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Abstract

Vision problems ranging from image clustering to motionmsegtation to semi-supervised learning
can naturally be framed asibspace segmentatipnoblems, in which one aims to recover multiple
low-dimensional subspaces from noisy and corrupted inptzt.d_ ow-Rank Representation (LRR),
a convex formulation of the subspace segmentation prolifeprpvably and empirically accurate
on small problems but does not scale to the massive sizes démaision datasets. Moreover,
past work aimed at scaling up low-rank matrix factorizat®not applicable to LRR given its non-
decomposable constraints. In this work, we propose a navidledand-conquer algorithm for large-
scale subspace segmentation that can cope with LRR’s nmomgmsable constraints and maintains
LRR’s strong recovery guarantees. This has immediate aaitins for the scalability of subspace
segmentation, which we demonstrate on a benchmark facgniiom dataset and in simulations.
We then introduce novel applications of LRR-based subspageentation to large-scale semi-
supervised learning for multimedia event detection, cphdetection, and image tagging. In each
case, we obtain state-of-the-art results and order-ofaihade speed ups.

1 Introduction

Visual data, though innately high dimensional, often residor lie close to a union of low-dimensional subspaces.
These subspaces might reflect physical constraints on feetelcomprising images and video (e.qg., faces under vary-
ing illumination [2] or trajectories of rigid objects [249r naturally occurring variations in production (e.g., itg
hand-written by different individuals [12])Subspace segmentatitethniques model these classes of data by recov-
ering bases for the multiple underlying subspaces [10, pplisations include image clustering [7], segmentation of
images, video, and motion [30, 6, 26], and affinity graph tmtsion for semi-supervised learning [32].

One promising, convex formulation of the subspace segrtientaroblem is thdow-rank representatio(LRR) pro-
gram of Liu et al. [17, 18]:

(2.8) = argmin 2], + N[S]., @
subject to M =MZ+S.

Here,M is an input matrix of datapoints drawn from multiple subsgs{-||,, is the nuclear norm|-||, ; is the sum

of the columnés norms, and\ is a parameter that trades off between these penalties. EBRents the columns of
M into subspaces using the soluti#inand, along with its extensions (e.g., LatLRR [19] and NNLJRg]), admits
strong guarantees of correctness and strong empiricainpeahce in clustering and graph construction applications
However, the standard algorithms for solving Eq. (1) areuitable for large-scale problems, due to their sequential
nature and their reliance on the repeated computation ¢ifydosncated SVDs.

Much of the computational burden in solving LRR stems fromrtliclear norm penalty, which is known to encourage
low-rank solutions, so one might hope to leverage the laagyof past work on parallel and distributed matrix
factorization [11, 23, 8, 31, 21] to improve the scalabilityLRR. Unfortunately, these techniques are tailored to
optimization problems with losses and constraints thabdple across the entries of the input matrix. This decogplin
requirementis violated in the LRR problem due toMe= MZ -+ S constraint of Eq. (1), and this non-decomposable
constraint introduces new algorithmic and analytic chmgiss that do not arise in decomposable matrix factorization
problems.
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To address these challenges, we develop, analyze, andcaevalyprovably accurate divide-and-conquer approach to
large-scale subspace segmentation that specifically atcfar the non-decomposable structure of the LRR problem.
Our contributions are three-fold:

Algorithm: We introduce a parallel, divide-and-conquer approximedtgorithm for LRR that is suitable for large-
scale subspace segmentation problems. Scalability igweethiby dividing the original LRR problem into computa-
tionally tractable and communication-free subproblemls;sg the subproblems in parallel, and combining the tssul
using a technique from randomized matrix approximationt &gorithm, which we call DFC-LRR, is based on the
principles of the Divide-Factor-Combine (DFC) framewo2d] for decomposable matrix factorization but can cope
with the non-decomposable constraints of LRR.

Analysis: We characterize the segmentation behavior of our new #fgorishowing that DFC-LRR maintains the
segmentation guarantees of the original LRR algorithm Wwithh probability, even while enjoying substantial speed-
ups over its namesake. Our new analysis features a sigrifioaadening of the original LRR theory to treat the richer
class of LRR-type subproblems that arise in DFC-LRR. Moegpsince our ultimate goal is subspace segmentation
and not matrix recovery, our theory guarantees correctnassr a more substantial reduction of problem complexity
than the work of [21] (see Sec. 3.2 for more details).

Applications: We first present results on face clustering and synthetisgad®e segmentation to demonstrate that
DFC-LRR achieves accuracy comparable to LRR in a fractiotheftime. We then propose and validate a novel
application of the LRR methodology to large-scale grapseldssemi-supervised learning. While LRR has been used
to construct affinity graphs for semi-supervised learnmthe past [4, 32], prior attempts have failed to scale to the
sizes of real-world datasets. Leveraging the favorablepedational properties of DFC-LRR, we propose a scalable
strategy for constructing such subspace affinity graphs.ajgyy our methodology to a variety of computer vision
tasks — multimedia event detection, concept detection,imade tagging — demonstrating an order of magnitude
improvement in speed and accuracy that exceeds the stdte aftt

The remainder of the paper is organized as follows. In Se&iwe first review the low-rank representation approach
to subspace segmentation and then introduce our novel DRR dlgorithm. Next, we present our theoretical analysis
of DFC-LRR in Section 3. Section 4 highlights the accuracg efficiency of DFC-LRR on a variety of computer
vision tasks. We present subspace segmentation resulitsiolated and real-world data in Section 4.1. In Section 4.2
we present our novel application of DFC-LRR to graph-bassdisupervised learning problems, and we conclude
in Section 5.

Notation Given a matrixM € R™*", we defineU,,; X,V ], as the compact singular value decomposition (SVD)
of M, whererank(M) = r, 3, is a diagonal matrix of the non-zero singular values arld,; € R™*" and
Vi € R™7 are the associated left and right singular vector®bf We denote the orthogonal projection onto the
column space oM asP ;.

2 Divide-and-Conquer Segmentation

In this section, we review the LRR approach to subspace sagiien and present our novel algorithm, DFC-LRR.

2.1 Subspace Segmentation via LRR

In therobust subspace segmentatjmmoblem, we observe a matid = Ly + Sg € R™*", where the columns di,
are datapoints drawn from multiple independent subsphaadS is a column-sparse outlier matrix. Our goal is to
identify the subspace associated with each coluninotiespite the potentially gross corruption introduce@pyAn
important observation for this task is that the projecticatnix VLOVZO for the row space of,y, sometimes termed
theshape iteration matrixis block diagonal whenever the columnslgf lie in multiple independent subspaces [10].
Hence, we can achieve accurate segmentation by first réngvbe row space dfy.

The LRR approach of [17] seeks to recover the row spadg dify solving the convex optimization problem presented

in Eq. (1). Importantly, the LRR solution comes with a guaeanof correctness: the column spaceZo exactly
equal to the row space &f, whenever certain technical conditions are met [18] (see $&ar more details).

Moreover, as we will show in this work, LRR is also well-suitto the construction of affinity graphs for semi-
supervised learning. In this setting, the goal is to definaffinity graph in which nodes correspond to data points and

'Subspaces aiadependenif the dimension of their direct sum is the sum of their dirriens.



edge weights exist between nodes drawn from the same suhddaR can thus be used to recover the block-sparse
structure of the graph’s affinity matrix, and these affisitten be used for semi-supervised label propagation.

2.2 Divide-Factor-Combine LRR (DFC-LRR)

We now present our scalable divide-and-conquer algoritatied DFC-LRR, for LRR-based subspace segmentation.
DFC-LRR extends the principles of the DFC framework of [2lathew non-decomposable problem. The DFC-LRR
algorithm is summarized in Algorithm 1, and we next desceabeh step in further detalil.

D step - Divide input matrix into submatrices: DFC-LRR randomly partitions the columns ®f into ¢ [-
column submatrice4,C,, ..., C;}. For simplicity, we assume thatdividesn evenly.

F step - Factor submatrices in parallel: DFC-LRR solvest subproblems in parallel. Thih LRR subprob-
lem is of the form

min {|Zifl, A AlISs 2, &)
subject to C;, = MZ; +S;,

where the input matriM is used as a dictionary but only a subset of columns is usetkeashiservation$ A typical
LRR algorithm can be easily modified to solve Eq. (2) and veturn a low-rank estimaté; in factored form.

C step - Combine submatrix estimates: DFC-LRR generates a final approximati@#°/ to the low-rank
LRR solutionZ by projecting[Z1, ..., Z,] onto the column space d¢&;. This column projectiontechnique is
commonly used to produce randomized low-rank matrix fazédions [15] and was also employed by the DF€eR
algorithm of [21].

Runtime: As noted in [21], many state-of-the-art solvers for nuclearm regularized problems like Eq. (1)
have Q(mnky) per-iteration time complexity due to the rakk; truncated SVD required on each iteration.
DFC-LRR reduces this per-iteration complexity signifi¢tgaind requires just Onlk,) time for theith subproblem.
Performing the subsequent column projection step is velgtcheap computationally, since an LRR solver can return
its solution in factored form. Indeed, if we definé £ max; k¢,, then the column projection step of DFC-LRR
requires only Qmk'? + [k'?) time.

Algorithm 1 DFC-LRR
Input: M, ¢
{C;}1<i<t = SAMPLECOLS(M, t)
do in parallel
Z, = LRR(C;,M)

Z, = LRR(C;, M)
end do . L
Zprrol = COLPRO;([Zl, ey Zt], Zl)

3 Theoretical Analysis

Despite the significant reduction in computational comipyeOFC-LRR provably maintains the strong theoretical
guarantees of the LRR algorithm. To make this statemenigaewe first review the technical conditions for accurate
row space recovery required by LRR.

2An alternative formulation involves replacing both ingtas of M with C; in Eq. (1). The resulting low-rank estima#
would have dimensionksx [, and the C step of DFC-LRR would compute a low-rank approtionaon the block-diagonal matrix

diagZ:, Zo, . .., Zy).
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Figure 1: Results on synthetic data (reported results azeages ovet0 trials). (a) Phase transition of LRR and
DFC-LRR. (b,c) Timing results of LRR and DFC-LRR as funcsaf~ andn respectively.

3.1 Conditions for LRR Correctness

The LRR analysis of Liu et al. [18] relies on two key quansti¢he rank of the clean data matiiy and thecoher-
ence[22] of the singular vector¥ 1,,. We combine these properties into a single definition:

Definition 1 ((u, r)-Coherence) A matrixL € R™*" is (u, r)-coherenif rank(L) = r and
n 2
~IVLlz00 < 1,
r

where||-||, __ is the maximum columfy norm3

Intuitively, when the coherenge is small, information is well-distributed across the rowsaanatrix, and the row
space is easier to recover from outlier corruption. Usirgséhproperties, Liu et al. [18] established the following
recovery guarantee for LRR.

Theorem 2 ([18]). Suppose thaM = Ly + Sy € R™*™ whereS, is supported onyn columns,L is (%,r)-

coherent, and., andS, have independent column support withmge(Lg) N range(Sy) = {0}. LetZ be a solution

returned by LRR. Then there exists a constgnh{depending on: andr) for which the column space & exactly
equals the row space @&, wheneven\ = 3/(7||M||y/~*1) andy < ~*.

In other words, LRR can exactly recover the row spac&g®even when a constant fractieri of the columns has
been corrupted by outliers. As the ranknd coherencg shrink,~* grows allowing greater outlier tolerance.

3.2 High Probability Subspace Segmentation

Our main theoretical result shows that, with high probap@ind under the same conditions that guarantee the accuracy
of LRR, DFC-LRR also exactly recovers the row spackg@fRecall that in our independent subspace setting accurate
row space recovery is tantamount to correct segmentatidgheotolumns ofl.y. The proof of our result, which
generalizes the LRR analysis of [18] to a broader class afropdtion problems and adapts the DFC analysis of [21],
can be found in the appendix.

Theorem 3. Fix any failure probabilityd > 0. Under the conditions of Thm, 2, I&#"°/ be a solution returned by

DFC-LRR. Then there exists a constarit{depending o andr) for which the column space &P/ exactly equals
the row space oL, whenevei = 3/(7||M||/~*1) for eachDFC-LRR subproblemy < ~*, and¢ = n/I for

I > crplog(4n/8)/(v* —~)?
andc a fixed constant larger than 1.

Thm. 3 establishes that, like LRR, DFC-LRR can tolerate astaot fraction of its data points being corrupted and
still recover the correct subspace segmentation of thenaasa points with high probability. When the number of

3Although [18] uses the notion of column coherence to andlyge, we work with the closely related notion @, r)-coherence
for ease of notation in our proofs. Moreover, we note thatrérek+ matrix L € R™*™ is supported orfl — v)n columns then the
column coherence & ;. is v if and only if Vi is (u/(1 — «), r)-coherent.



datapoints: is large, solving LRR directly may be prohibitive, but DF®RR need only solve a collection of small,
tractable subproblems. Indeed, Thm. 3 guarantees higlapilalp recovery for DFC-LRR even when the subproblem
sizel is logarithmic inn. The corresponding reduction in computational complealtpws DFC-LRR to scale to
large problems with little sacrifice in accuracy.

Notably, this column sampling complexity is better thart #stablished by [21] in the matrix factorization settinge w
require rlogn) columns sampled, while [21] requires in the worst c@¢&) columns for matrix completion and
Q((rlogn)?) for robust matrix factorization.

4 Experiments

We now explore the empirical performance of DFC-LRR on aetgirof simulated and real-world datasets, first for the
traditional task of robust subspace segmentation and nexthé more complex task of graph-based semi-supervised
learning. Our experiments are designed to show the effawtiss of DFC-LRR both when the theory of Section 3
holds and when it is violated. Our synthetic datasets sattigf theoretical assumptions of low rank, incoherence, and
a small fraction of corrupted columns, while our real-watktasets violate these criteria.

For all of our experiments we use the inexact Augmented Lraggaultiplier (ALM) algorithm of [17] as our base
LRR algorithm. For the subspace segmentation experimertset the regularization parameter to the values sug-
gested in previous works [18, 17], while in our semi-supsedilearning experiments we set ititp,/max (m, n)

as suggested in prior wofkln all experiments we report parallel running times for DERR, i.e., the time of the
longest running subproblem plus the time required to comBirbmatrix estimates via column projection. All ex-
periments were implemented in Matlab. The simulation €sidvere run on an86-64 architecture using a single
2.60 Ghz core and0GB of main memory, while the real data experiments were peréal on an 86-64 architecture
equipped with a 2.67GHz 12-core CPU and 64GB of main memory.

4.1 Subspace Segmentation: LRR vs. DFC-LRR

We first aim to verify that DFC-LRR produces accuracy compirto LRR in significantly less time, both in synthetic
and real-world settings. We focus on the standard robustpade segmentation task of identifying the subspace
associated with each input datapoint.

4.1.1 Simulations

To construct our synthetic robust subspace segmentatimseata, we first generate, datapoints from each of
independent-dimensional subspaces Bf"*, in a manner similar to [18]. For each subspacee independently
select a basi®J; uniformly from all matrices inR™*" with orthonormal columns and a matrik; € R"*"s of
independent entries each distributed uniformljoint]. We form the matrixX; € R™*"= of samples from subspace
viaX; = U;T; and letX, € R™**"s = [X; ... X]. For a given outlier fractiony we next generate an additional
Ne = 11—7]‘3”5 independent outlier samples, denotedby R™*". Each outlier sample has independafto, o2)

entries, wherer is the average absolute value of the entries oftthg original samples. We create the input matrix
M € R™*" wheren = kns + n,, as a random permutation of the columnsXf, S|.

In our first experiments we fik = 3, m = 1500, r = 5, andns = 200, set the regularizer ta = 0.2, and vary
the fraction of outliers. We measure with what frequency L&l DFC-LRR are able to recover of the row space
of X, and identify the outlier columns i, using the same criterion as defined in [28Figure 1(a) shows average
performance ovetO trials. We see that DFC-LRR performs quite well, as the gapgheé phase transitions between
LRR and DFC-LRR are small when samplin@% of the columns (i.e.t = 10) and are virtually non-existent when
sampling25% of the columns (i.et = 4).

Figure 1(b) shows corresponding timing results for the epresults presented in Figure 1(a). These timing results
show substantial speedups in DFC-LRR relative to LRR withoalest tradeoff in accuracy as denoted in Figure 1(a).
Note that we only report timing results for valuesofor which DFC-LRR was successful in dlD trials, i.e., for
which the success rate equaledin Figure 1(a). Moreover, Figure 1(c) shows timing resudiisig the same parameter
values, except with a fixed fraction of outlierg £ 0.1) and a variable number of samples in each subspaceyj.e.,
ranges fronmir5 to 1000. These timing results also show speedups with minimal Iésscuracy, as in all of these

“nttp://perception.csl.illinois.edu/matrix-rank
®Success is determined by whether the oracle constraintg.qBEin the Appendix are satisfied within a toleranca @f *.



Figure 2: Exemplar face images from Extended Yale Databa$gaBh row shows randomly selected images for a
human subject.
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Figure 3: Trade-off between computation and segmentationracy on face recognition experiments. All results are
obtained by averaging across 100 independent runs. (a)iRenof LRR and DFC-LRR with varying number of
subproblems. (b) Segmentation accuracy for these sameimgugs.



timing experiments, LRR and DFC-LRR were successful inrlls using the same criterion defined in [18] and used
in our phase transition experiments of Figure 1(a).

4.1.2 Face Clustering

We next demonstrate the comparable quality and increagéarpance of DFC-LRR relative to LRR on real data,
namely, a subset of Extended Yale DatabaseaBstandard face benchmarking dataset. Following the expetal
setup in [17],640 frontal face images of0 human subjects are chosen, each of which is resized 48 lse42 pixels

and forms a 2016-dimensional feature vector. As noted inipus work [3], a low-dimensional subspace can be
effectively used to model face images from one person, andenface clustering is a natural application of subspace
segmentation. Moreover, as illustrated in Figure 2, a figant portion of the faces in this dataset are “corrupted” by
shadows, and hence this collection of images is an ideahmeark forrobustsubspace segmentation.

As in [17], we use the feature vector representation of th@sges to create 2016 x 640 dictionary matrix,M,

and run both LRR and DFC-LRR with the parameteset t00.15. Next, we use the resulting low-rank coefficient
matrix Z to compute an affinity matriUZUg, whereU , contains the top left singular vectors Bf The affinity
matrix is used to cluster the data irite= 10 clusters (corresponding to th8 human subjects) via spectral embedding
(to obtain al0D feature representation) followed lkymeans. Following [17], the comparison of different clustg
methods relies osegmentation accuracyEach of thel0 clusters is assigned a label based on majority vote of the
ground truth labels of the points assigned to the clustereVéuate clustering performance of both LRR and DFC-
LRR by computing segmentation accuracy as in [17], i.e.hedaster is assigned a label based on majority vote of
the ground truth labels of the points assigned to the cluter segmentation accuracy is then computed by averaging
the percentage of correctly classified data over all classes

Figures 3(a) and 3(b) show the computation time and the setien accuracy, respectively, for LRR and for DFC-
LRR with varying numbers of subproblems (i.e., value$)ofOn this relatively-small data set (< 640 faces), LRR
requires ovel 0 minutes to converge. DFC-LRR demonstrates a roughly linearputational speedup as a function
of t, comparable accuracies to LRR for smaller valuesarid a quite gradual decrease in accuracy for larger

4.2 Graph-based Semi-Supervised Learning

Graph representations, in which samples are vertices aightee edges express affinity relationships between sam-
ples, are crucial in various computer vision tasks. Classicaph construction methods separately calculate the
outgoing edges for each sample. This local strategy makegrdph vulnerable to contaminated data or outliers.
Recent work in computer vision has illustrated the utilifygtobal graph construction strategies using graph Lapla-
cian [9] or matrix low-rank [32] based regularizers. L1 rkgiration has also been effectively used to encourage
sparse graph construction [5, 13]. Building upon the susoéglobal construction methods and noting the connec-
tion between subspace segmentation and graph constrastaescribed in Section 2.1, we present a novel application
of the low-rank representation methodology, relying onB&C-LRR algorithm to scalably yield sparse, low-rank
graph(SLR-graph). We present a variety of results on large-sseti@-supervised learning visual classification tasks
and provide a detailed comparison with leading baselinerafgns.

4.2.1 Benchmarking Data
We adopt the following three large-scale benchmarks:

Columbia Consumer Video (CCV) Content Detectiori: Compiled to stimulate research on recognizing highly-
diverse visual content in unconstrained videos, this @atesnsists 0H317 YouTube videos ove20 semantic cate-
gories (e.g., baseball, beach, music performance). Ttopelgr audio/visual features (5000-D SIFT, 5000-D STIP,
and 4000-D MFCC) are extracted.

MED12 Multimedia Event Detection: The MED12 video corpus consists 8fl50K multimedia videos, with an
average duration o minutes, and is used for detecting 20 specific semantic evefdr each event,30 to 367
videos are provided as positive examples, and the remadidiee videos are “null” videos that do not correspond to
any event. In this work, we keep all positive examples andpsai®K null videos, resulting in a dataset 8, 876
videos. We extract six features from each video, first at $adnfpames and then accumulated to obtain video-level

®http://vision.ucsd.edu/~leekc/ExtYaleDatabase
"ttp://www.ee.columbia.edu/1ln/dvmm/CCV/



representations. The features are either visual (1000aBsepSIFT, 1000-D dense-SIFT, 1500-D color-SIFT, 5000-D
STIP), audio (2000-D MFCC), or semantic features (2659-[ASSEME [25]).

NUS-WIDE-Lite Image Tagging: NUS-WIDE is among the largest available image tagging berarks, consisting

of over269K crawled images from Flickr that are associated with &euser-provided tags. Ground-truthimages are
manually provided foB1 selected concept tags. We generate a lite version by sagtliimages. For each image,
128-D wavelet texture, 225-D block-wise LAB-based colormamts and 500-D bag of visual words are extracted,
normalized and finally concatenated to form a single featpeesentation for the image.
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Figure 4: Trade-off between computation and accuracy ®iShR-graph on the CCV dataset. (a) Wall time of LRR
and DFC-LRR with varying numbers of subproblems. (b) mARa&sdor these same experiments.

4.2.2 Graph Construction Algorithms

The three graph construction schemes we evaluate are leddreélow. Note that we exclude other baselines (e.g.,
NNLRS [32], LLE graph [28], L1-graph [5]) due to either sdaility concerns or because prior work has already
demonstrated inferior performance relative to the SPGrilgo defined below [32].

kNN-graph: We construct a nearest neighbor graph by connecting (\daerted edges) each vertex to itsiearest
neighbors in terms of, distance in the specified feature space. Exponential wegylet associated with edges, i.e.,
Wi = exp(—dfj/o—Q), whered;; is the distance between andz; ands is an empirically-tuned parameter [27].

SPG Cheng et al. [5] proposed a noise-resistant L1-graph wéidourages sparse vertex connectedness, motivated
by the work of sparse representation [29]. Subsequent ventitled sparse probability grapiiSPG) [13] enforced
positive graph weights. Following the approach of [32], wiwlemented a variant of SPG by solving the following
optimization problem for each sample:

I&in ||X—megg||§—i—o<|\wgg||17 s.t. wy >0, 3)

wherex is a feature representation of a sample &hdis the basis matrix fox constructed from it3:; nearest
neighbors. We use an open-sourcetdolsolve this non-negative Lasso problem.

SLR-graph: Our novel graph construction method contains two-stepst fRR or DFC-LRR is performed on the
entire data set to recover the intrinsic low-rank clus@gsiructure. We then treat the resulting low-rank coefficien
matrix Z as an affinity matrix, and for sample, then, samples with largest affinities to are selected to form a
basis matrix and used to solve the SPG optimization desthpéroblem (3). The resulting non-negative coefficients
(typically sparse owing to th& regularization term onv,. in (3)) are used to define the graph.

4.2.3 Experimental Design

For each benchmarking dataset, we first construct graph®hatirtg sample images/videos as vertices and using the
three algorithms outlined in Section 4.2.2 to create (g)aveighted edges between vertices. For fair comparison, we
use the same parameter settings, namely 0.05 andn; = 500 for both SPG and SLR-graph. Moreover, we set
k = 40 for kNN-graph after tuning over the range= 10 throughk = 60.

We then use a given graph structure to perform semi-supehladel propagation using an efficient label propagation
algorithm [27] that enjoys a closed-form solution and oféehieves the state-of-the-art performance. We perform a
separate label propagation for each category in our benghiina, we run a series &0 binary classification label

®http://sparselab.stanford.edu



Table 1: Mean average precision (mAP) (0-1) scores for uargiraph construction methods. DFC-LRR-10 is per-
formed for SLR-Graph. The best mAP score for each featurgldighted in bold.

(a) CcVv
kENN-GRAPH SPG SLR-®RAPH
SIFT .2631 .3863 .3946
STIP .2011 .3036 .3227
MFCC .1420 .2129 .2085
(b) MED12
kNN-GRAPH SPG SLR-®RAPH
COLOR-SIFT .0742 .1202 .1432
DENSESIFT .0928 .1350 .1525
SPARSESIFT .0780 .1258 .1464
MFCC .0962 .1371 .1371
CLASSEME .1302 .1872 .2120
STIP .0620 .0835 .0803

(c) NUS-WIDE-Lite

kNN-GRAPH SPG SLR-®RAPH
.1080 .1003 L1179

propagation experiments for CCV/MED12 a®ilexperiments for NUS-WIDE-Lite. For each category, we ranjo
select half of the samples as training points (and use theurgl truth labels for label propagation) and use the
remaining half as a test set. We repeat this progéssnes for each category with different random splits. Hipal
we compute Mean Average Precision (mAP) based on the resutte test sets across all runs of label propagation.

4.2.4 Experimental Results

We first performed experiments using the CCV benchmark rtedlest of our datasets, to explore the tradeoff between
computation and accuracy when using DFC-LRR as part of aypgeed SLR-graph. Figure 4(a) presents the time
required to run SLR-graph with LRR versus DFC-LRR with thdiéerent numbers of subproblems<£ 5, 10, 15),
while Figure 4(b) presents the corresponding accuracytsedthe figures show that DFC-LRR performs comparably
to LRR for smaller values of, and performance gradually degrades for largdvioreover, DFC-LRR is up to two
orders of magnitude faster and achieves superlinear spsedlative to LRF. Given the scalability issues of LRR
on this modest-sized dataset, along with the comparableacyg of DFC-LRR, we ran SLR-graph exclusively with
DFC-LRR (¢ = 10) for our two larger datasets.

Table 1 summarizes the results of our semi-superviseditepaxperiments using the three graph construction tech-
nigues defined in Section 4.2.2. The results show that oyggsed SLR-graph approach leads to significant per-
formance gains in terms of mAP across all benchmarking degder the vast majority of features. These results
demonstrate the benefit of enforcing both low-rankednedsparsity during graph construction. Moreover, conven-
tional low-rank oriented algorithms, e.g., [32, 16] woukldomputationally infeasible on our benchmarking datasets
thus highlighting the utility of employing DFC'’s divide-drconquer approach to generate a scalable algorithm.

5 Conclusion

Our primary goal in this work was to introduce a provably aete algorithm suitable for large-scale low-rank sub-
space segmentation. While some contemporaneous worksfd pths at scalable subspace segmentation, this method
offers no guarantee of correctness. In contrast, DFC-LRRgily preserves the theoretical recovery guarantees of
the LRR program. Moreover, our divide-and-conquer apgiahieves empirical accuracy comparable to state-of-
the-art methods while obtaining linear to superlinear cotaponal gains, both on standard subspace segmentation
tasks and on novel applications to semi-supervised legrifr C-LRR also lays the groundwork for scaling up LRR
derivatives known to offer improved performance, e.g.LRR in the setting of standard subspace segmentation and
NNLRS in the graph-based semi-supervised learning setfling same techniques may prove useful in developing
scalable approximations to other convex formulations édospace segmentation, e.g., [20].

®We restricted the maximum number of internal LRR iteratitm§00 to ensure that LRR ran to completion in less than two
days.
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A Proof of Theorem 3

Our proof of Thm. 3 rests upon three key results: a new detgstic recovery guarantee for LRR-type problems
that generalizes the guarantee of [18], a probabilisticnesion guarantee for column projection established ir,[21
and a probabilistic guarantee of [21] showing that a unifgrohosen submatrix of &, )-coherent matrix is nearly
(1, 7)-coherent. These results are presented in Secs. A.1, Ad2A@respectively. The proof of Thm. 3 follows in
Sec. A4,

In what follows, the unadorned north|| represents the spectral norm of a matrix. We will also male afsa
technical condition, introduced by Liu et al. [18] to enstlrat a corrupted data matrix is well-behaved when used as
a dictionary:

Definition 4 (Relatively Well-Definedness)A matrixM = Lg + Sg is S-RWD if

1

SAVEVL < ———.
H M M LOH = ﬁ”MH

A larger value ofg corresponds to improved recovery properties.

A.1 Analysis of Low-Rank Representation

Thm. 1 of [18] analyzes LRR recovery under the constr@ine DZ + S when the observation matri® and the
dictionary D are both equal to the input matrixI. Our next theorem provides a comparable analysis when the
observation matrix is a column submatrix of the dictionary.

Theorem 5. Suppose thaM = Ly + Sp € R™*™ is 8-RWD with rankr and thatL, and Sy have independent
column support withange(Lg) Nrange(Sp) = {0}. LetSo,c € R™*! be a column submatrix &, supported onyl
columns, and suppose th@t the corresponding column submatrixdf, is (%, r)-coherent. Define

N 32432
32482 +49(11 + 48)2ur’

v

and let(Z, S) be a solution to the problem

I%liél |Z]|, + Al[S]l,, subjectto C=MZ+S 4)

with A = 3/(7||M||y/7*1). If v < ~*, then the column space @fequals the row space &.

The proof of Thm. 5 can be found in Sec. B.

A.2 Analysis of Column Projection

The following lemma, due to [21], shows that, with high prbliity, column projection exactly recovers(a, r)-
coherent matrix by sampling a number of columns proportitmar log n.

Corollary 6 (Column Projection under Incoherence [21, Cor. @]gtL € R™*™ be (u, r)-coherent, and leL¢ €
R™*! be a matrix ofl columns ofl. sampled uniformly without replacement I crulog(n)log(1/6), wherec is a
fixed positive constant, then,

L=Lr" 20U, U] L
exactly with probability at least — ¢.

A.3 Conservation of Incoherence

The following lemma of [21] shows that, with high probalyiliL; ; captures the full rank ok, and has coherence
not much larger thap.

Lemma 7 (Conservation of Incoherence [21, Lem..7Det L € R™*" be (u, r)-coherent, and leLc € R™*! be a
matrix of/ columns ofL. sampled uniformly without replacement./ 1> crplog(n)log(1/8)/€%, wherec is a fixed

constant larger than 1, theh¢ is (ﬁ, r)-coherent with probability at least — §/n.
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A.4 Proof of DFC-LRR Guarantee

Recall that, under Alg. 1, the input matriddI has been partitioned into column submatri¢€s;, ..., C;}. Let
{Co1,...,Co+} and{So1,...,So.} be the corresponding partitions bfy andSy, let s; = ~;l be the size of the
column support 08, ; for each index, and Iet(ZZ—, SZ—) be a solution to théth DFC-LRR subproblem.

For each index, we further defined; as the event tha® ; is (41/(1 —;), r)-coherentB; as the event that, < v*1,
andG(Z) as the event that the column space of the mé&rig equal to the row space &f,. Under our choice of*,

Thm. 5 implies thaG(Zi) holds whenA; andB; are both realized. Hence, whel and B; hold for all indices, the
column space oZ = [Z, ..., Z] precisely equals the row spacelaf, and the median rank 4fZ, ..., Z;} equals
T.
Applying Cor. 6 with

1> crplog®(4n/8)/(v* —~)? > crplog(n) log(4/9),
shows that, given; and B; for all indicesi, ZP™° equalsZ with probability at least — 5/4. To establier(Z”’)
with probability at leasi — §, it therefore remains to show that

P(N_ (4N B;)) =1—P(U_, (A UBY)) (5)
>1-) (P(AS) +P(BY)) (6)

=1
>1-30/4. @)

Because DFC-LRR partitions columns uniformly at randore, \thriables; has a hypergeometric distribution with
Es; = vl and therefore satisfies Hoeffding’s inequality for the hhggemetric distribution [14, Sec. 6]:

P(s; > Es; +11) < exp(—21t2).
It follows that
P(B)=P(s; >~v*1) =P(s; > Es; +1(v" — 7))
<exp(=2l(v" —7)?) < 6/(4t)
by our assumption thadt> crplog?(4n/8)/(v* — ~)? > log(4t/d)/[2(v* — 7)?].

By Lem. 7 and our choice of

L > crplog®(4n/8)/(v" =)
> crplog(n) log(4/8) /(1 — 7).
each submatriCy ; is (211/(1—+), r)-coherentwith probability at least-6/(4n) > 1—4§/(4t). A second application
of Hoeffding’s inequality for the hypergeometric furtherplies that

P(% > ﬁ“%) =P(s; < Es; — I(1— 7))
< exp(=20(1 = 7))
< 6/(41),
sincel > crplog(4n/d)/(v* —v)? > log(4t/d)/[2(1 — 7)?]. Hence P(AS) < §/(2t).
Combining our results, we find

t

> (P(AS) +P(BY)) < 35/4
as desired. -

B Proof of Theorem 5
Let Z, be the column support &, ¢, and letZ¢ be its set complement ifi, ..., }. For any matrixS € R**® and

index setZ C {1,...,b}, we letPz(S) be the orthogonal projection 8fonto the space af x b matrices with column
supportz, so that(Pz(S))¥) = SU) if j € Z and (Pz(S))V) = 0 otherwise
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B.1 Oracle Constraints

Our proof of Thm. 5 will parallel Thm. 1 of [18]. We begin by motducing two oracle constraints that would guarantee
the desired outcome if satisfied.

Lemma 8. Under the assumptions of Thm. 5, suppose tHat MZ + S for some matricesZ,S). If (Z,S)
additionally satisfy theracle constraints

P,rZ=7 and Pz, (S) =S (8)
then the column space @fequals the row space @&f;.

Proof By Eq. 8, the row space di, contains the column space @f so the two will be equal itank(Ly) =
rank(Z). This equality indeed holds, since

Cy = ,PIg (C) = PZ§ (MZ+S) = MPZS(Z),
and thereforeank(Lg) = rank(Cy) < rank(MPz¢(Z)) < rank(Pze(Z)) < rank(Z) < rank(Lo). O
Thus, to prove Thm. 5, it suffices to show that any solutiondo4ealso satisfies the oracle constraints of Eq. 8.

B.2 Conditions for Optimality

To this end, we derive sufficient conditions for solving E@rl moreover show that if any solution to Eq. 4 satisfies
the oracle constraints of Eq. 8, then all solutions do.

We will require some additional notation. For a matdxe R"*! we defineT(Z) £ {UzX + YV} : X €
R™!Y € R"¥"}, Pr(z) as the orthogonal projection onto the 34%), andPrz). as the orthogonal projection
onto the orthogonal complementd{Z). For a matrixS with column supporZ, we define the column normalized
version,B(S), which satisfies

Pr-(B(S)) =0 and B(S)Y) £8W/SW|| VjeT.

Theorem 9. Under the assumptions of Thm. 5, suppose @at MZ + S for some matrice$Z, S). If there exists a
matrix Q satisfying

@) Prz(M'Q)=UzV}
(b) |Przy- (MTQ)|| <1
(€) P, (Q) = AB(S)

(d) 1P (Q)I, o <A

2,00

then(Z, S) is a solution to Eq. 4. If, in additior?z,(Z*Z) = 0, and(Z, S) satisfy the oracle constraints of Eq. 8,
then all solutions to Eq. 4 satisfy the oracle constraintgqf 8.

Proof The proof of this theorem is identical to that of [18, Thm. 3jieh establishes the same result when the
observatiorC is replaced byM. O

It remains to construct a feasible péi, S) satisfying the oracle constraints aRg, (ZZ) = 0 and adual certificate

Q satisfying the conditions of Thm. 9.

B.3 Constructing a Dual Certificate
To this end, we consider tlaracle problem
in 1Z]l, + AlISIl2,, 9)

subject to
C=MZ+S8, P, 7Z=1Z, and Pz,(S) =S.

Let'Y be the binary matrix that selects the columngbfrom M. Then(P Y, So;) is feasible for this problem,

and hence an optimal solutig*, S*) must exist. By explicitly constructing a dual certificae we will show that
(Z*,S*) also solves the LRR subproblem of Eq. 4.

13



We will need a variety of lemmas paralleling those develapdd8]. Let
VAV,ULVL,.
The following lemma was established in [18].
Lemma 10(Lem. 8 of [18]) VV T = V4. V.. Moreover, for anyA € R™*!,
PT(Z*)(A) = PLJA + APV — PLJAP\?-

The next lemma parallels Lem. 9 of [18].
Lemma 11. LetH = B(S*). Then
Vi, P, (V') = AP, rM'H.

Proof The proof is identical to that of Lem. 9 of [18]. O

Define - -
G 2P, (V) (P,(V)" and ¢ £ |G|
The next lemma parallels Lem. 10 of [18].
Lemma 12. ¢ < A2||M|*~l.
Proof The proof is identical to that of Lem. 10 of [18], save for tlwesof Z,, which is now bounded byi. O
Note that under the assumptian< 3/(7||M||v/~1), we havey < 1/4.

The next lemma was established in [18].
Lemma 13(Lem. 11 of [18]) If ¢ < 1, thenPz, ((Z*)"Z*) = Pz,(Py) = 0.

Lem. 12 of [18] is unchanged in our setting. The next lemmailpels Lem. 13 of [18].

Lemma 14. [[Prs(VT)ll, . < /55y

Proof By assumptionC = MZ* + S*, rank(Cy) = r, andPzs(C) = Cy = P (Co). HenceCo = Pz:(Co) =
M7Prz:(Z*), and thus

Vi, =Pr(V],) =35 UL MU 2. Pre (V).
This relationship implies that

r=rank(V(J,) < rank(Pre (V4.)) <rank(V}.) =r

and therefore thaPzg(V}*) is of full row rank. The remainder of the proof is identicalttat of Lem. 13 of [18],
save for the coherence factor(@f— ~)I in place of(1 — v)n. O

With these lemmas in hand, we define
Qi £ P, M H=V,Pr (V')

Qs £ \P ;7). Pr:((I+ ) (PyPr,Py)")Py)MHPy,
=1

= )\PI[C)((I + Z(P"/onpv)i)Pv)P(LJ)J_ MI:IP(/,
=1
where the first relation follows from Lem. 11. Our final themrparallels Thm. 4 of [18].
Theorem 15. Assume) < 1, and let

Q2 M) (VL VI + \M'H - Q; — Qo).

T B2(1—1)?
IL—vy " B—=v+p8)>ur’
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(1— ), /=
IMIVI(B(L— ) — (1 + 8), /2= pr)

<\,

and I — v
A ;7
= IMIVAIR = )

thenQ satisfies the conditions in Thm. 9.

Proof  The proof of propertys3 requires a small modification. Thm. 4 of [18] establishes$ #g (Q) = AP, H.
To conclude thaPz, (Q) = A\H, we note thaB? = C — MZ* and that the column space @fcontains the column
space ofM by assumption. Henc®,S; = S¥ and thereforé®z, (Q) = AP H = \H.

The proofs of propertieS4 andS5 are unchanged except for the dimensionality factor whi@nges fromm tol. O

Finally, Lem. 14 of [18] guarantees that the preconditioinElam. 15 are met under our assumptionson*, and~.
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