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Abstract

Relative (comparative) attributes are promising for the-
matic ranking of visual entities, which also aids in recog-
nition tasks [19, 23]. However, attribute rank learning of-
ten requires a substantial amount of relational supervision,
which is highly tedious, and apparently impractical for real-
world applications.

In this paper, we introduce the Semantic Transform,
which under minimal supervision, adaptively finds a seman-
tic feature space along with a class ordering that is related
in the best possible way. Such a semantic space is found for
every attribute category. To relate the classes under weak
supervision, the class ordering needs to be refined accord-
ing to a cost function in an iterative procedure. This prob-
lem is ideally NP-hard, and we thus propose a constrained
search tree formulation for the same.

Driven by the adaptive semantic feature space represen-
tation, our model achieves the best results to date for all
of the tasks of relative, absolute and zero-shot classification
on two popular datasets.

1. Introduction

Visual recognition approaches have conventionally at-

tempted to model visual attributes (thematic properties

observable in visual entities like images with human-

designated names) [6, 11, 12, 26, 27]. For example, im-

ages of natural scenes can have attributes such as ‘open’
and ‘depth-close’; while images of faces can have the at-

tributes like ‘smiling’ and ‘sad’. A classifier is trained based

on the knowledge of the attributes’ presence/absence in the

training images, and an unseen image is then categorized

based on the attributes it has. Inspired by web page ranking

formulations, some researchers [19, 23, 14] have recently

used relative attributes for visual recognition tasks with con-

siderable success, i.e. instead of the binary knowledge of

whether an attribute is present/absent in an image, a real-

valued attribute score is considered. For example, instead

of an image having a binary attribute of ‘smiling’ or ‘not
smiling’, the image has a real-valued attribute score which

depicts notions like ‘more smiling than’ (Fig 1). Such re-

lations between the attributes provide semantically richer

image descriptions, and have been shown to be useful for

relative, absolute and zero-shot classification tasks [19]1.

The process typically requires a tedious supervision step,

where all the given classes need to be related for every at-

tribute category. Using this relational supervision and the

training images belonging to each class, a latent feature
space is learnt, on which the projection of (visual) fea-

ture descriptors (of images) produces non-binary attribute

scores. For example, if an image I1 is known to be ‘more
open’ than an image I2, for the attribute ‘open’, and the la-

tent feature space is modelled as a 1D weighting curve; the

weighting curve should guarantee that I1 has a greater score

than I2, say 0.5 as to 0.3. Given a test image, its visual fea-

ture descriptor is multiplied by the learnt weighting curve

to give an attribute score, which then aids in its ranking and

classification.

Problem: In a supervised scenario (where the relations

between all classes need to be given seeing the training im-

ages typically on a per-attribute basis), while the human an-

notations are helpful, it is a time-consuming task to obtain

human annotations for all given attributes in a dataset, more

so when it contains videos, documents, etc. Thus, it is im-

portant that the class relations are learnt automatically (or

with minimum supervision) along with the associated latent

feature spaces (per-attribute).

The accuracy of the attribute scores so that they correctly

represent the underlying conceptual space, often depends on

the model of latent feature (to be learnt) and/or on the avail-

ability of a sufficiently diverse set of training data. This

can pose a major problem, when it comes to ranking data

in a real-world scenario. For instance, consider a situation

where for a given attribute, relations between some n types

1See Section 3 for a precise definition of these classification types.
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Figure 1: The scores of attributes (Smiling, White) on a scale of 0 to 1 for

three images. The attribute score is proportional to the strength of attribute

presence. The figure is for illustrative purposes.

of classes are known. Let us now have a number of data

points (visual entities such as images, videos, etc.) belong-

ing to a new class (unseen in the training data) 2, which we

need to rank relative to the known classes. Ranking the data

points of this new class is subject to the assumption that the

learnt latent feature space encompasses the inherent diver-

sity of the possible set of visual entities that will ever need

to be ranked. This can be made true for small datasets with

a proper choice of a latent feature model and availability

of sufficiently diverse training data, but the procedures do

not naturally scale well to the problems occurring with big
data. With a large amount of complex data, the learnt model

is often not able to relate the new classes in an acceptable

way.

Ranking entities may also involve some sort of semantic

supervision in addition to relational supervision, i.e. instead

of only giving relations between all given classes, a rough

attribute score (reflecting the underlying theme) on a pre-

defined scale (such as 0 to 1) is also given for the known

classes. In such a case, a model is learnt that conforms to

the given attribute scores, which then automatically ranks

the classes. However, for new classes, the attribute scores

again depend on the assumption that the learnt model has

encompassed the semantics of all possible data. Also, such

scores can be reasonably erroneous and the model needs to

take care of such uncertainties.

Proposal and Contributions: While many types of

models have been proposed for learning the latent feature

space under relational and semantic supervision (e.g. Gaus-

sian process models, Topic Models, Neural Networks, etc.),

we aim to answer a more generic question here:

Given a set of training images and a latent feature space
model, can we learn this latent space (with minimal super-
vision) so as to relate all types of possible classes in a se-
mantically best possible way ?3

2Note that in real-world situations, broader classes of visual entities

are almost always known due to the presence of textual tags. However,

attribute-specific information is often not present in the form of textual data

with the visual entities, and hence, ranking multimedia entities according

to various attributes is largely an unsolved and to an extent a non-targeted

problem.
3Note that the main requirement is that the classes are ordered so as

to correctly reflect the underlying attribute-specific themes and the learnt

model maximally separates the classes while conforming to the (minimal)

supervision that we have. Also, Semantic Transform is all about adap-

tively learning a feature space that can semantically rank multimedia en-

In an attempt to answer the above question, we make the

following two significant contributions in this paper:

1. We introduce the Semantic Transform, which under

minimal supervision, adaptively finds a semantic fea-

ture space along with a class ordering that is related in

the best possible way.

2. To relate the classes under weak supervision, the class

ordering needs to be refined according to a cost func-

tion in an iterative procedure. This problem is ideally

NP-hard, and we thus propose a constrained search

tree formulation for the same.

Our approach is weakly supervised since we assume the

semantic attribute score of at least two classes (out of a pos-

sible 8 for our datasets) to be known per-attribute. This in-

formation is important, since there should be some discrim-

inative information about the attributes (thematic spaces)

under consideration. This minimal supervision helps us to

find an initial feature space (according to a chosen model),

which we then keep adapting in an alternating framework,

until the best (maximally separated) class ordering is found

out. To learn the relative ordering, we also present an

efficient algorithm using a constrained search tree struc-

ture, which makes the generic problem of relating classes

tractable while achieving acceptable results.

2. Related Work
Binary and Relative Attributes: Learning attribute cat-

egories has been shown to be useful to provide cues for ob-

ject/face recognition [12, 11], zero-shot transfer [12, 21]

and part localization [6, 26]. There have been attempts

to make the learning and classification tasks more robust,

given the categorical attributes. The work of [20] tends to

make the binary attributes more discriminative on a class

basis.

Recent works [19, 23, 15] have focussed on learning

per-attribute class relations for visual recognition tasks, and

have shown considerable promise. While authors in [19, 23]

assume the availability of relative ordering of classes on a

per-attribute basis, [15] assumes the absence of such infor-

mation. However, the unsupervised method of [15] achieves

marginally better results than the supervised counterparts,

because of their bottom-up learning structure which is

directed more towards selecting some key attributes for

classes, rather than ordering classes based on all given at-

tributes.

Rank Learning: The machine learning literature com-

prises many works which tend to learn ranking models for

web pages/documents. The works of [10, 5, 1, 25, 8] all

propose different types of probabilistic models for efficient

tities/classes; instead of just transforming the inputs to some sort of static

semantic features.
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rank learning. While [5] models the uncertainty in the at-

tribute scores with Gaussian processes, [8] does so with the

help of probability distributions in a soft-rank methodology.

Many methods of ensemble learning also exist in the liter-

ature [3, 16, 22, 9]. Researchers have tried to apply such

methods (e.g. random forests, kernel max margin learning)

[14, 19] in an attempt to learn feature spaces that produce

minimally confusing attribute scores. However, the meth-

ods are normally highly supervised and the formulations

lack a generic structure for adapting to new data.

One of the most famous methodologies for ranking en-

tities based on semantic supervision is the supervised topic

model [2]. The approach learns a topic model while try-

ing to maintain the given attribute-specific semantic scores.

This automatically ranks the given entities; and for new in-

coming data, its input features are projected on the learnt

topic model to find a new score. This method again falls

apart in terms of generality for any type of new class to be

related.

Our approach of learning relative ordering (Semantic
Transform) is in contrast different from that of the afore-

mentioned approaches. We make the use of minimal se-

mantic supervision (rough attribute scores) per-attribute,

and then adaptively learn a semantic feature space along

with the most plausible class ordering. We are thus able

to counter the problem of tedious relational supervision

while also adaptively learning a feature space that can exude

attribute-specific themes for possibly all types of classes.

3. Approach
We are given a set of training images I = {i} repre-

sented in Rd by feature-vectors xi, S image class labels

{cs} and a set of M attributes A = {am}. Since we con-

sider a weakly supervised scenario, for each attribute am, an

ordering of only two class labels is given (cpm ≺ cqm ) along

with the corresponding response variables (rpm
< rqm ).

The response variables are given on a normalized scale of 0

to 1.

What exactly are these response variables, and how are

they obtained for different types of attributes needs a spe-

cial mention here. The attributes can be broadly classified

as aesthetic and non-aesthetic. Aesthetic attributes normally

refer to those which cannot be rated deterministically by all

users. For instance, the choice of people for the interesting
attribute of a movie, song or photo is more or less aesthetic.

On the other hand, whether a person is looking angry, sad

or happy is a non-aesthetic choice to make, and is expected

to be far more deterministic. In case of aesthetic attributes,

response variables may refer to normalized average ratings

or numerical reviews, such as movie, song ratings, etc. For

non-aesthetic attributes, a score on a normalized scale of 0

to 1 can be approximately given by a human, given that hu-

mans have an inherent interpolating ability [24], once they

roughly know about the possible extremes. For our datasets,

the attributes are non-aesthetic in nature.

With the minimal supervision that we consider, our aim

is to learn a latent feature space (which conforms to the

semantic response variables) along with the best possible

class ordering.

3.1. Learning

For each attribute am, we need to learn a latent feature

space bm and a relative ordering of the classes cs; s =
1, . . . , S. Thus, given that cpm

≺ cqm and corresponding

response variables rpm
< rqm , we require that ∀i ∈

cs1 , j ∈ cs2 , cs1 � cs2 ,

ϕ(bTm,xs1

i ) > ϕ(bTm,xs2

j ) (1)

where ϕ(bTm,xs
i ) = bTmxs

i ∀i ∈ cs (2)

The function ϕ(.) produces a score for the attribute am,

given the feature space bm and input feature vector xs
i of

an image belonging to class cs. For purposes of comparison

of our results with those of [19], ϕ(.) is given by Equ (2),

and bm is selected to be a 1D weighting curve, with length

equal to the total number of pixels in an input image. Given

a test image with its feature vector xt, its score for attribute

am is given by ϕ(bTm,xt).

Following the work of [10], it can be shown that for a

given ϕ(.) and relative ordering of classes, the above stated

optimization problem can be reduced to the following Sup-

port Vector Machine (SVM) classification task: for a trade-

off constant C between maximizing the margin (between

attribute scores of classes) and satisfying relative ordering,

and ∀i ∈ cs1 , j ∈ cs2 , cs1 � cs2

arg min
bm

⎛
⎝1

2
‖ bm ‖2 + C

∑
i,j

ξ2ij

⎞
⎠ (3)

s.t. ϕ(bTm,xs1

i )− ϕ(bTm,xs2

j ) > 1− ξij , ξij ≥ 0 (4)

Since we have the semantic response variables

(rpm , rqm ), we make an initial estimate of the latent feature

space bm by solving the following optimization problem:

arg min
bm

(∣∣∣∣
∑

ϕ(bTm,xpm

i )

npm

− rpm

∣∣∣∣
+

∣∣∣∣
∑

ϕ(bTm,xqm

i )

nqm

− rqm

∣∣∣∣
)

(5)

where npm is the number of training images in class cpm

and nqm in class cqm .
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With different latent feature space models, the optimiza-

tion problem of Equ (5) can be intractable. We thus use Ge-

netic Algorithms [7] (a class of evolutionary algorithms)4

to solve it. For q real numbers in the 1D weighting curve

defining bm, each real number is encoded as a string of

�log2q	 bits, and thus an individual in the population is a

string of q�log2q	 bits. Since, genetic algorithms can some-

times converge to a local minimum instead of the desired

global one, we give multiple runs with different mutation

rates, and accept the solution that occurs the most number

of times. To avoid trivial solutions, we put sparsity con-

strains on the learnt solution. The use of an evolutionary

algorithm procedure here can serve as a major advantage

for building a generic framework with the proposed Seman-
tic Transform, especially when one aims to learn a neural

network structure [28] in order to have an initial estimate

of bm. When complex structures are involved, estimation

of distribution algorithms (EDAs) [13] can also be used as

evolutionary procedures.

Once we have the initial estimate of our latent feature

space, we perturb it to a limited extent so as to approxi-

mately conform to the semantic scores (obtained from su-

pervision), while also estimating the most plausible relative

ordering of the classes. This is done in an alternating iter-

ative procedure. Perturbation not only helps to make the

initially learnt feature space adaptive, but also takes into

account the inaccuracy inherent in the response variables.

For a given relative ordering of classes and a perturbation

model Δm, the equations (3) and (4) are modified as fol-

lows (∀i ∈ cs1 , j ∈ cs2 , cs1 � cs2 ):

arg min
Δm

(
1

2
‖Δm ‖2 + C1

∑
i,j

ξ2ij

+ C2

∑
i∈cpm ;j∈cqm

[
ϕ((bTm + ΔT

m),xpm

i )

−ϕ((bTm + ΔT
m),xqm

j )− (rpm
− rqm)− δm

]2)
(6)

s.t. ϕ((bTm + ΔT
m),xs1

i )− ϕ((bTm + ΔT
m),xs2

j )

> 1− ξij , ξij ≥ 0, C2 > C1 (7)

Note that the perturbation model Δm is also chosen to

be a 1D weighting curve and of the same length as that of

bm, and an addition operation is simply chosen to incor-

porate the perturbation. This is done since we wanted our

finally adapted latent feature space to be a 1D weighting

4Genetic Algorithms may not be the best choice to an optimization

problem, in case an exact solution procedure for the problem is known.

However, they can give a nearly correct estimate of the intended solution.

This suffices for our case, since we are any ways going to refine this esti-

mation later on.

curve, in order to draw fair comparison of our results with

those of [19]. In a general case, the perturbation model can

be made different from bm and can even encompass mod-

ification of network structures involved in bm. Following

[10], the optimization problem posed by equations (6) and

(7) is solved by the method of [4]. The term weighted by C2

in equation (6) is important since it limits the perturbation

so as to conform to the response variables obtained from su-

pervision. Thus, C2 > C1, and the parameter δm limits the

amount of change allowed in the semantic response vari-

ables. For our experiments, C1 = 0.1, C2 = 0.5, δm = 0.1.

Now, we require that along with the weighting curve bm
and the perturbation model Δm, the relative ordering con-

strained by cpm
≺ cqm is also learnt. We follow an alternat-

ing optimization approach, where we fix a class ordering,

and adapt the feature space, and then with this adapted fea-

ture space, we refine the relative ordering of the classes.

This continues until convergence occurs. Our full model

listed in Algorithm 1.

The alternating procedure stated above is feasible only

when there is some efficient algorithm for refining the rel-

ative ordering of classes. This problem in itself is NP-hard

since the class ordering needs to be refined subject to a cost

function. We thus propose a top-down greedy algorithm

with constraints on a search tree for estimating relative or-

dering. To provide an example of our approach, let us con-

sider that we have 7 classes (1−7) which need to be ordered.

Let the initial ordering be 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7.

Then, a swapping of 1 and 4 alters the maximum number

of relative orders, since all of 2, 3 will change their order

relative to 1 and 45. A similar argument holds, if 4 and 7
are swapped. However, if 4 and 5 are swapped or 2 and 3
are swapped, other relative orders remain unchanged. For

this, we form a search tree as shown in Fig 2, with each

node as the class number, and root being the middle class.

For a given node, all possible swappings with all its chil-

dren are considered. Thus, while node 4 can have 6 pos-

sible alterations spanning all classes, node 2 can only have

2 possible alterations, with only 1 and 3 getting affected.

Each swapping of the classes affects the loss function (en-

coding maximal separation between classes for a relative

ordering) of Eqn (8). Since, we are given a prior ordering

as cpm
≺ cqm , we constrain the aforementioned swappings

such that cpm
≺ cqm is always satisfied. Algorithmically, if

2 ≺ 4 is given, we will not swap 4 with 2 or any of its left

children, i.e. 1 (Fig 2). Algorithm 2 formally sets out the

method.

This approach is greedy, but in a reasonable number of

steps (O(slog(s)) as compared to O(s!) for s classes), it

5The greedy algorithm considers swapping with only its parents (except

when the parents are at the penultimate level of the tree, i.e. theit immedi-

ate children are the leaf nodes). In this context, 1 to 4 changes maximum

relative orders. Also, note that a swapping between 1 and 7 can eventually

get done with (1-3,1-4,1-7,3-7) across iterations.
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helps to achieve the most plausible relative ordering. The

major reason for its success is the top-down approach (tak-

ing the middle class as the root node), since that ensures that

we prioritize the changes in the order of that class, which

can possibly affect the loss function to the maximum ex-

tent, and then we refine the other orders.

Algorithm 1 Semantic Transform (ST)
1. Initialize relative ordering for S classes cs using bm esti-

mated from equation (5). This will automatically satisfy the

constraint cpm ≺ cqm .

2. Update Δm using equations (6) and (7).

3. Update the relative order for cs using Algorithm 2. If the

updated relative order is the same as previous one (conver-

gence), go to Step (4); else go to Step (2).

4. The last ordering learnt is the final class ordering, and bm +
Δm is the adaptively learnt feature space.

Algorithm 2 Relative Ordering Estimation (ROE)
1. For given Δm and bm, and initial relative ordering of S

classes cs1 ≺ cs2 ≺ cs3 · · · ≺ csS , form a search tree with

the root node as s�S/2�.

2. Let L denote a level of the tree. Initialize L = 1 (root node).

3. At a level L, let each (parent) node be pak; k = 1, . . . ,K of

the tree, all its children be chrk ; rk = 1, . . . , Rk, and all left

children be lchek ; ek = 1, . . . , Ek. Note that lch(.) ⊂ ch(.).

Let a swapping of pak with chrk be denoted by vk,rk =
{pak ↔ chrk}. Consider all vk,rk , k = 1, . . . ,K such that

∀pak = qm, lchek �= pm & parent (lchek ) �= pm, and find

rk which ∀i ∈ cs1 , j ∈ cs2 , cs1 � cs2 ; s1, s2 = 1, . . . Ss

minimizes

C1

∑(
ϕ((bTm + ΔT

m),xs1
i )− ϕ((bTm + ΔT

m),xs2
j )

)2

+ C2

∑
i∈cpm ;j∈cqm

[
ϕ((bTm + ΔT

m),xpm
i )

−ϕ((bTm + ΔT
m),xqm

j )− (rpm − rqm)− δm

]2

(8)

If L happens to be the penultimate level in the tree, also allow

swapping between the children of a parent node.

4. Increment L and go to Step (3), and stop if the last level of

the tree is reached.

3.2. Relative Classification

Relative classification refers to the task of categorizing a

test image relative to any two given training images. Given

a test image It and its associated score for a given attribute

am, we randomly select one image Il from the training set

whose attribute score is less than that of It, and an image Iu
whose attribute score is greater than that of It. We then see

the classes of It, Il and Iu as ct, cl and cu respectively. If

4

2

1 3

4 L = 1

L = 26

5 7

2 L6

Figure 2: An illustration of the tree structure of classes ordered as 1 ≺
2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7 constrained by 2 ≺ 4. It aids in estimation of

the relative ordering according to Algorithm 2. Since 2 ≺ 4, swappings

4 ↔ 2 and 4 ↔ 1 are not allowed for this tree structure. Best viewed in
color.

for attribute am, cl ≺ ct ≺ cu, the relative classification is

correct, else not.

3.3. Absolute Classification

Absolute classification refers to the task of categorizing

a test image to its correct class. For this we form a gener-

ative model for each class cs in RM similar to [19], once

the attribute scores for the training images are obtained and

the best relative ordering of classes are learnt. We use a

Gaussian distribution and estimate the mean μs ∈ RM

and M ×M covariance matrix Σs from the attribute scores

of the training images from class cs, so that each class cs
is represented by N (μs,Σs); s = 1, . . . , S for S classes.

Given a test image with the feature vector xt, it is assigned

to a class cs∗ that produces the highest likelihood:

s∗ = arg max
s∈1,...,S

P (xt|μs,Σs) (9)

3.4. Zero-shot Classification

For zero-shot classification [19], we have Ss number of

seen classes and Su number of unseen classes from a to-

tal of S classes. For all the seen classes Ss, we learn the

relative ordering as specified in Sec 3.1. Similar to [19],

we assume that the relative ordering of the unseen class is

known with respect to the seen classes. Then, a generative

model for the unseen classes can be built using that of the

seen classes [19]. The generative model for the seen classes

is built according to the procedure specified in Sec 3.3. For

two seen classes cs1 and cs2 and given an attribute am, the

parameters of the generative model are specified as follows

[19]: if cs1 ≺ cu ≺ cs2 , μu,m = 1
2 (μs1,m + μs2,m);

if cu ≺ cs1 , μu,m = μs1,m − dm where dm is the av-

erage distance between the sorted mean attribute scores for

all seen classes corresponding to attribute am; if cu � cs2 ,

μu,m = μs2,m+dm. In all cases, Σu = 1
Ss

Ss∑
s=1

(Σs). If an

attribute am is not used to define an unseen class cu, μum
is

taken to be the mean of the scores of all training images for

attribute am, and the mth diagonal entry of Σu((Σu)m,m)

to be the variance of the same. With the generative model
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estimated for the unseen classes, the classification can be

done using Eqn (9).

4. Results and Discussion
We evaluate our approach on the datasets of faces and

natural scenes. For natural scenes, we consider the Out-
door Scene Recognition (OSR) Dataset [17] containing

2688 images from 8 classes. For faces, we consider the

Public Figure Face Database (PubFig) [11] containing

800 images from 8 random identities with 100 images each.

Each of those identities corresponds to a class. Similar to

[19, 15], we use the 512-dimensional gist [18] descriptor as

our visual image features for the OSR dataset, while we use

a concatenation of the gist descriptor and a 45-dimensional

Lab color histogram as our visual feature descriptors for the

PubFig Dataset. Some images from the OSR and the Pub-
Fig datasets are shown in Fig 3(b).

For each dataset, we use 240 images for training, with

30 images from each class. Note that both the datasets have

8 classes (categories) as shown in Fig 3(a). The rest of the

images are used for testing. For relative and absolute clas-

sification tasks, all of the classes are seen, i.e. for all the 8

classes, 30 images are used for training.

Our approach is a weakly supervised one, i.e. the rela-

tive ordering of the classes for each attribute are not known,

but instead need to be learnt using minimal prior relative

information. We compare our automatically learnt class re-

lations with the human annotated ones of [19] in Fig 3(a).

It can be seen that our learnt class relations are normally

the same as that of the human-annotated ones, except for

closely related or similarly related classes. This is justifi-

able, since the closely related human-annotated classes can

go either ways if more training data is available. Also, since

our learning approach uses semantic supervision instead of

just the relational supervision, our learnt weighting curve is

semantically more correct than the one learnt with [19]. The

weighting curve of [19] does not know what should roughly

be the semantic score of a class for a given attribute, unlike

ours where we know for atleast 2 classes per-attribute. To

be more precise, note that for a given/learnt relative order-

ing, the condition specified by equation (1) should hold true

for all training images. However, in reality, this is not the

case. For relational supervision as considered in [19], the

number of times the relations are satisfied by the training

images are considerably lesser than what we get with our

approach. Fig 3(c) depicts the numbers. Thus, for the same

latent feature space model, our approach is able to produce

better classification. Fig 5(a), 5(b) shows how this affects

the relative separation of the classes, and the variance of the

attribute scores of the training images. The effectiveness

of this notion is depicted through the empirical results pre-

sented in the subsequent sections. Note that in Fig 3(a),

the red shaded areas (under Supervised Relative Ordering)

represent those classes (per-attribute) that were considered

for supervision. There were only two classes chosen (per-

attribute) for supervision. Moreover, the classes were so

chosen that for any attribute, they were neither the same,

nor closely related, in order to have meaningful and dis-

criminative semantic response variables rpm , rqm . The re-

sponse variables are set on a scale of (0, 1) as follows: For

8 classes, in each dataset, we assume equally spaced at-

tribute scores according to the Superlative Relative Order-
ing. These are rough scores that we set for our experiments,

but note that we only use response variables for cpm , cqm .

(a)

(b)

Semantic Transform (ST) Relative Attributes (RA) [19]

(c)

Figure 3: (a) Automatically Learnt Relative Ordering with our ST ap-
proach. The OSR dataset includes images from the classes (categories):

coast(C), forest (F), highway (H), inside-city (I), mountain (M), open-

country(O), street (S) and tall-building (T). The PubFig dataset includes

images of classes: Alex Rodriguez (A), Clive Owen (C), Hugh Laurie (H),

Jared Leto (J), Miley Cyrus (M), Scarlett Johansson (S), Viggo Mortensen

(V) and Zac Efron (Z). The yellow shaded areas represent differences in
our learnt ordering as compared to [19]. The red shaded areas are the

classes cpm , cqm (per-attribute) that were considered for supervision. (b)

An illustration of some of the images from the OSR and the PubFig
datasets. While the OSR dataset contains the images of natural scenes,

PubFig dataset consists primarily of people’s faces. (c) Mean (taken
across attributes) percentage of the number of training images con-
forming to the supervised/learnt class ordering for RA and ST . ST
performs better since the weighting curves encompass semantic informa-

tion. Best viewed in color and with zoom.

Relative Classification: We follow the relative classi-

fication procedure as stated in Sec 3.2. We compare the
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results of our ST approach outlined in Sec 3 with the su-

pervised relative attribute learning (RA) approach of [19]

and supervised relative attribute forest (RF ) learning ap-

proach of [14]. The results with the mean recognition scores

are presented for both the OSR and the PubFig datasets in

Fig 4(a). It can be seen that our approach gives the best re-

sults as compared to the the state-of-the-art methods which

consider relative attributes. Note that unlike [19, 14], we

also learn the relative ordering of classes in conjunction

with the weighting curves.

One of the critical points to consider here is that how

does one choose Il and Iu (Sec 3.2)? Typically, it is sug-

gested that one should choose Il and Iu such that the at-

tribute scores for them are not too far nor too close to that of

It. The previous works of [19, 14] do not give any account

of the relative separation of the attribute scores while doing

classification on a relative basis. Utilizing the code of [19],

we see that the authors have considered a relative separation

of around 0.75 if the attribute scores for all of the training

images (corresponding to the seen classes) are within a nor-

malized range of 0 to 1. It is reasonable to assume that the

authors of [14] have assumed a similar separation scale. All

the results presented in Fig 4(a) are on a separation scale of

0.75.

A separation scale of 0.75 is somewhat large for rel-

ative classification, since a lot of attribute scores tend to

fall within this scale. We evaluate our ST approach with

varying separation scales (within a reasonable range), and

compare it with the corresponding results for the work of

[19]. The mean relative classification values for both the

OSR and the PubFig datasets are shown for varying sepa-

ration scales in Fig 4(d). While the classification accuracy

for [19] falls off significantly with lower separation scales,

our model proves robust in the same scenario. This can be

attributed to the fact that weighting curves learnt from ST
have semantic information embedded in them.

Absolute Classification: This refers to the task of as-

signing a test image to its correct class. The classification

procedure used is the one outlined in Sec 3.3. The mean

recognition results are presented in Fig 4(b) for our ST ap-

proach, for the approach of [19] (RA), the unsupervised

relative attribute (UR) learning approach of [15] and the

approach of [19] (RF ). It can be seen that we significantly

outperform the other methods for the same reasons as out-

lined in the previous section.

Zero-shot classification: This is the task of class-

labelling a test image when no images of that class have

been used for training. For zero-shot learning, out of 8

classes per dataset, we normally choose 2 unseen classes

and consider the remaining 6 classes as seen. We choose 20

such seen/unseen combinations randomly for each dataset.

For the seen classes, we use 30 images per class for train-

ing. During testing, we use all of the images of the unseen

(a)

(b)

Figure 5: (a) The attribute scores (for training images) with per-class

means using [19] for a human-annotated relative order S ≺ M ≺ Z ≺
V ≺ J ≺ A ≺ H ≺ C. The classes S,M and H,C have confusing

scores which affects the classification accuracy. (b) The attribute scores

(with per-class means) using our approach (ST ). The classes are now

well separated with our optimization procedure. The learnt relative order

S ≺ M ≺ Z ≺ V ≺ J ≺ A ≺ C ≺ H is slightly different from the

human-annotated one (C and H swapped), but only differs for closely re-

lated classes to achieve maximal separability, as optimized by the adapted

weighting curve inherently encompassing some semantic information. The

results are simulated for the attribute masculine on PubFig Dataset. For a

full description of classes and attributes, please see caption of Fig 3(a).

Best viewed in color and with zoom.

classes. The generative model outlined in Sec 3.4 is used

for zero-shot classification. We present the results of our

ST approach, the RA [19] method and the UR model of

[15]. The average recognition scores for both the datasets

are presented in Fig 4(c).

It is clear from Fig 4(c) that our Semantic Transform pro-

cedure outperforms other recent methods for zero-shot clas-

sification. The better performance of ST can be attributed

to reasons similar to those as in the previous subsections.

5. Conclusions and Future Work
We have introduced the Semantic Transform, which

under minimal supervision, can adaptively find a semantic

feature space along with a class ordering that is related in

the best possible way. To relate the classes under weak su-

pervision, the class ordering needs to be refined according

to a cost function in an iterative procedure, for which we

have proposed a constrained search tree formulation. We

have shown that Semantic Transform has the ability to learn

a given feature space model in a more semantically correct
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(a) (b) (c) (d)

Semantic Transform (ST) Relative Attributes (RA) [19] Unsupervised Relative Learning (UR) [15] Supervised Relative Forests (RF) [14]

Figure 4: (a) Mean Relative Classification Accuracy with ST, RF, RA. (b) Mean Absolute Classification Accuracy for ST, RF, UR, RA. (c) Mean
Zero-Shot Classification Accuracy for ST, UR and RA. In all cases, ST performs the best. (d) Mean Relative Classification Accuracy with varying
separation scales for RA (blue circle), ST (green square). Our ST approach shows better stability. Best viewed in color.

way, which has led to results better than the state-of-the-art

for all of the tasks of relative, absolute and zero-shot classi-

fication on two popular datasets.

The notion of Semantic Transform has many future re-

search avenues. Various latent space feature models with

different types of perturbation models (including the ones

related to neural networks and topic models) can be tried for

big datasets. Use of advanced evolutionary algorithms with

an analysis of the amount of supervision required is a plau-

sible research area. Very broadly, with Semantic Transform,
we aim to find a latent feature space (with limited/feasible
supervision) for all types of multimedia entities on the web,
through which the presently available data classes can be
efficiently ranked; and with new data class additions, the
feature space can keep evolving naturally.
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