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Abstract of the Thesis

One Shot Learning via Compositions of

Meaningful Patches

by

Alex King Lap Wong

Master of Science in Computer Science

University of California, Los Angeles, 2015

Professor Alan Loddon Yuille, Chair

The task of discriminating one object from another is almost trivial for a human

being. However, this task is computationally taxing for most modern machine

learning methods; whereas, we perform this task at ease given very few examples

for learning. It has been proposed that the quick grasp of concept may come from

the shared knowledge between the new example and examples previously learned.

We believe that the key to one-shot learning is the sharing of common parts as each

part holds immense amounts of information on how a visual concept is constructed.

We propose an unsupervised method for learning a compact dictionary of image

patches representing meaningful components of an objects. Using those patches

as features, we build a compositional model that outperforms a number of popular

algorithms on a one-shot learning task. We demonstrate the effectiveness of this

approach on hand-written digits and show that this model generalizes to multiple

datasets.
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CHAPTER 1

One Shot Learning via Compositions of

Meaningful Patches

In this chapter, we study the concept of one shot learning in relation to human

level cognition. We will survey a number of existing algorithms that have reported

notable results on the one shot learning task. These methods focus on the idea

of knowledge transfer between learned and new examples — representing the

concept of knowledge as a shared set of deformations and components amongst

the samples. However, the need for heavy human supervision limit these methods.

We present an unsupervised framework that have shown high performance results

on a one shot recognition task. We first discuss the motivations that led to

our approach and later the specifics of the feature extraction process as well as

the construction of our model. Moreover, we not only show that our method

performs well on standard datasets, but also show that a model trained on a

specific dataset can be generalized to other datasets — showcasing the concept of

knowledge transfer.

1.1 Introduction

Perhaps one of the more impressive feats of human intelligence is the ability to

learn a concept from few examples — or even just one. At a young age, children

easily learn their first language without complete exposure to the entire language

and can even make inferences on novel concepts from their limited knowledge [9].
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Figure 1.1: Examples of reconstructions produced by our method. The model was

trained on MNIST and can generalize to the USPS hand-written digit dataset.

In fact, they can acquire a new word based on a single encounter [5]. However, if

we survey state of the art learning methods, the results presented are the product

of training from thousands of examples, where even a simple method such as

logistic regression can perform very well [18]. Even a simple method such as

logistic regression can perform extremely well with sufficient examples [18]. Such

performance becomes difficult to attain with only a single example.

We believe that the basis for one-shot learning stems from the sharing of similar

structures amongst objects of the same class. A bicycle can be parsed into a set

of handles connected to the frame with two wheels and a seat. We can easily

recognize a similar visual concept (eg. tricycle or motor bike) when it can be

decomposed to a similar set of parts that embodies the structure of the objects.

These parts and their relations give us the basis for representing a number of other

similar vehicles. We seek to exploit the innate structures within visual concepts by

learning a set of parts for a compositional model that can tackle one-shot learning.
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Figure 1.2: Symmetry axis used as a robust object descriptor to automatically

extract skeletons of objects [33]. The components of the symmetry axis are con-

nected by complex junctions joining 3 or more pixels.

Our work is motivated by [20] who showed that a part-based model is an

effective means of achieving one-shot learning. Their work highlights a composi-

tional model that showed promising results on a one-shot character recognition

task. After building an in-house dataset recording both characters and the indi-

vidual strokes human participants used to draw them, they trained their model

on a single image from each class leveraging this set of strokes. Although the

authors showed that one-shot learning can indeed be done, their method requires

extensive human aid in generating a set of labeled strokes that compose each char-

acter. The need for these hand-crafted features in turn limited their work to a

non-standard dataset (not yet released to the research community). Motivated by

these limitations, our goal is to extend the use of part-based models to one-shot

learning without the need for human supervision so that it can be applied to com-

mon datasets. Our method uses symmetry axis [25] as an object descriptor (Fig.

1.2, 1.3) and learns a set of meaningful components by parsing the skeleton. We

then build an AND-OR graph that describes each class of objects and perform

recognition on a new image by selecting the grammar that best reconstructs the

image.

We specifically apply our work to hand-written digits. Although hand-written

digits appear to be very simple objects, there exists a surprisingly large amount

3



Figure 1.3: Symmetry axis being applied to hand-written digits 0–9.

of variation for writing a single digit. Yet, there still exists common components

amongst digits of the same class that we can leverage. Each digit contains rich

internal structures that describe the formation of the general class as a whole.

Our goal is to learn these components (strokes) using just the digits given to us

(without the aid of a global stroke set) and perform digit recognition as a proof

of concept. In the future, we plan to apply this technique to more general shapes

and objects.

Our contributions are two-fold. We first present a robust method for extracting

meaningful patches from visual concepts. We do so by finding the symmetry axis

in each object and partitioning it into components (describing the structure of a

local region within the object), which we convert into image patches to be used

as features. Secondly, we use these patches to construct an AND-OR graph that

represents the object as a composition of the extracted patches. We apply a set

of deformations to the patches to generate a dictionary accounting for intra-class

variation. Recognition is accomplished by reconstructing new images using our

compositional model — we choose the class of the best reconstruction as our label.

We show that our generative model not only outperforms a number of popular

learning techniques on a one-shot learning task, but is also transferable between

datasets — achieving similar accuracies when tested on different datasets.
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1.1.1 Motivation

A hallmark of human cognition is the ability to learn complex concepts from a

few examples. An individual may be able to discern between a bicycle and a

tricycle after seeing an example of each. Naturally this can come from the insight

that a bicycle has two wheels whereas a tricycle has three. The realization of the

difference in the structure of these two concepts gives way to inferring new objects

after given a few examples. With the understanding of an object, a person can

learn similar concepts at ease and even produce new examples.

There has been a number of studies focusing on the human ability to learn a

concept with little exposure [29, 9, 1, 5]. In particular, Carey et al. [5] coined

the term ‘fast mapping’ in reference to a child’s ability to learn a concept (ie.

a word) and retain this concept for a substantial amount of time after the first

exposure. Carey et al. performed experiments dealing with language acquisition

for children from the ages between three and ten. Each child was told that the

term ’chromium’ is the designated word for the color, olive green. A week after

the encounter, a comprehension and naming task revealed that the children were,

in fact, able to retain the word. The tasks were repeated once every week and

their results showed that the child’s understanding of the word ’chromium’ was

reinforced as the number of weeks progressed. This leads us to questioning whether

a one shot learning framework is possible.

While humans can understand a new concept from only the barest of experi-

ences, machines encounter a number of difficulties when given minimal training.

Although modern machine learning methods has been able to tackle some of the

same classification, and recognition problems that humans are able to solve at

ease, a typical method must be given large amounts of data in order to achieve

the same classification and recognition rates. These algorithms (as shown in our

experiments) provide subpar performances when their training is restricted to a
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small set of data.

Recent literature [27, 15, 20, 21] has proven that one shot learning is in fact

possible. A number of models have shown to be effective on simple visual concepts

when given very few examples. However, these methods require extensive human

supervision (ie. large amounts of hand-labeled data, augmenting the samples with

additional information about the global classes). It is well-known that human aid

is generally unavailable and can be extremely expensive outside of a controlled

setting. Given the limitations of recent algorithms, our goal is to create an un-

supervised framework that allows for high performance given only the one shot

samples and no additional information.

1.2 Related Work

Current state-of-the-art learning algorithms are able to learn complex visual con-

cepts and achieve high recognition accuracies. For example, [7] has surveyed many

techniques discussing the performance of state-of-the-art algorithms on hand writ-

ten digits datasets, with each classifier reporting extremely low error rates. The

MNIST dataset, proposed by [23], has become a baseline for many classifiers,

most of which can obtain near-perfect accuracy (≈ 99%) [22]. Popular methods

such as k-Nearest Neighbors [11], Support Vector Machine [10], and more recently

Deep Boltzmann Machines [28], and Convolution Neural Networks [8] have shown

that the dataset poses no challenge when provided with a sufficient number of

training examples. Common datasets, like MNIST, provide thousands of training

examples for each class and the aforementioned models requires large amounts of

training examples to achieve such impressive results. In contrast, a human only

needs a few examples to learn to distinguish one object from another with ease.

It is safe to say these state-of-the-art approaches are still far from reaching the

proficiency of a human being.
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1.2.1 One-Shot Learning

One shot learning is an object categorization task where very few examples (1–5)

are given for training. In recent years, one-shot learning has made significant

strides forward [27, 15, 20, 21]. Earlier work on one-shot digit learning focused

on the concept of transferable knowledge through image deformations. The au-

thors of [27] discussed the use of scale and rotation to represent the notion of

knowledge transfer. They reported low errors rates in their experiments; however,

their method may not converge and also creates additional large artificial datasets

based from their one shot samples for training. [15] explored one-shot learning in

the realm of object categorization by taking advantage of features learned from

previous categories and representing them as probabilistic models. Specifically,

they created a constellation model to generate a set of hypothesis for selecting

the best fit class. The graph connections of the model were created based on

the location and appearance of the features. However, the model suffered from

complexity issues and is only able to use very few features for each hypothesis.

A more recent study of one-shot learning in hand-written characters proposed

that similar visual concepts are composed by a set of common components. [20]

suggested that the sequence of strokes used to produce a character contains large

amounts of information about the internal structure of the character. They col-

lected a new dataset of 1600 characters by having participants draw characters

online — collecting the strokes as well as how the strokes construct each charac-

ter. Their probabilistic model learns from a global set of strokes for the character

set and infers a set of latent strokes from an example to create a part based-

representation of the characters. The approach of Lake et al. [20] boasts a higher

accuracy than the Deep Boltzmann Machine, beating the deep learning approach

by a 15% margin, when both are trained on a single image per class. Lake et

al. presented a second method [21] similar to his earlier work that uses a Hierar-

chical Bayesian model based on compositionality and causality. They boasted a
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human-like performance when presenting human participants with a set of images

generated by their method in a ”visual Turing Test”. Their performance suggests

promising avenues for this field.

1.2.2 Patch-based Model

Recent literature has involved a number of algorithms with successful patch-based

models [13, 24, 26, 32]. Learning dictionaries of generative image features show-

cases a number of desirable qualities as they provide an intuitive and economical

mid-level representation for visual processing systems. Each image patch contains

large amounts of information, acting as a great mid-level feature that allows for

versatility in reconstruction as well as transferability in learning. Our method

also tries to exploit these properties and we model our approach after the work

by [26] and [32].

[26] described an approach that was able to produce state-of-the-art results

on textures. They provide a dictionary of active patches that undergo spatial

transformations to adjust themselves to best fit an image. The method is able to

perform on datasets ranging from homogenous to in-homogenous appearance of

general object categories. This is mainly due to the nature of the active patches

model and the flexibility it provides for matching textures. The active patches

model can be applied to a wide range of tasks to achieve desirable results.

In the domain of hand-written digits, [32] has proven successful using a dictio-

nary of deformable patches. They propose a simple method for learning a dictio-

nary of deformable patches for simultaneous shape recognition and reconstruction.

Similar to [26], the authors of [32] introduced a pre-defined set of transformations

on image patches. They designed a GPU framework for matching a large num-

ber of deformable templates to a large set of images efficiently. Their dictionary

of deformable patches has reported state-of-the-art recognition performance on

8



both MNIST [23] and USPS [16]. In addition,they also showed that the dictio-

nary learning method can perform well when transferring the learned dictionary

between different datasets.

1.3 Organization of this Chapter

This paper is organized as follows: we present our approach in Sec. 1.4. Specifi-

cally, we detail our process for extracting meaningful patches as features in Sec.

1.4.1 and how we build our compositional model using these patches in Sec. 1.4.2.

Next, we then apply our model to novel images in Sec. 1.4.3. Implementation

details are presented in Sec. 1.5, including the parameters we used to achieve

our results. We present experimental results on hand-written digit recognition

in Sec. 1.6 and conclude with potential drawbacks and future directions in Sec.

1.7. The appendix, Sec. 2.1, illustrates examples of the transferable properties of

our algorithm and also showcases its robustness by applying an MNIST model to

textured and digitally generated digits.

1.4 Our Approach

Our goal is to learn a set of patches that captures the underlying structures

shared by each set of objects using only a small number of examples. We do so

by applying symmetry axis to each object and segmenting the skeleton into a set

of components; these components are in turn converted to image patches. We

then learn a compositional patch model by creating an AND-OR graph composed

of dictionaries of meaningful patches to represent each object. This generative

model is used to recognize new images by matching candidate patches from our

dictionaries to the images and selecting the best fit grammar to reconstruct the

novel object. We ensure the quality of the set of reconstructions proposed by

9
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Figure 1.4: Overview of our approach applied to hand-written digits. Objects

are decomposed into parts by segmenting their symmetry axes. We represent the

objects using an AND-OR graph composed of image patches that describes regions

of the objects. Deformations are applied to the patches to create dictionaries. We

select the best patches from the dictionaries to reconstruct a test image.

minimizing a cost function, which incorporates penalties for misfits and lack of

coverage. The transformations between the proposals and the test image are

computed and the test image is reconstructed by warping the proposals. The

class of the best fit reconstruction is selected as our label. Fig. 1.4 represents an

overview of our approach.

1.4.1 Learning a set of Meaningful Patches

We present an unsupervised method for generating a dictionary of meaningful

patches from an image by finding its symmetry axis to produce a skeleton of the

object. We then parse the skeleton into components by identifying the end-points

and branch-points. We join these components into meaningful parts by defining a

set of points on the image containing our object and hashing the components to

the closest point to create a set of image patches. Each patch represents a mid-

level feature that describes the structure of the object at a given region. Unlike
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Figure 1.5: Hand-written digits skeletonized via symmetry axis. Given an input

image, we compute the edge image and compute ai ∈ A from a pair of points,

pli and pri . Missing pixels along the axis are filled in and dangling branches are

pruned.

traditional dictionary learning, only a small the number of patches are produced

during the feature extraction. We demonstrate the effectiveness of this approach

on a set of hand-written digits.

The idea of separating characters into parts (strokes) has been an integral part

of not only how humans recognize characters, but also how we form them. Chan

and Nunes [6] have suggested that a number of Asian scripts, in particular Chinese,

follows a methodical approach of using strokes to produce characters; these same

strokes are also used to aid the recognition of the script. More importantly, strokes

are language agnostic as each script can be separated into a set of parts, making

them a great mid-level representation for characters. The authors of [20] have also

used this cue by learning from a series of strokes produced by online participants.

However, human aid in generating the strokes for a character set is often times

unavailable and expensive.

The authors of [3] and [4] proposed that the symmetry axis (or skeleton) of an

11



object can be used for shape description. Our algorithm for finding the symmetry

axis is based on the work of [25] and [14]. We define the symmetry axis of a

character as a skeleton, A, where each pixel ai ∈ A is symmetrically centered

between two points, pli and pri , located on either side of ai.

To find A, we first extract the edges from the binary mask of an image using

Sobel operators. We take each point p in the edge image and cast a ray along the

gradient (normal) direction dp to find another point q. We define the correspond-

ing points p and q as the left and right pair of points, pli and pri , that lie on the

boundaries of the character. For each pair of pli and pri , we can compute its ai as

the midpoint of pli and pri given by

ai =
1

2
(pli + pri ) for ai ∈ A (1.1)

However, results of edge detection are commonly faulty and inconsistent; there-

fore, we add the additional constraint that the width of the stroke
∥∥pri − pli∥∥ must

remain approximately the same. This constraint also allows us to approximate

the symmetry axis in the case of missing edge pixels to produce a robust skeleton.

Once the preliminary skeleton has been formed, we aggregate sets of end-points

and branch-points together in the skeleton to form our set of terminal points. We

use Dijkstra’s algorithm [12] to find the shortest path from one terminal point to

another, to produce a set of segments. We prune out the small branches connected

to complex branch-points (joining 3 or more pixels) to complete our symmetry

axis. We center the final product to make it invariant to translation (Fig. 1.5).

To generate a set of low level features, we first locate the components connected

to complex branch-points. Each component is labeled as a separate segment. We

compute the gradient direction, φ, using Sobel operators on each pixel along the

segments. As we traverse the segments of the symmetry axis, we break a segment

where there exists a sharp change in φ.
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The resulting segments are then convolved with a Gaussian kernel, G, and

converted into a set of segment patches, U . These patches of stroke segments

serve as low-level features representing the character. For each segment patch

si ∈ U , we associate a centroid ci based on the location of the extracted segment.

Each centroid can be computed as the weighted average of intensity, wj, at each

pixel position 〈xj, yj〉 for n pixels, shown below:

ci = 〈 1
n

n∑
wjxj,

1

n

n∑
wjyj〉 (1.2)

Using the set of segment patches U , our goal is to build a set of larger patches

R that is able to describe the local regions of an object (Fig. 1.7). These patches

will in turn be used as the building blocks for our compositional model. To create

a set of meaningful patches that represents the regions of an object, we first define

an M × N grid where M and N are the dimensions of the training image. We

select m points on the grid as anchors where each point represents the center of

a region in the object. We simply let each segment patch, si ∈ U , hash to the

nearest anchor by measuring the Euclidean distance between its centroid, ci and

the anchor. The patches hashed to a particular region are combined to form a

larger patch, Rk ∈ R for k = 1, 2, 3, ...,m. A new centroid, ck is computed from

Rk and associated with each region patch. In reference to hand-written digits, we

denote each of these region patches as a stroke.

1.4.2 Building a Compositional Model using Patches

For an object t, our goal is to create a generative model that best represents the

object as a composition of parts. Given a set of meaningful patches Rt extracted

from the t, we define a compositional model, St, as an AND-OR graph that is

comprised of Rt
k ∈ Rt where each node in the AND-OR graph is represented as

a patch centered at centroid ck. In order to create a compact model representing
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(Middle)	


 	

(Bottom)	


Figure 1.6: Preliminary stroke models, St ∈ S, composed of Rt
k ∈ Rt. Each

region Rt
k is generated by hashing the set of segment patches, si ∈ U t, centered

at ci to the nearest anchor. We chose 3 anchors on a 56× 56 grid to represent the

top, middle and bottom regions of the stroke model.

a class S, we enable the sharing of knowledge by allowing each model, St ∈ S, to

share parts; any models sharing similar patches are aggregated in a greedy fashion.

We measure the similarity between two patches via a match score generated by

Normalized Cross Correlation (NCC).

The model, S, for each object class is composed of a set of compositional

patch models, St, represented by AND-OR graphs. To create such a generative

model, we begin by constructing a set of preliminary patch models from each

given example (Fig. 1.6). The structure preliminary model is simply the set of

AND-relations joining the set of meaningful patches Rt
k ∈ Rt extracted from an

object t:

St = (Rt
1 ∧Rt

2 ∧Rt
3 ∧ ... ∧Rt

m) for St ∈ S (1.3)

To create a compact dictionary representing each region, we identify similar

14



Figure 1.7: An example of an AND-OR graph representing the digit 3. Each

model St is composed of three regions related by a set of AND-relations. Each

region is represented as a set of OR-relations amongst meaningful patches Rk ∈ R

that was built from low-level segments of U .

patches amongst our set of preliminary models and aggregate those that share

resembling parts. For each region Rt
k in St, we apply rotational deformations to

generate a small dictionary of templates composed of the deformed patch, R′tk,

that will be used to match against Ru
k in another model Su. We allow each patch

to rotate by δ degrees to account for similar patches that are slightly rotated.

We adopt NCC as our method to find the best fit R′tk that matches to the patch

Ru
k by computing a match score γ. Should γ exceed some threshold τ , we merge

the two AND-OR graphs together – combining the similar regions and adding

OR-relations to the dissimilar regions to produce S ′t. We add the size constraint

that a patch R′tk much smaller than Ru
k cannot be merged together to prevent

larger patches from dominating the set. If St and Su share the region Rk then

our resulting AND-OR graph (Fig. 1.7) becomes the following:

S ′t = (Rt
1 ∨Ru

1) ∧ ... ∧Rt
k ∧ ... ∧ (Rt

m ∨Ru
m) (1.4)
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…	


…	
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Figure 1.8: Applying the active patches model to the three regions of a digit

7. Each patch, Rk, representing a region is associated with the set of deformed

patches Dk, generated by applying the transformation T = (sx, sy, θ).

Given the set of AND-OR graphs, S, whose similar components has been

aggregated, we will apply the active patches model [26] with transformations, T ,

to each region to generate a dictionary of deformed patches Dk associated with Rk.

We denote T as the set of transformations involving a combination of scaling and

rotation of an image patch represented by T = (sx, sy, θ) where sx and sy denotes

the width and height of the patch after scaling and θ, the angle of rotation. We

allow each patch, Rk, to expand and shrink by s pixels and rotate by θ degrees

to create a deformed patch Dj for j = 1, 2, ...,m to produce the set Dk. Each

patch in our dictionary of active patches, Dj, maps to a single patch Rk (Fig.

1.8). Our model thus becomes the set of and-or-relations of regions, where each

region corresponds to a dictionary of active patches.
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Best Fit Patches	


Composite Images	


Figure 1.9: Matching the set of deformed stroke patches in each region, Rk, to

the blurred images of skeletonized hand-written digits. Each Dj matches to a

position (x, y) near ck using Normalized Cross Correlation (NCC). We choose the

maximum response given by NCC to ensure the targeted area has minimal error.

1.4.3 Applying the Compositional Model to New Images

Given a new M ×N image, I, we allow our stroke models, S, to propose the best

set of reconstructions for I based on the active patches dictionaries associated

to the regions of each model. We measure the goodness of fit for each proposal

by computing a cost function that accounts for similarity and coverage between

the shapes of the proposal and a processed I. We find the best fit proposal

from each class by minimizing a cost function and amongst those select the top

candidates. We compute the transformation between the shapes of candidates

and our processed test image via Shape Context, [2]. We warp the candidates

to better fit our test image and minimize an energy function to find the best

reconstruction, selecting its class as our label.

We begin by finding the symmetry axis in image, I, using the approach de-

scribed in Sec. 1.4.1. The skeleton of I is then convolved with a Gaussian kernel,

G, to produce a composite image I′ that is consistent with the patches in our

dictionary. We use NCC to find the best fit patch to a region in I′ – a higher

17



NCC score implies a better fit (Fig. 1.9). We allow each stroke model to make

proposals for a crude reconstruction of I′ by computing a match score between

each deformed patch Dj and I′ to represent each region Rk in our stroke model.

We choose the optimal patch, R̂k amongst the set of deformed patches, Dj ∈ Dk

associated via a set of OR-relations by choosing the patch with the maximal re-

sponse from NCC. We add the constraint that a match is only valid if it occurs

near the centroid, ck.

R̂k = arg max
Dj∈Dk

NCC(Dj, I
′
ck) (1.5)

The reconstruction, Pt, proposed by our and-or graph, St, is the set of AND-

relations composed of the optimal patch, R̂k, representing each region. We define

P as our set of propositions generated by each stroke model St.

Pt = (R̂1 ∧ R̂2 ∧ R̂3 ∧ ... ∧ R̂m) for Pt ∈ P (1.6)

To choose the best reconstruction from each label, we minimize a cost func-

tion, f , between each proposal Pt and the image, I′, incorporating similarity and

coverage (1.7).

f(BPt , X,BI′ , Y ) = dH(X, Y )× SSD(BPt ,BI′) (1.7)

We model the similarities between the two image as a shape comparison prob-

lem. To compute the coverage between Pt and I′, we create a binary mask of the

two images, BPt , BI′ ∈ [0, 1]M×N , respectively. We then take the Sum of Squared

Distances (SSD) between the two masks to find the number of mismatched pixels.

We measure the shape similarity between Pt and I′ using Hausdorff distance [17]

as our metric. We computed the edge image of BPt and BI′ to produce the set of

edge pixels X and Y to determine the Hausdorff distance (dH) between the two
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Test Images	


Reconstructions	
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Figure 1.10: Examples of reconstructed images that were selected as the best fit

proposal for a given hand-written digit test image. The reconstructions were fine-

tuned by applying the transformations from Shape Context to adjust for variable

affine transformations.

sets of points. Due to the nature of Active Patches and NCC matching, our BPt

and BI′ are closely aligned and similarly for the points in X and Y .

We define the set of top proposals from each class as the set P̂ . We compute

the transformation between the binary masks of each top proposal, BPt ∈ P̂ , and

the image, BI′ via Shape Context. We then refine our crude reconstructions of I′

by warping each BPt by their respectively transformations to produce BPt
w . We

define the affine cost, αPt , of Shape Context as the cost to warp BPt to BPt
w . We

finally compute the energy function E for reconstructing I′ as the product of the

SSD between BPt
w and BI′ and the cost of transformation, α.

E(BPt
w ,B

I′) = SSD(BPt
w ,B

I′)(1 + αPt) (1.8)

We select the the label for the test image, I, by choosing the class with the

best reconstruction that minimizes E (Fig. 1.10).
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1.5 Implementation Details

The following section describes the set of parameters used in our experiments. We

begin with a preprocessing step of resizing all images to 56×56 as this yields better

edge detection results for computing the Symmetry Axis. When decomposing

characters into strokes in Sec. 1.4.1, we break a stroke if the stroke experiences a

sharp change in gradient direction where φ > 90◦. We also use a Gaussian filter,

G, with σ = 4 and a window size of [3, 3] to produced the set of stroke patches

after extracting the low level stroke segments from each character.

We used a 56 × 56 grid in Sec. 1.4.2 and selected the number of anchors, m,

to be 3 where each is located at {[19, 28], [28.5, 28], [38, 28]}. This is based on the

observation that the each example in MNIST dataset can intuitively be separated

into 3 regions. To produce a compact model, we allow each stroke to vary by

−10◦ < δ < 10◦ and we merge two stroke models if the match score, γ, from NCC

exceeds a threshold τ = 0.70. Once the stroke models have been aggregated,

we defined a set of transformations to produced our active patches for the set

of rotations −15◦ < θ < 15◦ with increments of 7.5◦. The adopted widths and

heights for scaling ranges between -10 to 10 pixels with increments of 5 pixels.

For Shape Context described in Sec. 1.4.3, we computed the shape transfor-

mations between our reconstructions and the test image using 5 iterations with a

minimum of 85 sample points of correspondences and an annealing rate of 1.

Our experiments were run on an Intel processor with 8 cores and 32GB of

physical memory, but our training procedures involves mostly inexpensive com-

putations, which allow us to train the same model on a conventional laptop.

Training takes 1.44 and 5.23 seconds for 1 and 5 samples, respectively, on an Intel

2.26 GHz Core 2 Duo machine with 4GB of memory. With a short training time

using few examples, our framework is well-suited to learning (new) characters on-

line on memory and computation constrained devices (e.g. mobile, embedded), a
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Figure 1.11: Training on 1, 5, and 10 examples for each class from MNIST (left)

and USPS (right). Our compositional patch model (CPM) consistently outper-

forms other methods on one shot digit recognition. CPM* denotes the composi-

tional patch model that was trained on MNIST and used for testing on USPS.

space where state of the art methods may be computationally prohibitive—DBM

takes approximately 9 and 20 minutes, respectively, to train on 1 and 5 examples

on the laptop. An optimized implementation of our work could permit this in

real-time.

1.6 Experimental Results

We tested five models on one shot learning: our compositional patch model

(CPM), k-Nearest Neighbors(K-NN), Support Vector Machines (SVM), Convo-

lution Neural Network (CNN), Deep Boltzmann Machines (DBM). The perfor-

mances were evaluated on a 10-way classification where each class is provided

with 1, 5, and 10 training examples to show the growth in accuracy. The models

were tested on two hand-written datasets: MNIST and USPS. For a given run,
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MNIST MNIST USPS USPS

Method n=5 n=1 n=5 n=1

CPM 83.79 68.86 79.88 69.31

CPM* - - 77.81 68.58

DBM 60.01 38.16 41.37 33.82

CNN 39.80 28.01 30.42 15.37

K-NN 64.26 42.08 73.59 56.98

SVM 10.08 2.78 9.55 2.93

Table 1.1: One shot performances of methods compared on MNIST and USPS

hand-written digits datasets. The results are averaged over 15 runs. CPM*

demonstrates that our method is transferable when learned on MNIST and tested

on USPS.

each model is given a set of hand-written digits picked at random from each class.

In addition, we also provide experiments showing the transferability of the stroke

model by training on MNIST and testing on USPS.

The implementation of K-NN and SVM is based on that of VL Feat Toolbox

[30]. Specifically, our K-NN approach is constructed using a single kd-tree. For

CNN, we used the implementation of MatConvNet provided by [31] with four

convolutional layers and two pooling layers. For DBM, we use the implementation

provided by [28], which contains two hidden layers with 1000 units each. We tested

CNN and DBM using 200 and 300 epochs, respectively, and the epoch with the

maximum score is used for the results of each run.

The results of our experiments are summarized by Table 1.1 and Fig. 1.11,

averaged over 15 runs. Our compositional model consistently outperforms other

methods on the one-shot learning task. Without the use of Shape Context (in

order to fine tune the reconstructions), our model averages 78.11% on MNIST
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with five examples. In contrast, the traditional methods are generally unable to

achieve high recognition accuracies with so few examples, save for K-NN, which

performs well on USPS largely due to the low dimensionality of the dataset. Even

our transferable model CMP* (trained on MNIST and tested on USPS) outper-

forms the comparison approaches. While our model currently achieves mid-80%

accuracy with five examples, the parameters used are not optimal. A systematic

parameter search would yield greater quantitative scores.

In addition to the parameters provided in Sec. 1.5, we tried increasing the

number of iterations and the number of correspondences for Shape Context. We

found that the results did not differ by more than 1–2%. In general, more corre-

spondences and iterations tend to yield higher accuracies. However, recognition

time similarly increase due to the use of the Hungarian algorithm [19] in Shape

Context. Although our method extracts a set of meaningful patches represent-

ing the general structures of objects, it is difficult to predict all of the variations

that will exist in novel images. Generally, misclassifications occur in examples

that have specific regions missing from the objects in our training set (Fig. 1.12),

causing the warping costs to significantly increase.

1.7 Discussion

This paper introduces a technique to produce a compact dictionary of meaningful

patches from visual concepts by segmenting the objects into parts. We also present

a generative patch-based model that mimics the construction of these concepts

by relating the set of parts that composes them. Given a new object in an image,

the model attempts to reconstruct the object of interest based on a set of de-

formed patches learned from a small set of examples. This method performs well

on the one-shot learning task of hand-written digit recognition, beating popular

algorithms by a wide margin.
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Figure 1.12: Examples of mis-classifications due to variations in the test image

being too far from the limited training set causing affine cost αPt to become

extremely large.

Our method, however, is far from human-level competence. As illustrated in

Fig. 1.12, our approach still makes mistakes. In addition, although we boast a

fast training time, we use 2.86 seconds to perform recognition on a new image at

test time on the workstation in Sec. 1.5. This could be reduced by restricting

the number of correspondences used for Shape Context or by utilizing GPUs to

compute the NCC score between patches and images [26]

Nevertheless, our method has proven an effective framework for object recogni-

tion using a small set of training examples. Future interesting directions include

exploring the robustness of our model in recognizing objects in novel examples

with noise, significant occlusion, or even in the wild. Given the fast training

time of our approach and the need for so few examples, we are also interested in

applying this method in memory and computationally contrainted settings such

as mobile devices for real-time uses. These are all future directions that we will

explore given the promising results of our current algorithm.
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CHAPTER 2

Transferability and Application towards Images

in the Wild

2.1 Knowledge Transferability from One Shot Learning

A particular focus of our work is the understanding of the underlying structures

of the given data. It has been believed that the basis of one shot learning stems

from the sharing of knowledge amongst the objects of the same class. The idea

of knowledge sharing can be as simple as relating two objects of the same class

by a set of transformations (ie. scale, rotation, skew) or representing the objects

as a composition of similar parts (ie. birds have wings, and a beak). Based on

the assumption that objects of the same class share these similar structures, this

suggests an extension to the one shot learning task that we presented as the main

focus of the paper. Given that we have learned the structures of an object, our

model can generalize the knowledge to different dataset despite never having been

trained on the data before. The generalizability in our model proves not only

as an attractive quality in the method itself, but also as a step towards human

cognition.

In our main paper, we highlighted the transferability of our method by report-

ing one shot results on the MNIST and USPS datasets. Our ability to generalize

to other datasets suggests that our model can not only perform recognition and

reconstruction on hand-written digits, but also digitally generated and patterned

digits as well. We show examples of reconstructions of correct labeled examples
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MNIST	


USPS	


Figure 2.1: Examples of correctly labeled samples and their reconstructions on

MNIST (top) and USPS (bottom) examples. The model was trained using only

examples from the MNIST dataset. Image on the left of each pair denotes the

test example and the right denotes our reconstruction. Symmetry axis robustly

extracts the innate structures of the objects, allowing our model to generalize to

different datasets.

and misclassified test cases in Sec. 2.1.1. We also show that our method can in

fact be applied to textured and digitally generated images in the wild as well in

Sec. 2.1.2.

2.1.1 Generalizing to Common Datasets

We show that our method generalizes well to different datasets by performing

experiments where we train our model only on the MNIST dataset, and test the

model on both MNIST and USPS. Our MNIST-trained model not only performs

well on the MNIST test samples, but also on USPS test cases. Our MNIST-trained

model was able to achieve similar accuracies as our USPS-trained model when

testing on USPS examples at all training levels as reported in our experiments
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(see Table 1.1 and Fig. 1.11). Examples of our correctly labeled results are shown

in Fig. 2.1. We show that our models provide reconstructions that are fit to

human visual perception of hand-written digits.

We also show examples of errors made when testing our transferable model

using both MNIST and USPS (see Fig. 2.2). Based on our results, the misclassifi-

cations were mainly caused by missing parts from our training data. It is difficult

to model all of the possible deformations and variations in forming a particular

object when given so few training samples. This causes our affine costs, αPt , in

(1.8) to increase drastically when transforming one of our learned components

into the missing structure. This particular case is amplified when there exists

structures from other classes that can be warped at low affine costs to appear like

the missing structures of our true class.
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Figure 2.2: Examples of erroneous classification on MNIST and USPS samples

and their respective reconstructions. Our model was trained using only samples

from the MNIST dataset. Image on the left of each pair denotes the test example

and the right denotes the reconstruction of the chosen label.
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2.1.2 Applying to Images in the Wild

While the notion of a transferable model is attractive, the goal of our method is

to be able to not only generalize to common datasets, but also to domains that

are not as well defined. We again trained a model using very few samples from

MNIST. For the testing images, we sampled images of digits online — these images

may be digitally generated, contain textures, and are not restricted to the domain

of hand-written digits. However, we do require the images to have a segmented

background. All image have been resized to 56 by 56 pixels. Fig. 2.3 shows the

reconstructions of correctly labeled samples.

Figure 2.3: Reconstructions of correctly labeled test cases performed on textured

and digitally generated samples. Our model was trained using only from samples

from the MNIST dataset. Image on the left of each pair denotes the test example

and the right denotes our reconstruction.

The observed reconstructions of Fig. 2.3 are less well-formed than those that

were synthesized when testing on samples from MNIST and USPS. This is again

largely due to the structures existing in digitally generated testing samples that

are missing in the hand-written digit training samples. Nonetheless, our model

is shown to be transferable between hand-written digits and digitally generated
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digits. We can see from Fig. 2.3 that despite the textures and the different forms

(ie. printed, cartoon, patterned, etc.) of the images, our method is still able to

perform reconstruction and recognition. This is attributed to the use of symmetry

axis as a robust feature extractor. We believe that images of the same class share

some innate structures. Our method shows that these structures can indeed be

robustly found. Although these experiments were not performed on a standard

dataset, the ability to perform reconstruction on the digits in the wild give way

to new promising avenues for this field.

Our compositional model is still far from human competence, but it does act

as a proof of concept. The ability to generalize to different data sets and even

to images in the wild using very few training examples suggests that one shot

learning is indeed possible. The understanding of the innate structures of objects

begs the question of whether it is possible to find these same structures in a noisy

image. Moreover, our success in simple visual concepts such as hand-written digits

suggests that our method can be applied to the one shot recognition tasks for more

complex objects (ie. bicycles, birds, humans). This work paves new directions for

part-based models that utilize meaningful components not only in the realm of

one shot learning, but also in the big data schema.
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