduces the neighborhood to the
compact feature Φ(·) in Eq.(5). It reduces the search space
when solving the optimization problem.

5. Inference
Given a long temporal sequence X containing multiple

actions, our goal is to localize all the action intervals and
label them with the action classes. It is formulated as:

Y ∗ = argmax S(X,Y ) (7)

The work [5] adopted a greedy search algorithm to solve
the NP-hard problem (7). It demonstrated that though the
greedy search algorithm produced suboptimal solutions, it
was effective for object layout in the image. The detection
of multiple concurrent actions in temporal sequence is more
complex than the object layout in the still image. The image
plane is limited, which makes it possible to search the so-
lutions in a tolerable period. However, a temporal sequence
can be very long and contain large number of actions, which
makes the normal greedy search inapplicable. We propose
an sequential decision window search algorithm to solve
this problem (7), which extends the normal greedy search
algorithm [5] to the sequential data with large durations.

We introduce a temporal window W . It slides by a
smaller step than the size of itself, from the start of the se-
quence to the end, which generates a series of overlapping
windows, {Wt|t = 1, 2, ...}. We call them decision win-
dows. In each decision window, we carry out the greedy
search algorithm based on the optimized results in the pre-
vious decision windows. With the decision window sliding
forward, the entire sequence is structurally labeled.

We first run the local detectors (Eq.(2)) of all the 12 ac-
tion classes on the temporal sequence in a sliding-window
manner. For each action class, we run multiple detectors
with multi-scales. Such local detection process produces
a large amount of action intervals, which are pruned by a
non-maxima suppression step to generate M ′ hypothesized
action intervals D = {di|i = 1, ...,M ′}.

SupposeDs ⊆ D, andXDs
and YDs

are respectively the
feature set and the corresponding action label set of the ac-
tion intervals inDs. We define the score of the subsetDs as
S(Ds) = S(XDs

, YDs
), and S(Ds) = 0 whenDs is empty.

We want to select a subset Ds from D that S(Ds) achieves
the maximum value in all subsets of D. We define Du =
D−Ds is the set of unselected intervals, andDw = Du∧Wt

is the set of unselected intervals located in the decision win-
dow Wt. We define a score change after a new interval d is

Algorithm 1 Sequential Decision Window Search
Initialization:

t = 1, Ds = {}, Du = D, Dw = {};
Iteration:

1: Decision window forward
Dw = Du ∧Wt ;

2: Greedy search in decision window
(i) d∗ = argmaxd∈Dw

∆(d);
(ii) if ∆(d∗) < 0, break and go to step 3;

else, Ds = Ds ∪ {d∗}
Du = Du − {d∗}
Dw = Dw − {d∗}

(iii) if Dw is empty, break and go to step 3;
else, go to step (i);

3: if Wt arrives at the sequence end, stop and output Ds;
else, t = t + 1, go to step 1.

added to Ds: ∆(d) = S(Ds ∪ {d}) − S(Ds). With these
notations, our sequential decision window search algorithm
is summarized in Algorithm 1.

Our sequential decision window search is the general
case of the normal greedy search algorithm [5]. If the size
of the decision window is set to be the duration of the entire
sequence, it becomes the global greedy search.

In general cases, our search algorithm is suboptimal
compared to the normal greedy search. But it is reason-
able in the human action sequence data because an action
is usually only related to other actions which are close to
it. Our experimental results also prove its effectiveness and
reasonability.

In our algorithm, the decision window slides from the se-
quence beginning to the end. This makes it possible to de-
tect the actions online. This advantage is especially useful
in the practical applications, like video surveillance, robot
navigation, and human-computer interactions.

6. Experiment
6.1. Dataset

To evaluate our method, we collect a new concurrent ac-
tion dataset with annotation. The dataset is captured us-
ing the Kinect camera [14], which estimates the 3D human
skeleton joints at each frame. Several volunteers are asked
to perform actions freely in the daily-life indoor scenes,
like office and living room. The action orders, poses, du-
rations, and numbers are all decided according to their per-
sonal habits. Totally, we collected 61 long video sequences.
Each sequence contains many actions which are concurrent
in the time axis and interact with others. The dataset in-
cludes 12 action classes: drink, make a call, turn on moni-
tor, type on keyboard, fetch water, pour water, press button,
pick up trash, throw trash, bend down, sit, and stand.
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Action SVM
-SKL

SVM
-WAV

ALE
[18]

MIP
Our

COA
drink 0.77 0.70 0.91 0.92 0.96

make a call 0.75 0.86 0.85 0.93 0.97
turn on monitor 0.40 0.34 0.55 0.42 0.43

type on keyboard 0.82 0.91 0.92 0.91 0.93
fetch water 0.40 0.23 0.58 0.59 0.60
pour water 0.66 0.70 0.71 0.58 0.71

press button 0.17 0.20 0.66 0.22 0.33
pick up trash 0.39 0.35 0.39 0.40 0.55
throw trash 0.11 0.33 0.21 0.29 0.59
bend down 0.32 0.65 0.47 0.58 0.67

sit 0.98 0.99 0.99 0.98 0.98
stand 0.86 0.90 0.95 0.96 0.97

Table 1. The average precision comparison on each action class.

Our dataset is new in two aspects: i) each sequence con-
tains multiple concurrent actions; ii) these actions semanti-
cally and temporally interacts with each other. Our dataset
is challenging. Firstly, the human skeleton estimated by the
Kinect is very noisy. Secondly, the duration of each se-
quence is very long. Thirdly, the instances of each action
class have large variances. For example, some instances of
the action sit last for less than thirty frames, but some may
last for more than one thousand frames. Finally, some dif-
ferent actions are very similar, like drink and make a call,
pick up trash and throw trash.

6.2. Concurrent Action Detection

Evaluation criterion. A detected action interval is taken
as correct if the overlapping length of the detected inter-
val and the ground truth interval is larger 60% than their
union length or the detected interval is totally covered by
the ground truth interval. The second condition is special in
action detection because part of an action is still described
with the same action label by human. We measure the per-
formance with the average precision (AP) of each class, and
the overall AP on the entire testing data.

Baseline. We compare our model (COA) with four base-
lines. (1) SVM-SKL. This method uses the original aligned
skeleton sequence as the action feature, and a SVM trained
detector to detect the action with sliding windows. (2)
SVM-WAV. This method is similar to the SVM-SKL ex-
cept for that its action feature is our proposed wavelet fea-
ture. (3) ALE. Actionlet ensemble [18] is the state-of-art
method in multiple action recognition with the 3D human
pose data. It achieves the highest performance on many
dataset compared to the previous best results. We train it as
a binary classifier and test it on our dataset under the slid-
ing window detection framework. (4) MIP. This is our local
detector (Eq. 2) with mining informative parts. It is part
of our COA model without using the temporal relations be-
tween actions. The originally detected intervals of the four

Figure 4. The precision-recall curves on the entire test dataset.

SVM-SKL SVM-WAV ALE [18] MIP Our COA
0.69 0.80 0.84 0.86 0.88
Table 2. The overall average precision comparison.

methods are processed with the non-maxima suppression to
output the final results.

The AP of each class. Table 1 shows the average preci-
sion of each action class. In most action classes, our method
outperforms the other methods, which proves its effective-
ness and advantage. Some actions are hard to be detected
just by the independent local detector. The temporal rela-
tion between them and other action classes can facilitate the
detection. For example, the action throw trash is usually
inconspicuous and hard to be detected. With the context
of pick up trash which usually occurs closely before throw
trash, the AP of throw trash is significantly boosted. Re-
ciprocally, the precision of pick up trash is also jointly im-
proved by the context of throw trash.

The overall AP. We also compute the overall average
precision, i.e., the results of all the testing sequences and
all the action classes are put together to compute the AP. It
measures the overall performance of each algorithm. Figure
4 shows the precision-recall curves of all the methods. Table
2 presents the overall average precision. Our model presents
better performance than the other methods.

The SVM-WAV and the SVM-SKL are different in the
action sequence feature. The better performance of the
SVM-WAV than the SVM-SKL proves that our wavelet fea-
ture is more descriptive than the 3D human pose feature.
The MIP and the SVM-WAV use the same wavelet feature
but different learning method. The better performance of
the MIP than the SVM-WAV proves the strength of our in-
formative parts mining method. Our COA model achieves
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Figure 5. The concurrent action detection results in four sequences. Each horizontal row in an bar-image corresponds to an action class.
The small colorful blocks are the action intervals. The numerical values are the average overlapping rates of each method’s bar-images
with the ground truth images. The rates show that the results of our COA model are closer to the ground truth than other methods.
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0.12

0.660.13
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0.150.23
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0.220.51

Figure 6. The informative body parts for some actions. The first
column is the learned informative body parts. The areas of the
joints correspond to the magnitude of the weight. Other poses are
the instances of the action. For clarity, we just label the joints with
larger weight. The joints on shoulder and torso are the reference
for the pose alignment, and therefore are not attached the weights.

better performance than MIP, which demonstrates the effect
of the temporal relations between actions.

The visualization of the detection. To intuitionally
shows the strength of our model, we visualize some action
detection results in Figure 5. We compare them with the re-
sults of the two best baselines, the ALE [18] and MIP. We
also compute the average overlapping rate of each method’s
results with the ground truth. From the comparison, we can
see that our COA model can remove many false positive
detections with the action relations.

6.3. Informative Body Parts

The informative body parts are weighted human body
parts for different action classes. We visualizes the learned
weights of human body joints (the normalized weights of
multiple kernels [15]) in Figure 6.

An action is usually related to some specific parts of hu-

man body. And other body parts are less relevant to this
action. Our multiple kernel learning method can automat-
ically learn these informative body parts. Figure 6 shows
that though the data of action instances is noisy and has
large variance, our algorithm can mine the reasonable body
parts for different action classes.

6.4. Temporal Relation Templates between Actions

The composite temporal logic descriptor represents the
co-occurrence and location relations between actions. We
learn these temporal relation parameter ωyi,yj from our
manually labeled dataset. This parameter is like a template,
which encodes the weight of temporal relations between ac-
tions. We visualize the learned parameter in Figure 7.

From this figure, we can see that our composite temporal
logic descriptor and the learning method reasonably capture
the co-occurrence and temporal location relations between
actions. For example, the action throw trash usually occurs
after the action pick up trash. So the weights of the bins
encoding the after-far relations are larger than other bins.
The action type on keyboard usually co-occurs with the ac-
tion sit. So the weights of the middle bins are much larger
than the weights of the before or after parts. The uniform
blocks represents the independence or small dependence of
two actions, like the relation between fetch water and make
a call.

Another advantage of our descriptor is that it can char-
acterize the duration relations of actions, which is impor-
tant information of an action. This is displayed by that the
descriptor of action yj to yi and the descriptor of yi to yj
are unsymmetrical, as the relations between turn on mon-
itor and type on keyboard. This is because our descriptor
is related to the location of the start, center, and end of the
reference action, not only dependent on one location point.
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Figure 7. The learned temporal relation templates. The pairwise
relation between two actions is shown as a 3× 8 block. The three
rows correspond to rSij , rCij , and rEij , respectively. Each block de-
scribes the relation of the column action relative to the row action.
The brighter colors correspond to the larger values of the weight.

7. Conclusion

In this paper, we present a new problem of concurrent
action detection and proposes a structural prediction formu-
lation for this problem. This formulation extends the ac-
tion recognition from unary feature classification to mul-
tiple structural labeling. We describe the phenomenon of
the concurrent actions by introducing the informative body
parts, which are mined for each action class by multiple
kernel learning. To accommodate the sequential nature and
large duration of video sequence, we design a sequential
decision window search algorithm, which can online detect
actions in video sequence. We design two descriptors for
representing the local action feature and temporal relations
between actions, respectively. The experiment results on
our new concurrent action dataset demonstrate the benefit
of our model. The future work will focus on the multiple
action detection in real surveillance video of large scenes.
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[8] M. Müller and T. Röder. Motion templates for automatic
classification and retrieval of motion capture data. In ACM
SIGGRAPH/Eurographics symposium on Computer anima-
tion, 2006.

[9] M. Pei, Y. Jia, and S.-C. Zhu. Parsing video events with goal
inference and intent prediction. In ICCV, 2011.

[10] C. S. Pinhanez and A. F. Bobick. Human action detection us-
ing pnf propagation of temporal constraints. In CVPR, 1998.

[11] K. Quennesson, E. Ioup, and C. L. Isbell. Wavelet statistics
for human motion classification. In AAAI, 2006.

[12] K. Rohanimanesh and S. Mahadevan. Learning to take con-
current actions. In NIPS, 2002.

[13] Y. Shi, Y. Huang, D. Minnen, A. F. Bobick, and I. A. Essa.
Propagation networks for recognition of partially ordered se-
quential action. In CVPR, 2004.

[14] J. Shotton, A. W. Fitzgibbon, M. Cook, T. Sharp, M. Finoc-
chio, R. Moore, A. Kipman, and A. Blake. Real-time human
pose recognition in parts from single depth images. In CVPR,
2011.

[15] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf.
Large scale multiple kernel learning. Journal of Machine
Learning Research, 7:1531–1565, 2006.

[16] K. Tang, L. Fei-Fei, and D. Koller. Learning latent temporal
structure for complex event detection. In CVPR, 2012.

[17] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Al-
tun. Large margin methods for structured and interdependent
output variables. Journal of Machine Learning Research,
6:1453–1484, 2005.

[18] J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet en-
semble for action recognition with depth cameras. In CVPR,
2012.

[19] P. Wei, Y. Zhao, N. Zheng, and S.-C. Zhu. Modeling 4d
human-object interactions for event and object recognition.
In ICCV, 2013.

[20] J. Yuan, Z. Liu, and Y. Wu. Discriminative subvolume search
for efficient action detection. In CVPR, 2009.

4328


