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Abstract

We study the problem of online subspace learning in the
context of sequential observations involving structured per-
turbations. In online subspace learning, the observations
are an unknown mixture of two components presented to
the model sequentially — the main effect which pertains to
the subspace and a residual/error term. If no additional re-
quirement is imposed on the residual, it often corresponds
to noise terms in the signal which were unaccounted for by
the main effect. To remedy this, one may impose ‘struc-
tural’ contiguity, which has the intended effect of leverag-
ing the secondary terms as a covariate that helps the esti-
mation of the subspace itself, instead of merely serving as
a noise residual. We show that the corresponding online
estimation procedure can be written as an approximate op-
timization process on a Grassmannian. We propose an ef-
ficient numerical solution, GOSUS, Grassmannian Online
Subspace Updates with Structured-sparsity, for this prob-
lem. GOSUS is expressive enough in modeling both homo-
geneous perturbations of the subspace and structural conti-
guities of outliers, and after certain manipulations, solvable
via an alternating direction method of multipliers (ADMM).
We evaluate the empirical performance of this algorithm
on two problems of interest: online background subtraction
and online multiple face tracking, and demonstrate that it
achieves competitive performance with the state-of-the-art
in near real time.

1. Introduction
Subspace learning methods have been extensively stud-

ied in vision with applications spanning motion analysis,
clustering, background estimation, and deriving semantic
representations of scenes [11, 7, 6, 13]. Within the last few
years, new developments in matrix factorization [36, 3] and
sparse modeling [25, 38] have led to significant renewed
interest in this construct, and has provided a suite of new
models and optimization schemes for many variants of the
problem. An interesting version that several authors have

proposed recently is Online Subspace Learning [37, 4, 15].
Here, observations are presented sequentially, in the form
of an unknown mixture of the primary subspace(s) plus a
residual component. The objective is to keep an estimate
of the contributing subspace(s) updated as the observations
continually present themselves.

The standard strategy of modeling the foregoing online
estimation question is to assume that the observation is an
unknown mixture of two components. The first relates to
the subspace terms comprising one or multiple subspaces
(and with or without regularization). Statistically, one may
regard this term as the main effect which explains most of
the measurement. But fitting the signal to high fidelity will
necessarily involve a large degree of freedom in the sub-
space term, and so the model allows for a small amount of
compensatory residual error — this corresponds to the sec-
ond term contributing to the observed signal. To encourage
the residual quantity to be small, most proposals impose a
sparsity penalty on its norm [24, 15]. Therefore, the main
technical concern, both in the “batch” and online settings, is
to efficiently estimate the subspace and if possible provide
probabilistic guarantees of correct recovery.

Within the last year, a particularly relevant application
of online subspace learning is in the context of keeping up-
dated estimates of background and foreground layers for
video data1. Here, one exploits concepts from matrix com-
pletion for subspace estimation, by drawing i.i.d. samples
from each incoming frame, and adjusting the current sub-
space parameters using only the sub-sampled data [15]. The
mass of the signal outside the support of the subspace may
then be labeled as foreground. This strategy works quite
well when the background is completely static: essentially,
the model has seen several hundred frames and has con-
verged to a good estimate already. However, when there
are small but continual variations in the background (e.g., a
swaying tree) and/or it is undergoing changes due to cam-
era motion, zoom or illumination differences, it takes time

1We will use this as a running example throughout the paper in an effort
to make certain ideas concrete (we present results for another application
in Section 5.2, thereby demonstrating the generality of the method).
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for the subspace estimates to stabilize. Here, the residual
must then compensate for a less than ideal estimate of the
main effect, which leads to salt-pepper isolated foreground
regions, scattered over the image. One reason for this unsat-
isfactory behavior is that the model does not enforce spatial
homogeneity in the foreground region. Imposing ‘structure’
on the secondary term, such as asking for contiguity, has the
highly beneficial effect that the residual serves a more im-
portant role than merely accounting for the error/corruption.
From a statistical modeling perspective, the residual struc-
ture acts as a covariate that improves the estimate of the
main effect (the background reconstruction via subspace
modeling). Consequently, in the background/foreground
setting, we see that the estimated foreground regions are
far more meaningful. The resultant improvements in per-
formance are quite significant, compared to the alternative.
For several other interesting applications which we discuss
later in the paper, the benefits are clear, though the notion of
structure (i.e., structured sparsity operator) is different and
better reflects the needs of that domain.

This paper. Consider a regression model, Y = f(W ) +
ε. If the distributional properties of the second term is
known (e.g., Rician, Poisson), it must improve the esti-
mation of f(·). We seek to translate this simple idea to
the problem of Online Subspace Learning, by incorporat-
ing structure (i.e., via a group norm) on the secondary term.
The key contributions of this paper are: 1) Show how group
sparsity based structural homogeneity can be incorporated
within estimation problems defined on Grassmannian man-
ifolds; 2) Present an efficient online optimization scheme
where most constituent steps reduce to simple matrix opera-
tions; 3) Demonstrate for two example applications (online
background subtraction and online multiple face tracking)
using a variety of datasets, that the method gives competi-
tive empirical performance in near real time.

2. Related Work
Subspace learning, and more generally, learning low

dimensional multi-linear models has a long and rich his-
tory in Computer Vision. The contemporary suite of algo-
rithms for this problem may be classified into a few sep-
arate categories, which nonetheless share important sim-
ilarities. Models inspired from dimensionality reduction
techniques build upon the traditional principal component
analysis (PCA) framework. For instance, Robust subspace
learning [11, 13] and Generalized Principal Component
Analysis (GPCA) [34] take a hybrid geometric/statistical
view of separating heterogeneous ‘mixed’ data drawn from
one or more subspaces. Building upon classical approaches
based on factor analysis, independent component analysis
(ICA) and its variants [23] parameterize the subspace as a
combination of a small set of sources [18], and work well
for subspace estimation applications such as action recog-

nition [21], segmentation [27] and facial pose analysis [23].
More recently, theory from compressive sensing (also, ma-
trix completion) [9], and matrix factorization [3] have been
successfully translated into new models and optimization
schemes for this problem. An important representative from
this group, which has found a multitude of vision appli-
cations, is Robust Principal Components Analysis (RPCA)
which expresses the measurement as a combination of a low
rank matrix and a `1-regularized noise component [24, 8].
Separately, several authors express subspace estimation as
a non-negative matrix factorization (NMF) [36, 6, 3] and
give rigorous recovery guarantees. While the literature de-
voted to the batch setting above is interesting, there is also
brisk research activity in vision, especially in the last two
years, focused on the online version of this problem. This
has led to a set of powerful online subspace learning meth-
ods [37, 4, 15], which are related to the above ideas as well
as a parallel body of work in manifold learning [14, 32]
— they leverage the fact that the to-be-estimated signal lies
on a Grassmannian [32]. In particular, GROUSE [4] and
GRASTA [15] (an online variant of RPCA) show how the
subspace updates can be accurately maintained in real time
by using sub-sampling ideas. Our framework leverages this
body of work, and we will point out similarities to known
results in the presentation that follows.

3. Model design
Notations. We denote matrices by non–bold upper case
letters (e.g. V ), vectors by bold lower case (e.g. x) and
scalars by non-bold lower case letters (e.g., µ). Subscripts
and superscripts will denote frame numbers, iterations, in-
dices, etc., which will be explained as needed.

This section describes the various sub-components that
make up the main model studied in this paper. As intro-
duced in Section 1, the data V is a composition of a main
effect (or signal) B and a secondary term (or outlier) X .
That is, V = B +X where V,B,X ∈ Rn×m, n is the data
dimensionality and m is the number of observations. The
signal B is given as a linear combination of d sources (sub-
space basis) in n dimensions, denoted by U = [ud]. This
assumption is reasonable since the variation in signal across
consecutive frames is small enough that it allows the few
(d � n) degrees of freedom to recover most changes. The
orthogonal structure of U implies that it lies on a Grassman-
nian manifold Gn,d embedded in a n-dimensional Euclidean
space. Let the coefficient matrix be W . In the absence of
any error, we have B = UW . Now, if v ∈ Rn is an ob-
servation and x ∈ Rn is the corresponding outlier vector
(lies outside the support of the subspace given by U ), then
v = Uw+x, where w is the coefficients vector for the cur-
rent observation. This expression is under constrained when
both the signal and the outlier are unknown. To drive the es-
timation procedure, we impose a regularization constraint
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expressing what constitutes a ‘good’ outlier, for instance,
contiguity. That is, we may ask that the outlier be spatial
coherent ensuring that isolated detections scattered across
the image are strongly discouraged. The implicit expecta-
tion is that this makes x more meaningful in the context of
the application, and so usefully biases the estimation of the
subspace. We elaborate on the notion of structure next.

3.1. Structured sparsity

For the background estimation example, the tex-
ture/color of the foreground objects (i.e., outliers) is homo-
geneous and so the outliers should be contiguous in an im-
age. For multiple face tracking (which we elaborate later),
we need to track a set of faces in a given video where the
subspace constitutes the faces themselves. But the outliers
created by occlusions are not pixel sparse, instead, consti-
tute contiguous regions distributed at different face posi-
tions [19]. As an example, consider a person wearing sun-
glasses or if a shadow or irregular illumination is distorting
a part of the face. We do not want such occlusions to cause
large changes in the online updates and destroy the notion
of a face subspace. Instead, we must allow the x term to
subsume and accommodate such structured deviations from
a ‘face’ subspace.

To formalize this prior on the outlier, we use structured
(or group) sparsity [39, 16, 17]. For one image frame, the
groups may correspond to sets of sliding windows on the
image, super-pixels generated via a pre-processing method
(which encourages perceptually meaningful groups), or po-
tential face sub-regions. A n × n (n is the dimensionality
of each observation) diagonal matrix Di is used to denote a
“group” i. Each diagonal element of Di corresponds to the
presence/absence of a pixel in the ith group, as

Di
jj =

{
1 if pixel j is in group i;
0 otherwise.

(1)

where Di
jj is the jth diagonal element of Di. A penalty

function is then defined as,

h(x) =

l∑
i=1

µi‖Dix‖ (2)

where µi gives the weight for group i and l is the number
of such groups. Di is sparse and allows overlap with other
Djs (i 6= j), so that we can form groups from overlapping
homogeneous regions (groups may also be disjoint, if de-
sired). Our group sparsity function h(·) in (2) has a mixed
norm structure. The inner norm is either l2 or l∞ (we use
l2) forcing pixels in the corresponding group to be simi-
larly weighted, and the outer norm is l1 which encourages
sparsity (i.e. only few groups are selected). In general, the
design of Dis depends on the needs of the application. We
will give specific examples shortly.

3.2. Model

With these components in hand, we can now present our
main model. Given an input data V ∈ Rn×m, our model
estimates the subspace matrix U , the coefficient vector w,
and the outlier x, at a given time point (where v denotes the
given current observation) by the following minimization,
(λ is a positive regularization parameter)

min
UTU=Id,w,x

l∑
i=1

µi‖Dix‖2 +
λ

2
‖Uw + x− v‖22 (3)

4. Optimization
While model (3) faithfully models our requirements, op-

timizing it can be challenging. This is due to the non-
smoothness of the mixed norm and non-convexity arising
due to the orthogonal structure of U . In fact, several recent
papers [26, 10, 29] are devoted to ideas for optimizing the
structured sparsity norm objectives alone, and even by it-
self, it gets complicated due to overlapping groups. Specif-
ically, one may require the design of specialized proximal
operators, and the running time of many existing schemes
(∼ 30 minutes, [29]) is impractical for problem sizes en-
countered in our application.

Observe that at any given time point, the model has al-
ready processed many frames before it, and has obtained a
reasonable estimate of U . Because the changes in U are
not drastic from one frame to the other, local updates of the
variables in (3) are sufficient in practice. This is a compro-
mise since obtaining a global optimum for the nonconvex U
is unlikely anyway. We adopt a block-wise approach which
solves for a subset of variables keeping the others fixed. In
particular, we observe (3) is convex for (w,x) when U is
fixed, which can be computed efficiently. A sequential up-
date scheme [28] is used when optimizing for U , while still
preserving its orthogonality. Below, we give a detailed anal-
ysis of these sub-procedures and outline methods to opti-
mize each component and the overall model.

4.1. Solve for tuple (w,x) at fixed U∗

As x is shared across the two terms in the objective in
(3), we introduce a set of slack variables {zi} for each Dix.
This gives the following sub-problem

min
w,x

l∑
i=1

µi‖zi‖2 +
λ

2
‖U∗w + x− v‖22

s.t. zi = Dix, i = 1, · · · , l.

(4)

Model (4) is convex over {zi} and (w,x), while the con-
straints are affine. A natural choice to solve such a problem
efficiently is the Alternating Direction Method of Multipli-
ers (ADMM) [5], assuming we can show that each resul-
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tant sub-calculations can be performed cheaply. Next, we
demonstrate that this is indeed the case here.

The augmented Lagrangian [28] of (4) is given by

L(w,x, {zi}, {yi}) =
l∑
i=1

µi‖zi‖2 +
λ

2
‖U∗w + x− v‖22

+

l∑
i=1

yi
T
(Dix− zi) +

l∑
i=1

ρi
2
‖Dix− zi‖22

(5)
Here ρi are predefined positive parameters, and yi are the

dual variables associated with the constraints. Our update
scheme proceeds as follows. Given the current observation
v and the tuple (wk,xk, {zik}, {yik}) at kth iteration, the
step-by-step updating of the tuple at (k + 1)th iteration is:
(w,x)-minimization: To minimize (5) with respect to
(w,x) alone, keeping all the other parameters fixed, we have

min
w,x

λ

2
‖U∗w + x− v‖22 +

l∑
i=1

yik
T
Dix

+

l∑
i=1

ρi
2
‖Dix− zik‖22

(6)

(6) takes the form of a convex quadratic problem in (w, x)
and the closed form solution comes from the linear system,
A
[
w x

]T
= b. Note that DiTDi = DiT = Di, and A,b

are computed as line 2 and 3 in Algorithm 1. Solving this
linear system directly can be computational expensive when
n is large. However, observing the structure of A, we have
the following result. All of our proofs are included in the
extended version:

Observation 1. For λ > 0, U∗TU∗ = Id, ρi > 0,∀i ∈
{1, · · · , l}, we have A � 0.

Together with the fact that A is sparse, we use a GPU
solver using preconditioned conjugate gradient method
[28], which reduces the running time significantly.
zi-minimization: Minimizing a specific zi for group i, is
independent of the other zj 6=i and hence can be solved in
parallel. The objective w.r.t zi takes the form,

min
zi

µi‖zi‖2 − yik
T
zi +

ρi
2
‖Dixk+1 − zi‖22 (7)

Denoting rik = Dixk+1 +
yi

k

ρi
, (7) has a closed form solu-

tion by the block soft thresholding formula [39] given as,

zik+1 = max{‖rik‖2 −
µi
ρi
, 0} rik
‖rik‖2

(8)

yi-updating: We can now update yi,∀i ∈ {1, · · · , l} along
the gradient direction by,

yik+1 = yik + ρi(D
ixk+1 − zik+1) (9)

The above analysis shows that the key update steps (sum-
marized in Algorithm 1) within a ADMM procedure can all
be performed efficiently. In our implementation, we alter-
natively solve for (w∗,x∗, zi∗,y∗) until the changes in x
and the objective value reaches a desired level of tolerance.
Given the convexity of each item in the tuple, we have the
following convergence theorem.

Theorem 1. For λ > 0, µi > 0, ρi > 0,∀i ∈ {1, · · · , l},
the sequence {(wk,xk, {zik}, {yi})} generated by Alg. 1
from any initial point (w0,x0, {zi0}, {yi0}) converges to
(w∗,x∗, {zi∗}, {yi∗}), which minimizes (5) at fixed U∗.

Algorithm 1 ADMM for solving (w∗,x∗)

In: Subspace matrix: U∗, observation: v, initial: x0, zi0,y
i
0, group oper-

ator: Di, hyper-parameters: λ, µ, ρ
Out: Subspace coefficient: w∗, structured outliers: x∗

Procedure:
1: for k = 0→ K do

2: A←
[
λId λU∗T

λU∗ λIn +
∑l
i=1 ρiD

i

]
;

3: b←
[

λU∗Tv

λv −
∑l
i=1D

iyik +
∑l
i=1 ρiD

izik

]
4: (wk+1,xk+1) ← minw,x ‖(A[w x]T − b)‖2 using GPU

solver
5: rik ← Dixk+1 +

yi
k

ρi

6: zik+1 ← max{‖rik‖2 −
µi
ρi
, 0} rik
‖ri

k
‖2

7: yik+1 ← yik + ρi(D
ixk+1 − zik+1)

8: Stop if tolerance conditions satisfied.
9: end for

4.2. Update of U with estimated (w∗,x∗)

The key idea to update U is to refine it from the esti-
mation (w∗,x∗) derived from the current observation v on
the Grassmannian. Given the estimated tuple (w∗,x∗), the
derivative of L(.) in (5) with respect to the components of
U and the gradient are given by

∂L
∂U

= λ(Uw∗ + x∗ − v)w∗T = sw∗T (10)

where s = λ(Uw∗ + x∗ − v) denotes the residual vector.
Using identity (2.70) in [2], the gradient on the Grassman-
nian can be computed by

∇L = (I−UUT ) ∂L
∂U

= (I−UUT )sw∗T = sw∗T (11)

(11) is valid because the residual vector s is orthogonal to
all of the columns of U . It is obvious that ∇L is a rank
one matrix, since s and w∗ are both vectors. Hence, we can
compute the compact SVD of ∇L by ∇L = pσq , where
p = s

‖s‖ , σ = ‖s‖‖w∗‖ and q = w∗

‖w∗‖ . Following [2,
15], we update U with a gradient stepsize η in the direction
−∇L as

U(η) = U + (cos(ση)− 1)UqqT − sin(ση)pqT (12)
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where η is the stepsize to update the subspace U on the
Grassmann manifold. We incorporate an adaptive stepsize
η using the updating scheme by [20] but in the experiments,
a constant stepsize works well also. To show the validity of
(12), we give the following lemma,

Lemma 1. The subspace updating procedure (12) pre-
serves the column-wise orthogonality of U .

Notice that (12) is related to a stochastic gradient updat-
ing procedure, where at each iteration, we draw an example
in a sequential manner, instead of random sampling. We
compute the gradient from each example, and use this gra-
dient to improve the subspace. The optimal subspace is not
computed fully, and is instead updated by analyzing succes-
sive observations. Additional details on (12) are given in the
extended version. At this point, we are ready to summarize
our optimization pipeline in Algorithm 2.

Algorithm 2 Main Procedure of GOSUS
In: Observation: V , subspace initialization: U0, hyperparameters: λ, µ, ρ
Out: Approximated signal: B, structured outliers: X
Procedure:
1: for t = 1→ T do
2: Solve (w∗,x∗, {zi∗}, {yi∗}) by Algorithm 1;
3: (Optional) Update stepsize ηt ;
4: Update Ut by (12);
5: end for

5. Applications
We apply GOSUS to the problem of fore-

ground/background separation and multiple face track-
ing/identity management. Our implementation and
experiments are publicly available.

5.1. Background Subtraction

Datasets. We used two benchmark datasets: Perception
Test Images Sequences [22] and Wallflower Test Images
Sequences [31], which are heavily used in recent work
[26, 29, 15, 36]. The data includes 12 video sequences, with
a variety of characteristics, such as changing foreground
with static (Bootstrap, Shopping Mall, Hall) and dynamic
(Fountain, Escalator, Waving Trees, Water Surface, Cur-
tain, Campus) backgrounds as well as illumination changes
(Lobby, Time of Day, Light switch).
Experiments setup. GOSUS is compared to three different
models: (i) Batch model: (RPCA) Robust PCA using Inex-
act Augmented Lagrange Multiplier Method [24] (ii) Batch
model: (RPMF) Robust Probabilistic Matrix Factorization
[36], (iii) Online model: (GRASTA) Grassmannian Robust
Adaptive Subspace Tracking [15]. For these baseline meth-
ods, we use code from the corresponding authors’ websites.
For RPCA, the maximum number of iterations was set to
1000 and the regularization parameter was 1

γ (γ is the num-
ber of pixels in the image frame). The regularization pa-
rameters (one for each of the two factorizing matrices) in

Video Models
Datasets RPCA[24] RPMF[36] GRASTA[15] GOSUS
Fountain 0.94 0.94 0.69 0.99
Escalator 0.91 0.90 0.90 0.96

WavingTrees 0.74 0.84 0.87 0.98
Campus 0.90 0.86 0.77 0.98

Bootstrap 0.87 0.91 0.87 0.93
WaterSurface 0.73 0.84 0.87 0.97

Hall 0.82 0.90 0.76 0.93
Time of Day 0.80 0.85 0.84 0.89
LightSwitch 0.87 0.92 0.62 0.88

Curtain 0.87 0.90 0.88 0.96
Lobby 0.89 0.94 0.70 0.95

ShoppingMall 0.92 0.93 0.90 0.94

Table 1: Area under ROC curves for RPCA, RPMF, GRASTA, GOSUS.

RPMF were set to 1. To obtain best possible results from
GRASTA, sub-sampling was turned off and the code was
initialized with the suggested default settings. In GOSUS,
for each color frame, we extract a vector v with size n (i.e,
# of pixels times 3 for the RGB channels). The ADMM hy-
perparameters used were ρi = 0.3/mean(v),∀i = 1, · · · , l
and stepsize η was 0.01. λ was set using cross–validation
and all µis were set to 1. An initial estimate of the back-
ground subspace was set as a random orthonormal matrix
n× d (where d = 5, n is equal to three times # of pixels in
each frame). The tolerance level for all methods was set at
10−6. Note that RPCA and RPMF see all the data at once
which gives them an inherent advantage over GRASTA. Re-
ceiver Operating Characteristic (ROC) curves, and the cor-
responding area under curve (AUC) values are used as per-
formance evaluation measures.
Group Construction. Together with a 3 × 3 grid group
structure (patches) and hierarchical tree group structure
[19], we also use a coarse-to-fine superpixel group con-
struction. Pixels belonging to each superpixel form a group
which can overlap with others. We employ the SLIC super-
pixel algorithm, with region sizes {80, 40, 20, 10} in order
to generate coarse-to-fine groups [1]. The group construc-
tion captures the boundary information of objects and our
evaluations show this setting works well.
Quantitative Evaluations. Figure 1 summarizes the ROC
plots for 6 videos, representative examples from the three
different data categories that constitute our data. Table 1
presents the AUC values for all 12 videos. The results in-
dicate that GOSUS performs better than all baseline meth-
ods (except on the ‘Light Switch’ video where RPMF was
the best). In particular, from Table 1 we see that GOSUS
competes very favorably with GRASTA, both being online
methods. This is particularly clear in data with dynamic
background (Fountain, Campus) and illumination changes
(Light Switch, Lobby). Also note that RPCA and RPMF
are batch models, and GOSUS attains better performance
than either in almost all categories, which supports the in-
tuition that imposing structure (spatial homogeneity) on the
outliers enables it to improve estimating the subspace.
Qualitative Evaluations. Figure 2 shows the effectiveness
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Figure 1: ROC curves of 6 datasets for three different dataset categories showing the performance of RPCA, RPMF, GRASTA and GOSUS.

of GOSUS in adapting to intermittent object motion in the
background. GOSUS starts with a random subspace and
finds the correct background after 200 frames. At frame t0+
645, a person comes in, sits for a while, and leaves on frame
t0 + 882. GOSUS successfully learn the new background
(notice the pose of the red chair) as early as frame t0+930.

t0 t0 + 200 t0 + 645 t0 + 882 t0 + 930

Figure 2: Effectiveness on adapting to intermittent object motion in the
background. The first row are the original frames, and the second row are
the background learned by GOSUS.

Figure 3 shows example detections for four different
videos (one frame for each) of our algorithm and several
baselines. The first row corresponds to an example with
static background, and GOSUS performs comparably with
others. The last three videos have dynamic background,
where the water surface is moving, trees are swaying, etc.
Observe that outputs of GOSUS contain very few isolated
foreground regions, unlike GRASTA and the other batch
models RPCA and RPMF, which do not regularize the sec-
ondary term at all. Further, the foreground object by itself is
better segmented (very few pixels missing along the bound-
aries) in GOSUS. This shows that the structured sparsity
used in GOSUS, is not only acting as a noise removal fil-

ter (on salt-and-pepper like foreground detections) but also
improves the estimation of the perturbed (dynamic/moving)
subspace. Further note that GOSUS outperforms both batch
models (RPCA and RPMF), since the latter do not use any
form of spatial contiguity. Overall, both Table 1 and Figure
3 indicate that GOSUS improves background subtraction
in various categories, and offers substantial improvements
when the background is dynamic.

We also compare GOSUS with sparse coding based
methods. As shown in Figure 4, our method is compet-
itive with [26], except there are some grid artifacts from
[26] due to their group construction. However, our algo-
rithm achieves 1 ∼ 2 frames per second given the original
image size (no resizing). This is significantly faster than the
bi-level process used in [26], and several orders of magni-
tude faster than speed reported in [29], a method devoted to
optimizing structured sparsity norm.

Original Image GOSUS Mairal et. al [26]

Figure 4: Comparison with [26] using overlapping groups.

5.2. Multiple Face Tracking/Identity Management

Our second application is to track multiple faces (keep-
ing track of the identities) in real world videos, e.g., TV
shows and movies. This problem is extremely challenging
due to the dramatic variation in the appearance of each per-
son‘s face, and the dynamics of characters coming in and

6



Original Frame Ground Truth GOSUS GRASTA[15] RPCA[24] RPMF[36]

Figure 3: Example results on Bootstrap, Campus, and Water Surface comparing GOSUS to ground truth followed by GRASTA, RPCA and RPMF.

out. Existing work has achieved the state of art by utiliz-
ing all visual frames, audio, aligned subtitle and script texts
[12, 30]. We aim to tackle this problem using only the visual
data, and in an efficient manner.

We first run Viola-Jones detector [35] on all image
frames. For robustness to pose/expression variation, light-
ing, and partial occlusion, we use a parts-based descriptor
extracted around detected facial features [12, 30]. We detect
13 facial feature points (the left and right corners, center of
each eye and mouth, the two nostrils, tip of the nose, center
of the eyes) and simply extract a pixel-wise descriptor of the
circular region around each feature point (which we trans-
form on to a canonical face). This gives us a 1937 dimen-
sional feature vector v for each face. The structured spar-
sity prior refers to each circular region as a group. This set-
ting can capture the occlusion created by glasses/shadows
as well as self-occlusions due to pose variations.

The tracking and identity management procedure is re-
lated to face recognition approaches reported in [33, 19].
We consider U as a face subspace, with each column rep-
resenting an ‘eigenface’. The observed face vector is de-
scribed by a combination of eigenfaces using w and struc-
tured outliers x, created by occlusion/disguise. w acts as a
signature for each face. False positives from the face detec-
tor are rejected by thresholding the norm of x. We maintain
a window (size 400) for tracked faces. The label for each
face (i.e., identity) comes from a majority nearest neighbor
votes from this window, along with temporal consistency.
When a new face is found, we add a new label/identity to
our signature window.

We demonstrate the effectiveness of GOSUS on several
real world videos from the TV show: ‘The Big Bang The-
ory’. Sample results are shown in Figure 5. Faces marked
with the same number are from the same track. Firstly ob-
serve that Amy in frame 151 and frame 1009, is tracked

correctly even with significant changes in camera shot. The
person marked 7 (Penny) is also correctly tracked over a
long time (frame 1297 through 2012 to 3693). However,
different tracks for the same person may be introduced if
the person (Rajesh/Sheldon marked as 3/4) disappears in
the video for a long time or has dramatic facial expressions.

Though our preliminary application on multiple face
tracking shows promising results for real videos, the cur-
rent pipeline is limited (in terms of efficiency) to the output
from the face detector. On these videos (720 × 1280), it
takes about 2 seconds to detect all possible faces (for each
frame), whereas GOSUS on its own can process all 6000
frames with all detected faces in ∼ 20 seconds. Also note
that the face detector can only detect frontal faces (the face
of the male in frame 151 is missing), and can introduce a
sizeable number of false positives for real world videos.
Improvements to these modules will seamlessly yield im-
provements in the empirical performance of GOSUS.

6. Conclusion

The main contribution of this paper is an intuitive yet
expressive model, GOSUS, which exploits a meaningful
structured sparsity term to significantly improve the accu-
racy of online subspace updates. We discuss the modeling
and optimization aspects in detail. Our solution is based
on ADMM, where most key steps in the update procedure
reduce to simple matrix operations yielding real-time per-
formance for several interesting problems in video analysis.
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Figure 5: Examples of multiple face tracking in the Big Bang Theory. Faces marked with the same number are from the same track. Frame number is
shown on the left top corner. Complete video results are provided on the project website.
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