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Abstract

We present a model for gaze prediction in egocentric
video by leveraging the implicit cues that exist in camera
wearer’s behaviors. Specifically, we compute the camera
wearer’s head motion and hand location from the video and
combine them to estimate where the eyes look. We further
model the dynamic behavior of the gaze, in particular fix-
ations, as latent variables to improve the gaze prediction.
Our gaze prediction results outperform the state-of-the-art
algorithms by a large margin on publicly available egocen-
tric vision datasets. In addition, we demonstrate that we get
a significant performance boost in recognizing daily actions
and segmenting foreground objects by plugging in our gaze
predictions into state-of-the-art methods.

1. Introduction
With the advent of wearable cameras, such as GoPro and

Google Glass, there has been an increasing interest in ego-
centric vision— the automatic analysis of video captured
from a first-person perspective. A key component in ego-
centric vision is the egocentric gaze [13]. Because a per-
son senses the visual world through a series of fixations,
egocentric gaze measurements contain important cues re-
garding the most salient objects in the scene, and the inten-
tions and goals of the camera-wearer. Previous works have
demonstrated the utility of gaze measurements in object dis-
covery [17] and action recognition [7].

This paper addresses the problem of egocentric gaze pre-
diction, which is the task of predicting the user’s point-of-
gaze given an egocentric video. Previous work on gaze pre-
diction in computer vision has primarily focused on salien-
cy detection [2]. Previous saliency models can be roughly
categorized into either (1) bottom-up approaches [11] where
the gaze is attracted by the discontinuities of low level fea-
tures, such as color, contrast and edge; or (2) top-down ap-
proaches [24, 7, 3] where the gaze is directed by high level
semantics, such as tasks, objects or scene. However, none of
these approaches seem to be sufficient to predict egocentric
gaze in the context of hand-eye coordination tasks. Salien-

cy detection can be effective for visual search, but does not
identify the key regions in a manipulation task. Task-driven
methods can be effective, but require the identification of
current activity, which is an open problem in itself. In this
work we explore a third alternative: We address the ques-
tion of whether measurements of head and hand movements
can be used to predict gaze, without reference to saliency or
activity models.

Egocentric gaze in a natural environment is the combi-
nation of gaze direction (the line of sight in a head-centered
coordinate system), head orientation, and body pose. Espe-
cially during object manipulation tasks, eye, head and hand
are in continual motion, and the coordination of their move-
ments is requisite [19]. For example, large head movement
is almost always accompanied by a large gaze shift [14]. Al-
so, the gaze point tends to fall on the object that is currently
being manipulated by the first person [14]. These evidences
suggest that we can model the gaze of the first person by
exploring the coordination of eye, hands and head, using
egocentric cues alone.

The first part of our paper focuses on gaze prediction.
Our major contribution is leveraging the implicit cues that
are provided by first person, such as hand location and pose,
head/hand motion, for predicting gaze in egocentric vision.
We begin with an analysis of gaze tracking data from a
wearable eye tracker and demonstrate that: (1) egocentric
gaze is statistically different from on-screen eye-tracking;
(2) there exists a strong coordination of eye, head and hand
movements in the object manipulation tasks; (3) these co-
ordinations can be used for predicting gaze in the egocen-
tric setting. Moreover, we build a graphical model for gaze
prediction that accounts for eye-hand and eye-head coor-
dinations, and combines the temporal dynamics of gazes.
The model requires no information of task or action, pre-
dicts gaze position at each frame and identifies moments of
fixation. Our gaze prediction results outperform all state-
of-the-art bottom-up and top-down saliency detection algo-
rithms by a large margin on two publicly available datasets.

The second part of our paper explores applications of
gaze prediction in egocentric vision. We provide exten-
sive experimental results on two important applications in
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Figure 1. Overview of our approach. We leverage implicit cues that are provided by the first person in an egocentric setting for gaze
prediction. Our egocentric features includes head/hand motion and hand location/pose. We design a graphical model for gaze prediction
that take account for eye-hand and eye-head coordinations, and combines the temporal dynamics of gazes. Our model predicts gaze
position at each frame and identifies moments of fixation with only egocentric videos. We demonstrate two important applications of gaze
prediction: object segmentation and gaze prediction. Our gaze prediction, object segmentation and action recognition results outperform
several state-of-the-art methods.

egocentric vision: (1) foreground object segmentation and
(2) egocentric action recognition. Simply by plugging in
our gaze prediction, we observe a significant performance
boost in comparison to several state-of-the-art methods. In
object segmentation, the performance of our model is even
comparable to alternative approaches that use ground-truth
human gazes. We conclude that our gaze prediction model
promises a great prospect for egocentric vision.

2. Related Work
2.1. Saliency Detection

Most of the bottom-up saliency models are based on the
Feature Integration Theory [11]. Low level features such as
color, intensity and orientation across scales are aggregat-
ed to measure the distinctiveness of a local region. Several
methods also model saliency in a probabilistic framework,
where the rarity of the feature defines its saliency [2]. Other
approaches also include spectral methods [9], sparse and ef-
ficient coding [10], graphical model [8] and learning based
model [12]. A recent review of saliency detection can be
found in [2].

Very few computational methods have addressed the top-
down saliency model. Torralba et al. [24] considered the
contextual guidance of eye movement by combining low
level features with high level scene semantics. Our method
is closely related to Borji et al. [3]. They considered a driv-
ing simulation scenario where motor action is available as
the top-down feature, and learned a direct mapping from
both bottom-up and top-down features to fixations. Instead,
we address real object manipulation tasks using egocen-
tric vision, assume no additional information other than the
video and utilize only egocentric cues for gaze prediction.

2.2. Eye, Hand and Head Coordination

Eye-hand and eye-head coordination has been studied
for decades in psychology literature. Most of them are qual-

itative rather than quantitative. Land and Hayhoe [15] stud-
ied gaze behavior in natural tasks such as tea making. They
found eye fixation usually precedes hand movement by a
fraction of second. Pelz et al. [19] explored the temporal
coordination of eye, head, and hand movements while sub-
jects performed a simple block-copying task, where they
discovered regular, rhythmic pattern of eye, head, and hand
movements. These studies suggest a strong coordination of
eye, hand and head movements in natural tasks. However,
the coordination is variable under different situations [14].

In the computer vision community, Ba and Odobez [1]
presented a model for the recognition of people’s visual fo-
cus of attention in meetings by approximating gaze direc-
tion with head orientation. Yu and Ballard [26] proposed a
HMM model for action recognition based on eye-head-hand
coordination in an egocentric setting by tracking gaze, head
and hands using additional sensors.

2.3. Egocentric Vision

Egocentric vision is an emerging field in computer vi-
sion. The first person perspective provides a consistent
view point, a high quality image measurement and mini-
mum amount of occlusion for objects. Spriggs et al. [23]
addressed the segmentation and classification of activities
using the first-person sensing. Fathi et al. [6] proposed to
model object, action and activity jointly in egocentric vi-
sion. Other egocentric applications include object and ac-
tivity detection [20] and video summarization [16]. Ya-
mada et al. [25] combined bottom-up visual saliency with
ego-motion information for egocentric gaze prediction in a
walking or sitting setting. The most relevant work is Fathi
et al. [7]. They presented a joint method for egocentric gaze
prediction and action recognition. However, their model re-
quires object masks and action annotations for gaze predic-
tion and the performance drops significantly if gazes are not
available or inaccurate.



Figure 2. (a) Center bias (from left to right) for MIT eye tracking
dataset, GTEA Gaze dataset and GTEA Gaze+ dataset. Egocentric
gaze has a much smaller variance in space. Thus, head orientation
provides a good approximation for gaze direction in egocentric
videos. (b) A scatter plot of head movement against gaze shift
along vertical and horizontal direction in GTEA Gaze+ dataset.
The plot suggests a linear correlation in the horizontal direction.

3. Egocentric Cues for Gaze Prediction
We focus on object manipulation tasks in a meal prepa-

ration setting, and explore the possibility of gaze predic-
tion using egocentric cues, including hand/head movement
and hand location/pose. The coordination of eye, head and
hand, as we show in this section, bridges the gap between
these egocentric cues and gaze prediction.

Throughout the paper, we use public dataset GTEA Gaze
and a subset of GTEA Gaze+ (first 15 videos of 5 subject-
s and 3 recipes) from [7]. Both datasets contain egocen-
tric videos of meal preparation with gaze tracking results
and action annotations. We also consider MIT eye tracking
dataset [12] for comparing gaze statistics. The MIT dataset
includes gaze points from 15 subjects watching 1003 im-
ages on a screen.

3.1. Eye-Head Coordination

Several psychophysical experiments have indicated that
eye gaze and head pose are coupled in various tasks [19, 14,
15]. For example, large head movement is almost always
accompanied by a large gaze shift. We explore the eye-
head coordination in the object manipulation task by a data
driven approach. The gaze statistics suggest a sharp center
bias and a strong correlation between head motion and gaze
shifts. These findings thus provide powerful cues for gaze
prediction.

Egocentric Head Cues: The direction of first person’s
head is implicitly represented by the egocentric video it-
self. In the egocentric setting, the camera is mounted on
the first-person’s head, continuously capturing the scene in
front of the first-person. Thus, the center of the image in
the video already gives a rough direction towards which the

first-person’s head is oriented. We can also estimate the
head movement by a global motion vector. Due to the sub-
stantial motion in egocentric videos, we apply Large Dis-
placement Optical Flow (LDOF) [4] between two consecu-
tive frames to get the motion field. Flows on each non-hand
pixel are averaged into a 2D global motion vector. Head
movements along horizontal and vertical directions are then
approximated by the inverse tangent of the global motion
vector divided by camera focal length. The approximation,
albeit simple, provides a reasonable estimate.

Center Bias: Our first observation is a sharp center bias
of egocentric gaze points. We fit a 2D Gaussian as the cen-
ter prior to all gaze points in GTEA Gaze and GTEA Gaze+
dataset, respectively, as shown in Fig 2. In comparison, we
also visualize the center prior as a 2D Gaussian from MIT
eye tracking dataset [12]. Egocentric gaze has a much s-
maller variance in space. This is due to the fact that egocen-
tric vision captures a first-person’s perspective in 3D world,
where the gaze often aligns with the head orientation. In
this case, the needs of large gaze shifts are usually compen-
sated by head movements plus small gaze shifts. Thus, head
orientation is a good approximation of gaze. Note that the
preference of gaze towards the bottom part of the image is
influenced by table-top object manipulation tasks.

Correlation between Gaze Shifts and Head Motion:
We also observe a tight correlation between head motion
and gaze shift in the horizontal direction. A scatter plot of
gaze shifts (from the center) against head motion for GTEA
Gaze+ dataset is shown in Fig 2b. The plot suggests a linear
correlation in the horizontal direction, especially for large
gaze shifts. Intuitively, one tends to look at his right side
if he turns his head towards right. This is again in consis-
tent with the empirical finding. The correlation, therefore,
allows us to predict gaze location from head motion.

3.2. Eye-Hand Coordination

Eye-hand coordination is the key to good performance
in object manipulation tasks. Eye gaze generally guides
the movement of the hands to target [15]. Moreover, it
has also been shown [21] that the proprioception of limbs
may influence gaze shift, where the hands are used to guide
eye movements. We introduce the concept of manipula-
tion point, align gaze points with respect to the first per-
son’s hands and discover clusters in the aligned gaze den-
sity map, suggesting a strong eye-hand coordination. This
suggest that we can predict egocentric gaze by looking into
the first-person’s hand information.

Egocentric Hand Cues: Information of hands, includ-
ing their locations, poses and movements are important e-
gocentric cues for object manipulation. However, accurate
tracking of hands in egocentric video is a nontrivial task.
We seek to segment the hands from the video and discrim-
inate between left/right/intersecting hands, which provides



Figure 3. Top row: Hand segmentation and manipulation points (red dots). We present four different hand configurations and the corre-
spondent manipulation points. The hands are colored by their configurations. Bottom row: Aligned gaze density map. We align the gaze
points into the hand’s coordinates by selecting the manipulation points as the origin, and projecting the gaze point into the new coordinate
system every frame. We then plot the density map by averaging the aligned gaze points across all frames within the dataset. High density
clusters can be found around the manipulation points, indicating spatial structures for eye-hand coordination.

a rough hand pose estimation. We apply textonBoost [22]
with CRF to segment hands in each frame. For each region,
we extract spatial and shape features (centroid, orientation
of major axis, eccentricity and the area of the hand masks)
and train a SVM to assign it to one of the three choices men-
tioned above. In addition, we assume there are at most two
hands from the first person in a single frame. We greedi-
ly select at most two confident hand regions (with its area
larger than a threshold). We also force mutual exclusive-
ness between region labels. For example, we can not assign
a same label (single left/right hand/intersection hands) to
more than one of the hand regions. And intersecting hands
and single left/right hand can not show up simultaneously.
Hand detection provides hand masks and configurations for
each frame. We also extract hand motion by averaging op-
tical flow vectors within the hand mask.

Manipulation Point: A major challenge for modeling
eye-hand coordination is how to represent hands with vari-
ous poses. Instead of tracking the hand pose, we introduce
manipulation point by analyzing hand shapes at each frame.
A manipulation point is defined as a control point where the
first person is mostly likely to manipulate an object using
his hands. For example, for a single left hand, manipulation
usually happens on right tip of the hand. For two intersect-
ing hands, the manipulation point is generally around the
intersecting part. To find the manipulation point, we match
the hand’s boundary to configuration dependent templates.
Examples can be found in Fig 3. A manipulation point pro-
vides an anchor with respect to current hand pose, and al-
lows us to align gaze points into the hand’s coordinates.

Gaze around Hands: We align the gaze points to the
first-person’s hands by setting the manipulation points as
the origin (See Fig 3). The density maps of the aligned gaze

points for four different hand configurations are plotted in
Fig 3. For both GTEA Gaze and GTEA Gaze+ datasets, we
observe high density around the manipulation point. The
data suggest interesting spatial relationship between manip-
ulation points and gaze points. For single left/right hand,
the gaze tends to fall on top right/top left region, where tak-
ing/putting actions might happen. For two separate hands,
subjects are more likely to look in the middle, where the
object usually stays. For two intersecting hands, gaze shifts
towards the bottom, partly due to openning/closing actions.
These spatial distributions are consistent with the observa-
tion that people tend to look at the object they are manipu-
lating. Thus, they offer a simple cue for gaze prediction.

4. Gaze Prediction in Egocentric Video

We have witness strong cues for gaze by the coordina-
tion of eye, hand and head movement. However, the flexili-
ty of the coordination makes it hard to design a hand-crafted
model. Therefore, we present a learning based framework
to incorporate all these egocentric cues for gaze prediction.
The core of our method lies in a graphical model that com-
bines egocentric cues at a single frame with a temporal mod-
el of gaze shifts.

Our gaze prediction consist of two parts: predicting the
gaze position at each frame and identifying the fixations a-
mong all gazes. Fixation is defined as the pause of gaze
within a spatially limited region (0.5− 1 degree) for a min-
imum period of time (80 − 120ms) [18]. The modeling of
fixations captures the temporal dynamics of gazes. We dis-
cuss the egocentric features, design our model and provide
our inference algorithm in this section.



Figure 4. The graphical model of our gaze prediction method. Our
model combines single frame egocentric cues with temporal dy-
namics of gazes. We extract features zt at each frame t, predict its
gaze position gt and identify its moments of fixation mt.

4.1. Features

We extract egocentric features regarding the first per-
son’s hand and head cues. The feature vector zt for frame
t contains the manipulation point (2D), the global motion
vector (2D), the hand motion vector (2D), the hand config-
uration (1D categorical). Therefore, for every frame, we get
a 7 dimensional feature if hands are detected or a 2 dimen-
sional feature if no hands are presented.

4.2. The Model
Denote the gaze point at frame t as gt = [gxt , g

y
t ]T ∈ R2

and its binary label as mt = {0, 1}, where mt = 1 denotes
gt is a fixation. Given egocentric cues {zt} for all frames
t = 1...K, our goal is to infer the gaze points {gt} and its
label {mt = {0, 1}}. We model the conditional probability
P ({gt,mt}Kt=1|{zt}Kt=1) as

P ({gt,mt}Kt=1|{zt}Kt=1) =

K∏
t=1

P (gt|zt)
K∏
t=1

P (mt|gN(t)), (1)

where gN(t) are the temporal neighbors of gt. In our
model, we set neighborhood to be two consecutive frames
(133ms for GTEA Gaze and 80ms for GTEA Gaze+). The
choice corresponds to the minimum duration of an eye fix-
ation [15, 18]. The model consists of 1) P (gt|zt) a single
frame gaze prediction model given zt; 2) P (mt|gN(t)) a
temporal model that couples fixation mt and gaze predic-
tion gN(t). The graphical model is shown in Fig 4.

Single Frame Gaze Prediction: We use random regres-
sion forest for gaze prediction in a single frame. A random
regression forest is an ensemble of decision trees. For each
branch node, a feature is selected from a random subset of
all features and a decision boundary is set by minimizing
the Minimum Square Error (MSE). The leaf nodes keep the
mean value of all training samples that end up in the node.
And the final result is the weighted average of all leaf nodes
that a testing sample reaches. We choose random forest s-
ince our feature vector zt contains categorical data, which
is easy to handle in a decision tree. We train two separate
models for gaze prediction, one with both hand and head
cues and one with only head cues. Our model will step back
to head motion cues if no hands are detected.

For simplicity, we train two regression forests for hor-
izontal and vertical direction separately. The regression
builds a map f between feature vector zt to a 2D image
coordinates g̃t = f(zt), i.e. the prediction of gaze point
at frame t. The probability P (gt|zt) is then modeled as a
Gaussian centered at g̃t with covariance Σs ∈ R2×2

P (gt|zt) ∝ exp
(
−‖gt − g̃t‖2Σs

)
, (2)

where ‖gt − g̃t‖2Σs
= (gt − g̃t)T Σ−1

s (gt − g̃t) is the Maha-
lanobis distance.

Fixations and Gazes: Gaze prediction and fixation de-
tection are tightly coupled. On one hand, fixationmt can be
detected given all gaze points. On the other hand, there is
a strong constraint over gaze locations if we know current
gaze point is a fixation. For example, gt should be close
to gt−1 if mt = 1. Therefore, we model the conditional
probability P (mt|gN(t)) as

P (mt|gN(t)) ∝ exp

−mt

∑
i∈N(t)

‖gi − gt‖22

 (3)

where mi can be obtained by a fixation detection algorithm
given gaze points gN(t) . Here we use a velocity-threshold
based fixation detection [18]: a fixation is detected if veloc-
ity of gaze points are below a threshold c over a minimum
amount of time (two frames in our case).

mt =
∏

i∈N(t)

−sign(‖gi − gt‖22 − c) + 1

2
, (4)

where sign(x) = −1 if x < 0 and sign(x) = 1 if x >= 0.

4.3. Inference and Learning
Inference: To get the gaze points {gt}Kt=1 and fixations

{mt}Kt=1, we apply Maximum Likelihood (ML) estimation
of Eq (1). The minimization of negative log likelihood func-
tion is given by

min
{gt,mt}Kt=1

− log(P ({gt}Kt=1, {mt}Kt=1|{zt}Kt=1))

=− log

(
K∏
t=1

P (gt|zt)
K∏
t=1

P (mt|gN(t))

)

=
K∑
t=1

‖gt − g̃t‖2Σs
+ λ

K−1∑
t=1

mt‖gt+1 − gt‖22

s.t. mt =
−sign(‖gt+1 − gt‖22 − c) + 1

2
∀t

(5)

Projected gradient descent is used to obtain a local mini-
mum of Eq (5). We first perform gradient descent over the
object function assuming mt is known and ignore the con-
straints. mt is then updated to make all constraints feasible.
These two steps run iteratively until convergence. Intuitive-
ly, the optimization follows a EM like updating by (1) iden-
tifying fixations mt by velocity-thresholds given all gaze



predictions gt and (2) smoothing the gaze points gt given
fixation labels mt.

Updating mt given gt is straightforward, we estimate
mt using Eq (4). Updating gt given mt is more challeng-
ing, since gt and gt+1 are coupled together with mt. Giv-
en mt, we can rewrite Eq (5) using its matrix form. Let
G = [g1 ... gK ]T , G̃ = [g̃1 ... g̃K ]T andm = [m1 ... mK ]T .
Denote matrixA as the Toeplitz matrix correspondent to the
convolution kernels [−1 1]T . The updating of G is equal to

min
G
‖G− G̃‖2Σs

+ λ‖mTAG‖22 (6)

The solution of Eq (6) is given by setting the first order
derivative to zero

G∗ =
(

Σs + λATmmTA
)−1

ΣsG̃. (7)

Learning: Learning the model is relatively easy. We
first train the single frame random regression tree, using 40
trees. The parameters needed to be determined now are the
velocity threshold c, the covariance matrix Σs and the con-
stant λ. We select c to be roughly the distance of 1 degree
of angular error (50/80 pixels for GTEA Gaze and GTEA
Gaze+ respectively). Σs defines the Mahalanobis distance
between gaze points, and is learned by re-sending training
samples into random forest and re-estimating the error co-
variance. We empirically select λ = 0.4.

4.4. Gaze Prediction

We use two standard, complementary measures to assess
the performance of our gaze prediction method: Area Under
(ROC) Curve (AUC) and Average Angular Error (AAE).
AUC measures the consistency between a predicted salien-
cy map and the ground truth gaze points in an image, and
is widely used in the saliency detection literature. AAE
measures the angular distance between the predicted gaze
point (e.g. the most salient point) and the groundtruth gaze,
and is widely used in the gaze tracking literature. Since our
method outputs a single predicted gaze point, we generate a
saliency map that can be used for AUC scoring by convolv-
ing an isotropic Gaussian over the predicted gaze.

4.4.1 Results

Both GTEA Gaze and GTEA Gaze+ dataset contain gaze
data from eye tracking glasses, which are used as ground
truth for gaze prediction. We compare our results with five
competing methods: a baseline center prior prediction using
2D Gaussian, three bottom-up saliency detection algorithms
(Itti and Koch [11], GBVS [8], Hou et al. [10]) and one top-
down saliency algorithm [7]. For all the previous methods,
we use the authors’ own implementations for benchmark-
ing purposes. The motion cues in [11, 8] are enabled for
fair comparison. One issue is that Fathi et al. [7] requires
action labels for gaze prediction. We supply their method

Figure 5. Left: AUC scores and AAE for 8 different methods in
GTEA Gaze dataset. Our combined model achieves the highest
AUC score (87.8%) and lowest AAE (8.35 Degree) among all
methods. Our method consistently generates more accurate pre-
dictions, with less AAE than [7] for 75% of all frames (67% for
2D Gaussian). Right: ROC curves for different methods. Our
method requires no information about action or task, and largely
outperforms the bottom-up and top-down gaze prediction method.

with ground truth action labels in all of our experiments.
We want to emphasis that our method does not use either
bottom-up features or top-down action labels.

For GTEA Gaze dataset, we use the same training (13
videos) and testing (4 videos) split as [7] for fair compari-
son. For GTEA Gaze+ dataset, we perform a five-fold cross
validation by using 4 subjects for training and 1 subject for
testing. For all our results, we average over 10 runs of ran-
dom forest. We cannot compare to the results of [7] on the
GTEA Gaze+ dataset, since their method requires object an-
notations for training, and so far no annotations have been
released for this dataset.

Fig. 5 shows the quantitative comparison of AUC, AAE
and the ROC curve in GTEA Gaze. Our method with head
cues achieved AUC score of 82.3% and AAE of 10.68 de-
gree. Adding hand cues significantly improved the AUC s-
core (86.7%) and reduced the AAE (8.85 degree). Our tem-
poral model added another 1% of AUC and 0.5 degree of
AAE. Overall, our combined model achieved AUC score of
87.8%, where the state-of-the-art [7] gives 83.6% by using
the ground truth action labels in testing. Our method also
ranks highest for AAE with 8.35 degree, where the second
best is 2D Gaussian (10.16 degree).

Our method works surprisingly well and outperform the
sophisticated top-down method [7] by 4.2%. Our method
benefits from using the strong egocentric cues (head, hand
and eye coordination) for gaze prediction and bypasses the
challenging object segmentation step required by [7]. An-
other interesting finding is that the center prior gives better
accuracy than all of the bottom-up results in AUC with a
reasonable AAE. These results suggest that egocentric cues
can provide a reliable gaze estimate without low-level im-



Figure 6. Left: AUC scores and AAE for 7 different methods in
GTEA Gaze+ dataset. Again, our combined model outperforms all
other methods in both AUC score and AAE. Our method has less
AAE than second best (2D Gaussian) for 69% of all frames. Right:
ROC curves for different methods. It is interesting to find that the
2D Gaussian consistently outperforms bottom-up methods.

age features or high-level task constraints.

We also tested our method in GTEA Gaze+ dataset. The
results, including AUC, AAE and the ROC curve are shown
in Fig 6. Our final method has the best AUC of 86.7%
and the best AAE of 7.93 degree, outperforming the sec-
ond best (2D Gaussian) by 4.8% and 0.7 degree respective-
ly. Using head motion already outperformed the center pri-
or and adding hand cues further improved the results. A-
gain, the center prior performs better than bottom-up meth-
ods. One possible explanation is that bottom-up saliency
may be an effective predictor for visual search tasks, where
image features may naturally draw the viewer’s attention
during a scan. However, for hand-eye coordination tasks
the gaze is naturally-coordinated with the head, making the
head orientation a more effective approximation. In addi-
tion, GTEA Gaze+ dataset provides ground truth labels for
fixations from the eye tracking glasses. Our temporal model
for fixation detection achieved 84.7% accuracy.

4.5. Object Segmentation

We further demonstrate that gaze prediction can be used
to segment task-relevant foreground objects. Each video
(of the 6 testing videos) is split into non-overlapping 1.5-
second clips. We selected the video clips that has an action
label which involves object manipulation. Two annotators
were asked to select a frame within the clip and manually
segment the foreground object that is involved in the action.
We obtained 234 object masks from 300 video clips select-
ed from 6 of the videos in GTEA Gaze+. More details can
be found in supplementary materials.

Figure 7. (a) Foreground object segmentation results. We plug in
our gaze prediction into two different algorithms. For ActSeg, hu-
man gaze achieves 31.5% and our gaze prediction reaches 21.7%.
CPMC achieves the same score by the first 4 segments with human
gaze, and by the first 6 segments using our gaze prediction. We al-
so improve CPMC results by 2.6% over top 100 segments using
gaze, with only a small performance gap between human gaze and
predicted gaze. (b) Confusion matrix of action recognition using
predicted gaze on GTEA Gaze dataset (25 classes). The average
accuracy is 32.8% in comparison to the baseline 29% [7].

4.5.1 Results

We used both our gaze prediction results and the ground
truth gaze point to seed two different methods for extract-
ing foreground object regions: ActSeg [17] and CPMC [5].
Given the ground truth segmentation, we score the effec-
tiveness of object segmentation under both predicted and
measured gaze, thereby obtaining an alternate characteri-
zation of the effectiveness of our gaze prediction method.
ActSeg [17] takes gaze points as the input and outputs one
object segment per gaze point. It assumes that the gaze
point always lies within the object boundary and segments
the object by finding the most salient boundary. CPMC [5]
uniformly samples seed points across the entire image, then
generates object hypothesis and ranks them. We modified
the implementation of CPMC to put the same number of
dense seeds only in the vicinity of the gaze point.

We studied the relationship between foreground objec-
t masks and fixation points in our dataset. We found that
82.9% (194/224) of our object annotations contain a fixa-
tion in the same frame. And 75.2% of the fixations lies
within the foreground object boundary. Moreover, 94.3%
of the fixations lies within the 80 pixels (1 degree) from the
nearest foreground object boundary. The statistics suggest
that human gaze tends to focus on task-relevant objects [15].
However, it is not always true that the fixation always lies
in the object boundary [17]. Possible explantation includes
micro saccade [15] or gaze tracking error.

We score the segmentation results by the mean best over-
lapping scores, defined as the average of best overlap (inter-
action over union) between a segment and the ground truth.
We measure the performance of CPMC by selecting the top
K candidates and varying the number of K. The results are
reported in Fig 7(a). For ActSeg, human gaze gives 31.5%



and our gaze prediction gives 21.7% in mean best overlap-
ping score. For CPMC, we get equivalent performance to
ActSeg from the first 6 segments, and then improve the re-
sults by 2.6% by using predicted gaze with the first 100 seg-
ments. The performance using our gaze prediction method
is comparable to that using ground truth gaze.

4.6. Action Recognition

Egocentric gaze is not only useful for foreground object
segmentation, but also helps to recognize first-person’s ac-
tion. We report action recognition results on GTEA Gaze
dataset by plugging in our predicted gaze into the imple-
mentation of [7], as shown in Fig 7(b). Their method ex-
tracts motion and appearance features from a small region
around a gaze point and trains a SVM classifier combined
with HMM for action recognition.

We compare our results against [7]. Using our gaze pre-
diction, we improve the action recognition result to 32.8%
from the state-of-the-art [7] at 29%. The upper bound of
the method is given by human gaze at an accuracy of 47%.
For 7 out of 25 classes, we perform better than [7]. Again,
we can not report results on GTEA Gaze+ due to the lack
of object annotations. We notice the large gap between our
gaze prediction and real human gaze. However, we con-
clude the gap is only partly due to gaze prediction since the
performance of method [7] is sensitive to input gaze points.

5. Conclusion
We described a novel approach to gaze prediction in ego-

centric video. Our method is motivated by the fact that in an
egocentric setting, the behaviors of the first-person provide
strong cues for predicting the gaze direction. We present-
ed a model that both describes the dynamic behavior of the
gaze and also reliably predicts the locations of the gazed
points in video. Our gaze prediction results outperform the
state-of-the-art algorithms by a large margin on GTEA Gaze
and GTEA Gaze+ datasets. Finally, we demonstrate that we
get a significant performance boost in recognizing daily ac-
tions and segmenting foreground objects by plugging in our
gaze predictions into state-of-the-art methods.
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