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Abstract

Recent work on scene classification still makes use of
generic CNN features in a rudimentary manner. In this
ICCV 2015 paper, we present a novel pipeline built upon
deep CNN features to harvest discriminative visual objects
and parts for scene classification. We first use a region pro-
posal technique to generate a set of high-quality patches po-
tentially containing objects, and apply a pre-trained CNN to
extract generic deep features from these patches. Then we
perform both unsupervised and weakly supervised learning
to screen these patches and discover discriminative ones
representing category-specific objects and parts. We fur-
ther apply discriminative clustering enhanced with local
CNN fine-tuning to aggregate similar objects and parts into
groups, called meta objects. A scene image representation
is constructed by pooling the feature response maps of all
the learned meta objects at multiple spatial scales. We have
confirmed that the scene image representation obtained us-
ing this new pipeline is capable of delivering state-of-the-
art performance on two popular scene benchmark datasets,
MIT Indoor 67 [22] and Sun397 [31].

1. Introduction
Deep convolutional neural networks (CNNs) have

gained tremendous attention recently due to their great suc-
cess in boosting the performance of image classification
[14, 19], object detection [7, 26], action recognition [12]
and many other visual computing tasks [23, 21]. In the
context of scene classification, although a series of state-of-
the-art results on popular benchmark datasets (MIT Indoor
67[22], SUN397 [31]) have been achieved, CNN features
are still used in a rudimentary manner. For example, recent
work in [33] simply trains the classical Alex’s net [14] on a
scene-centric dataset (“Places”) and directly extracts holis-
tic CNN features from entire images.

1This work was partially completed when the first author was an intern
at Microsoft Research.

The architecture of CNNs suggests that they might not
be best suited for classifying images, including scene im-
ages, where local features follow a complex distribution.
The reason is that spatial aggregation performed by pooling
layers in a CNN is too simple, and does not retain much
information about local feature distributions. When critical
inference happens in the fully connected layers near the top
of the CNN, aggregated features fed into these layers are in
fact global features that neglect local feature distributions.
It has been shown in [8] that in addition to the entire im-
age, it is consistently better to extract CNN features from
multiscale local patches arranged in regular grids.

In order to build a discriminative representation based
on deep CNN features for scene image classification, we
need to address two technical issues: (1) Objects within
scene images could exhibit dramatically different appear-
ances, shapes, and aspect ratios. To detect diverse local ob-
jects, one could in theory add many perturbations to the in-
put image by warping and cropping at various aspect ratios,
locations, and scales, and then feed all of them to the CNN.
This is, however, not feasible in practice; (2) To distinguish
one scene category from another, it is much desired to har-
vest discriminative and representative category-specific ob-
jects and object parts. For example, to tell a “city street”
from a “highway”, one needs to identify objects that can
only belong to a “city street” but not a “highway” scene.
Pandey and Lazebnik [20] adopt the standard DPM to adap-
tively infer potential object parts. It is however unclear how
to initialize the parts and how to efficiently learn them using
CNN features.

In this paper, we present a novel pipeline built upon
deep CNN features for harvesting discriminative visual ob-
jects and parts for scene classification. We first use a re-
gion proposal technique to generate a set of high-quality
patches potentially containing objects [3]. We apply a pre-
trained CNN to extract generic deep features from these
patches. Then, for each scene category, we train a one-
class SVM on all the patches generated from the images for
this class as a discriminative classifier [25], which heavily
prunes outliers and other non-representative patches. The
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remaining patches correspond to the objects and parts that
frequently occur in the images for this scene category. To
further harvest the most discriminative patches, we apply a
non-parametric weakly supervised learning model to screen
these remaining patches according to their discriminative
power across different scene categories. Instead of directly
using the chosen category-specific objects and parts, we
further perform discriminative clustering to aggregate sim-
ilar objects and parts into groups. Each resulting group is
called a “Meta Object”. Finally, a scene image representa-
tion is obtained by pooling the feature response maps of all
the learned meta objects at multiple spatial scales to retain
more information about their local spatial distribution. Lo-
cally aggregated CNN features are more discriminative than
those global features fed into the fully connected layers in a
single CNN.

There exists much recent work advocating the concept
of middle-level objects and object parts for efficient scene
image classification [16, 20, 27, 11, 4, 30]. Among them,
the methods proposed in [4, 11] are most relevant. Nonethe-
less, there exist major differences between our method and
theirs. First, we use multiscale object proposals instead of
grid-based sampling with multiple patch sizes, thus we can
intrinsically obtain better discriminative object candidates.
Second, we aggregate our meta objects through deep CNN
features while previous methods primarily rely on low-level
features (i.e., HOG). As demonstrated through experiments,
deep features are more semantically meaningful when used
for characterizing middle-level objects. Last but not the
least, there exist significantly different components along
individual pipelines. For instance, we adopt unsupervised
learning to prune outliers while Juneja et al. [11] train a
large number of exemplar-SVMs, which is more computa-
tionally intensive. Furthermore, our discriminative cluster-
ing component also plays an important role in aggregating
meta objects.

In summary, this paper has the following contributions:
(1) We propose a novel pipeline for scene classification that
is built on top of deep CNN features. The advantages of this
pipeline are orthogonal to any category independent region
proposal methods [29, 34, 3] and middle-level parts learn-
ing algorithms [4, 20, 11]. (2) We propose a simple yet
efficient method that integrates unsupervised and weakly
supervised learning for harvesting discriminative and repre-
sentative category-specific patches, which we further aggre-
gate into a compact set of groups, called meta objects, via
discriminative clustering. (3) Instead of global fine-tuning,
we locally fine-tune the CNN using the meta objects discov-
ered from the target dataset. We have confirmed through ex-
periments that the scene image representation obtained us-
ing this pipeline is capable of delivering state-of-the-art per-
formance on two popular scene benchmark datasets, MIT
Indoor 67 [22] and Sun397 [31].

2. A New Pipeline for Scene Classification
In this section, let us present the main components of

our proposed new pipeline for scene classification. As illus-
trated in Figure 1, our pipeline is built on top of a pre-trained
deep convolutional neural network, which is regarded as a
generic feature extractor for image patches. In the context
of scene classification, instead of directly transferring these
features [33] or global fine-tuning on whole images using
the groundtruth labels [6, 7], we perform local fine-tuning
on discriminative yet representative local patches that cor-
respond to visual objects or their parts. As for scene classi-
fication datasets, bounding boxes or segment masks are not
available for our desired local patches. In order to harvest
them, we first adapt the latest algorithms to generate image
regions potentially containing objects, expecting a high re-
call of all informative ones (Section 2.1). Then we first ap-
ply an unsupervised learning technique, one-class SVMs, to
prune those proposed regions that do not appear frequently
in the images for a specific scene class. This is followed by a
weakly supervised learning step to screen the remaining re-
gion proposals and discard those patches that are unlikely to
be useful for differentiating a specific scene category from
other categories (Section 2.2).

To further improve the generality and representativeness
of the remaining patches, we perform discriminative clus-
tering to aggregate them into a set of meta objects (Sec-
tion 2.3). Finally, our scene image representation is built on
top of the probability distribution of the mined meta objects
(Section 2.4).

2.1. Region Proposal Generation

As discussed in Section 1, for arbitrary objects with
varying size and aspect ratio, the traditional sliding win-
dow based object detection paradigm requires multiresolu-
tion scanning using windows with different aspect ratios.
For example, in pedestrian detection [5], at least two win-
dows should be used to search for the full body and upper
body of pedestrians. Recently, an alternative paradigm has
been developed that performs perceptual grouping with the
goal of proposing a limited number of high-quality regions,
that likely enclose objects. Tasks including object detec-
tion [7] and recognition [9] can then be built on top of these
proposed regions only without considering other non-object
regions. There is a large body of literature along this new
paradigm for efficiently generating region proposals with
a high recall, including selective search [29], edge-boxes
[34], and multi-scale combinatorial grouping (MCG) [3].
We empirically choose MCG as the first component in our
pipeline for generating high-quality region proposals, but
one can use other methods as well. Figure 3 shows a few
examples of regions generated by MCG. We also use region
proposals from hierarchical image segmentation [2] at the
same time (see Sec.2.5).



Figure 1. Flowchart of our pipeline. From left to right: (a) Training scene images are processed by MCG [3] and we obtain top ranked
region proposals (yellow boxes). (b) Patches are screened by our non-parametric scheme and only discriminative patches remain. (c)
Discriminative clustering is performed to build meta objects. Three meta objects are shown here: ‘computer screen’, ‘keyboard’, ‘computer
chair’ (from top to bottom). Note that these names are for demonstration only, not labels applicable to our pipeline. (d) Local fine-tuning is
performed on Hybrid CNN [33], which decides which meta object a testing region belongs to. (e) We train an image classifier on aggregated
responses of our fine-tuned CNN. Here the response maps of two meta objects, ”computer screen” (second row) and ”keyboard” (bottom
row), are shown. Gray-scale values in the response maps indicate confidence.

Feature Extraction We use the CNN model pre-trained
on the Places dataset [33] as our generic feature extractor
for all the image regions generated by MCG. As this CNN
model only takes input images with a fixed resolution, we
follow the warping scheme described in R-CNN [7] and re-
sample a patch with an arbitrary size and aspect ratio us-
ing the required resolution. Then each patch propagates
through all the layers in the pre-trained CNN model, and
we take the 4096-dimensional vector in the FC7 layer as
the feature representation of the patch (see [14] and [33] for
detailed information about the network architecture).

2.2. Patch Screening

Screening via One-Class SVMs For each scene category,
there typically exist a set of representative regions that fre-
quently appear in the images for that category. For example,
since regions with computer monitors frequently appear in
the images for the “computer room” class, a region con-
taining monitors should be a representative region. Mean-
while, there are other regions that might only appear in few
images. Such non-representative patches can be viewed as
outliers for a certain scene category. On the basis of this ob-
servation, we adopt one-class SVMs [25] as discriminative
models for removing non-representative patches. A one-
class SVM separates all the data samples from the origin to
achieve outlier detection. Let x1, x2, ..., xl(xi ∈ Rd) be the
proposed regions from the same class, and Φ : X −→ H
be a kernel function that maps original region features into
another feature space. Training a one-class SVM needs to

solve the following optimization:

min
w,ξ,ρ

1

2
‖w‖2 +

1

υl

l∑
i=1

ξi − ρ (1)

subject to

(w · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0, i = 1, 2, ..., l,

where υ(∈ (0, 1]) controls the ratio of outliers. The deci-
sion function

f(x) = sign(w · Φ(xi)− ρ) (2)

should return the positive sign given the representative
patches and the negative sign given the outliers. This is
because the representative patches tend to stay in a local
region in the feature space while the outliers are scattered
around in this space. To further improve the performance,
we train a series of cascaded classifiers, each of which la-
bels 15% of the input patches as outliers and prune them.
We typically use 3 cascaded classifiers.

Weakly Supervised Soft Screening After the region pro-
posal step and outliers removal, let us suppose that mi im-
age patches have been generated for each image Ii, and
these patches likely contain objects or object parts. Let us
denote a patch from Ii as pij (j ∈ {1, ...,mi}), and use yi
to represent the scene category label of image Ii. We as-
sociate each image patch pij with a weight wij ∈ [0, 1] in-
dicating the discriminative power of the patch among scene



Figure 2. Patch weight distribution after weakly supervised patch
screening.

category labels. Our goal is to estimate this weight for ev-
ery patch. Intuitively, a discriminative patch should have
a high probability of appearing in one scene category and
low probabilities of appearing in the other categories. That
means, if we find the set of K nearest neighbors Nij of pij
from all image patches generated from all training images
except Ii, we can use the following class density estimator
to set wij :

wij = P (yi|pij) =
P (pij , yi)

P (pij)
≈ Ky/K, (3)

where Ky is the number of patches among the K nearest
neighbors that share the same scene label with pij . By as-
suming that the K nearest neighbors of pij are almost iden-
tical to pij , we use Ky to estimate the joint probability be-
tween a patch pij and its label yi. Empirically we set K to
100 in all the experiments. It is worth noting that patches
with large weights also have more representative power. As
representative patches would occur frequently in the visual
world [27], it is unlikely for non-representative patches to
find similar ones (as its nearest neighbors) that share the
same scene label. Fig. 2 shows the distribution of patch
weights after our screening process.

2.3. Meta Object Creation and Classification

Once we have identified the most discriminative image
patches, the next step is grouping these patches into clusters
such that ideally patches in the same cluster should contain
visual objects that belong to the same category and share
the same semantic meaning. This is important for discover-
ing the relationship between scene category labels and the
labels of object clusters. Clustering also helps to show the
internal variation of an object label. For example, desks
facing a few different directions in a classroom might be
grouped into several clusters. We call every patch cluster a
meta object. Note that meta objects could correspond to vi-
sual objects but could also correspond to parts and patches
that characterize the commonalities within a scene category.

We adopt the Regularized Information Maximization
(RIM) algorithm [13] to perform discriminative clustering.
RIM strikes a balance among cluster separation, cluster bal-
ance and cluster complexity. Fig. 3 shows a few clusters
after applying RIM to the screened discriminative patches
from the MIT 67 Indoor Scenes dataset [22]. As we can
see, the patches within the same cluster has similar appear-
ances and the same semantic meaning. Here we can also
observe the discriminative power of such clusters. For ex-
ample, the wine buckets (top row in Fig. 3) only show up in
wine cellars, and the cribs (second row from the bottom in
Fig. 3) only show up in nurseries.

Local Fine-Tuning for Patch Classification Given the
set of meta objects, we need a classifier to decide which
meta object a patch from a testing image belongs to. There
are various options for this classifier, including GMM-type
probabilistic models, SVMs, and neural networks. We
choose to fine-tune the pre-trained CNN on our meta ob-
jects, which include the collection of discriminative patches
surviving the patch screening process. We perform stochas-
tic gradient descent over the pre-trained CNN using the
warped discriminative image patches and their correspond-
ing meta object labels. Take MIT Indoor 67 [22] as an ex-
ample. After weakly supervised patch screening (Section
2.2), there exist around a million remaining image patches,
and 120 meta objects are discovered during the clustering
step (Section 2.3). In the CNN, we replace the original out-
put layer that performs ImageNet-specific 1000-way classi-
fication with a new output layer that does 121-way classifi-
cation while leaving all other layers unchanged. Note that
we need to add one extra class to represent those patches
that are discarded during the screening step. The reason
for local fine-tuning is obtaining an accurate meta object
classifier that is also robust to noisy labels generated by the
discriminative clustering algorithm used in Section 2.3.

2.4. Image Representation with Meta Objects

Inspired by previous work such as object-bank [16] and
bag-of-parts (BOF) [11], we hypothesize that any scene im-
age can be represented as a bag of meta objects as well.
Suppose N meta objects have been learned during discrim-
inative clustering (Section 2.3).

Given a testing image, we still perform MCG to obtain
region proposals. Every region can be classified into one
of the discriminative object clusters using our meta object
classifier. Spatial aggregation of these meta objects can be
performed using Spatial Pyramid Matching (SPM) [32]. In
our implementation, we use three levels of SPM, and adap-
tively choose the centroid of all meta objects falling into a
SPM region as the splitting center of its subregions. This
strategy can better balance the number of meta objects that
fall into each subregion. After applying SPM to the testing



Figure 3. Examples of patch clusters (meta objects) from the MIT 67 Indoor dataset [22]. Patches on the same row belong to the same meta
object. The rightmost column shows the average image, namely the ‘center’, of the corresponding meta object.

image, we obtain a hierarchical spatial histogram of meta
object labels over the image, which can be used for deter-
mining the scene category of this testing image.

Another pooling method we consider is Vector of Lo-
cally Aggregated Descriptors (VLAD) [10, 1]. We com-
pute a modified version of VLAD that suits our framework.
Specifically, we use our discriminative object clusters (meta
objects) as the clusters for computing VLAD. That means
we do not perform K-means clustering for VLAD. It is im-
portant to maintain such consistency because otherwise the
recognition performance would degrade by 1.5% on the
MIT 67 Indoor Scenes dataset (from 78.41% to 76.9%).
Other steps are similar to the standard VLAD. Given region
proposals of an image, we assign each region to its nearest
cluster center, and aggregate the residuals of the region fea-
tures, resulting in a 4096-d vector per cluster. Suppose there
are k clusters. The dimension of this per-cluster vector is
reduced to (4096/k)-d using PCA. Finally, these (4096/k)-d
vectors are concatenated into a 4096-d VLAD descriptor.

The holistic Places CNN feature extracted from the
whole image is also useful for training the scene image clas-
sifier since they also encode local as well as global informa-
tion of the scene.

We train a neural network with two fully-connected hid-
den layers (each with 200 nodes) using normalized VLAD
(or SPM) features concatenated with the holistic Places

CNN features. The relative weight between these two types
of features are learned via cross validation on a small por-
tion of the training data. We use the rectified linear function
(ReLU) as the activation function of the neurons in the hid-
den layers.

2.5. Multi-Level Image Representation

Our image representation with meta objects can be gen-
eralized to a multi-level representation. The insight here
is that objects with different sizes and scales may supply
complementary cues for scene classification. To achieve
this, we switch to multi-level region proposals. The coarser
levels deal with larger objects, while the finer levels deal
with smaller objects and object parts. On each level, re-
gion proposals are generated and screened separately. Lo-
cal fine-tuning for patch classification is also performed on
each level separately. During the training stage of the final
image classifier, the image representation is defined as the
concatenation of the feature vectors from all levels. In prac-
tice, we find a 2-level representation sufficient. The bottom
level includes relatively small regions from a finer level in
a region hierarchy [2] to capture small objects and object
parts in an image, while the top level includes region pro-
posals generated by MCG as well as relatively large regions
from a coarser level in the region hierarchy to capture large
objects.



3. Experiments and Discussions
In this section, we evaluate the performance of our

framework, named MetaObject-CNN, on the MIT Indoor
67 [22] and SUN 397 [31] datasets as well as analyze the
effectiveness of the specific choices we made at every stage
of our pipeline introduced in Section 2.

3.1. Datasets

MIT Indoor 67 MIT Indoor 67 [22] is a challenging in-
door scene dataset, which contains 67 scene categories and
a total of 15,620 images. The number of images varies
across categories (but at least 100 images per category). In-
door scenes tend to have more variations in terms of compo-
sition, and are better characterized by the objects they have.
This is consistent with the motivation of our framework.

SUN397 SUN397 [31] is a large-scale scene dataset,
which contains 397 scene categories and a total of 108,754
images (also at least 100 images per category). The cate-
gories include different kinds of indoor and outdoor scenes
which show tremendous object and alignment variance, thus
bringing more complexity in learning a good classifier.

3.2. Experimental Setup

For MIT Indoor 67, we train our model on the com-
monly adopted benchmark, which contains 80 training im-
ages and 20 testing images per category. There are 192 top
ranked region proposals generated with MCG and 32 (96)
regions from hierarchical image segmentation in the top
(bottom) level for every training and testing image. The fea-
ture representation of a proposed region is set to the 4096-
dimensional vector at the FC7 layer of the Hybrid CNN
from [33]. After outlier removal (3 iterations of 15% fil-
tering out), we further discard 16% patches, where the ra-
tio is determined via cross validation on a small portion of
the training data. Then we perform data augmentation (to
4 times larger) on the remaining patches using reflection,
small rotation and random distortion. Discriminative clus-
tering is performed on the augmented patches to produce
120 (40) meta objects for local fine-tuning in the bottom
(top) level, which is performed on the Hybrid CNN by re-
placing the original output layer that performs ImageNet-
specific 1000-way classification with a new output layer
that does 121-way (41-way) classification while leaving all
other layers unchanged. The pooling step (SPM and our
modified VLAD) is discussed in Section 2.4. The image
classification is done by a neural network with two fully-
connected layers (200 nodes each) on the concatenated fea-
ture vector of VLAD pooling and the Hybrid CNN feature
of the whole image.

For SUN 397, we adopt the commonly used evaluation
benchmark that contains 50 training images and 50 testing

images per category for each split from [31]. There are 96
top ranked regions generated with MCG and 32 (96) re-
gions from hierarchical image segmentation in the top (bot-
tom) level for every training and testing image. The feature
representation of a proposed region is also set to the 4096-
dimensional vector at the FC7 layer of the Hybrid CNN.
After outlier removal (3 iterations of 15% filtering out), we
further discard 24% patches. Data augmentation is also
performed on the remaining patches involving reflection,
small rotation and random distortion. Discriminative clus-
tering results in 450 (150) meta objects in the bottom (top)
level. Local fine-tuning is further performed on the Hybrid
CNN by replacing the original output layer with a new out-
put layer that does 451-way (151-way) classification while
leaving all other layers unchanged. We also train a neural
network with two fully-connected layers (200 nodes each)
on the concatenated feature vector of VLAD pooling and
the Hybrid CNN feature of the whole image to deal with
image level classification.

3.3. Comparisons with State-of-the-Art Methods

In Table 1, we compare the recognition rate of
our method (MetaObject-CNN) against published results
achieved with existing state-of-the-art methods on MIT In-
door 67. Among the existing methods, oriented texture
curves (OTC) [18], spatial pyramid matching (SPM) [15],
and Fisher vector (FV) with bag of parts [11] represent ef-
fective feature descriptors as well as their associated pool-
ing schemes. Discriminative patches [27, 4] are focused
on mid-level features and representations. More recently,
deep learning and deep features have proven to be valuable
to scene classification as well [8, 33]. The recognition ac-
curacy of our method outperforms the state of the art by
around 8.1%.

Table 1. Scene Classification Performance on MIT Indoor 67

Method Accuracy(%)
SPM [15] 34.40
OTC [18] 47.33
Discriminative Patches ++ [27] 49.40
FV + Bag of parts [11] 63.18
Mid-level Elements [4] 66.87
MOP-CNN [8] 68.88
Places-CNN [33] 68.24
Hybrid-CNN [33] 70.80
MetaObject-CNN 78.90

Table. 2 shows a comparison between the recogni-
tion rate achieved with our method (MetaObject-CNN) and
those achieved with existing state-of-the-art methods on
the SUN397 dataset. In addition to the methods intro-
duced earlier, there exists additional representative work
here. Xiao et al. [33], as the collector of SUN397, inte-



grated 14 types of distance kernels including bag of fea-
tures and GIST. DeCAF [6] uses the global 4096D feature
from a pre-trained CNN model on ImageNet. OTC together
with the HOG2x2 descriptor [18] outperforms dense Fisher
vectors [24], both of which are effective feature descriptors
for SUN397. And again, by applying deep learning tech-
niques, MOP-CNN [8] and Places-CNN [33] (fine-tuned
on SUN397) achieve state-of-the-art results (51.98% and
56.2%). With our MetaObject-CNN pipeline, we manage
to achieve a higher recognition accuracy.

Table 2. Scene Classification Performance on SUN397

Method Accuracy(%)
OTC [18] 34.56
Xiao et al. [33] 38.00
DeCAF [6] 40.94
FV [24] 47.20
OTC+HOG2x2 [18] 49.60
MOP-CNN [8] 51.98
Hybrid-CNN [33] 53.86
Places-CNN [33] 56.20
MetaObject-CNN 58.11

3.4. Evaluation and Discussion

In this section, we perform an ablation study to analyze
the effectiveness of individual components in our pipeline.
When validating each single component, we keep all the
others fixed. Specifically, we treat the final result from our
MetaObject-CNN as the baseline, and perform the analysis
by altering only one component at a time. Table 3 shows a
summary of the comparison results on MIT Indoor 67. A
detailed explanation of these results is given in the rest of
this section.

Table 3. Evaluation results on MIT Indoor 67 for varying pipeline
configurations.

Configuration Accuracy(%)
Global fine-tuning 73.88
Mode-seeking [4] with Hybrid-CNN 69.70
Mode-seeking elements instead of MCG 76.34
Dense grid-based patches 71.43
Without outlier removal and patch screening 75.12
Without outlier removal 76.30
Without patch screening 78.82
Without clustering 72.81
Without local fine-tuning 76.10
Cross-dataset evaluation 76.52
MetaObject-CNN 78.90

Global vs Local Fine-Tuning Most of the previous meth-
ods [33, 6, 12] using a pre-trained deep network primar-
ily focus on global fine-tuning for domain adaptation tasks,
which take the entire image as input and rely on the net-
work itself to learn all the informative structures embedded
within a new dataset. However, in this work, we perform
fine-tuning on local meta objects harvested in an explicit
manner. To compare, we start with the Places CNN net-
work [33], and fine-tune this network on MIT Indoor 67.
The recognition rate after such global fine-tuning is 73.88%
(top row in Table. 3), which is around 5% lower than that
of our pipeline. This indicates the advantages of our local
approach of harvesting meta objects and performing recog-
nition on top of them.

Choice of Region Proposal Method In addition to
choosing MCG [3] and hierarchical image segmentation for
generating object proposals, one might directly use dense
grid-based patches or mid-level discriminative patches dis-
covered by the pioneering techniques in [4, 27] as local ob-
ject proposals. To evaluate the effectiveness of MCG, we
have conducted the following three internal comparisons.

First, we compare our patch screening on top of region
proposal with the patch discovery process in [4], which is a
piece of representative work on learning mid-level patches
in a supervised manner. For a fair comparison, we use the
Places CNN feature (FC7) to represent the visual elements
in this work. Similar to the configuration in [4], 1600 ele-
ments are learned per class and 200 top elements per class
are used for further classification. The resulting recogni-
tion rate is 69.70% (second row in Table. 3, which is 9.2%
lower than our result. This comparison demonstrates that
region proposal plus patch screening is helpful in finding
visual objects that characterize scenes. In a second exper-
iment, we feed the top visual elements identified by [4] to
our patch clustering step, and obtain 96 meta objects. The
final recognition rate achieved with these meta objects is
76.34% (third row in Table. 3), which is around 2.6% lower
than our result. This second experiment shows that MCG
works with our pipeline better than mode-seeking elements
from [4]. Then in a third experiment, instead of taking re-
gion proposals, we have tried using all patches from a reg-
ular 8x8 grid, the result is 71.43% (fourth row in Table. 3),
which indicates patches sampled from a regular grid are not
good candidates for meta objects.

Importance of Outlier Removal and Patch Screening
To see how important our outlier removal and patch screen-
ing stages are, one can directly feed all the object propos-
als without any screening into the subsequent components
down the pipeline (discriminative clustering and local fine-
tuning). During our patch screening step, as shown in Eq.
3, we rank all the patches according to their discriminative



weights and discard those with lower weights. Here we de-
fine the total screening ratio as the percentage of discarded
patches in both outlier removal and patch soft screening
steps. In Fig. 4 (top), we can see, when the total screen-
ing ratio is zero, the recognition accuracy is 75.12% (also
shown in the fifth row in Table. 3). This is because, al-
though we have reasonable region proposals, there could
still be many noisy ones among them. These noisy region
proposals are either false positives or non-discriminative
objects (as shown in Fig. 1) shared by multiple scene cate-
gories. On the other hand, an overly high screening ratio has
also been found to hurt recognition performance, as shown
in Fig. 4 (top). This is reasonably easy to understand be-
cause higher ratios could discard some discriminative meta
objects that would otherwise contribute to the overall per-
formance. We search for an optimal ratio through cross val-
idation on a small subset of the training data. The outlier
removal step is also important in filtering out regions that
do not fit in a certain category and brings along 2.6% im-
provement in final classification performance, as shown in
the sixth row of Table. 3).

Figure 4. Top: recognition accuracy vs. total screening ratio
on MIT Indoor 67. Bottom: recognition accuracy vs. number of
clusters in bottom level on MIT Indoor 67.

Importance of Clustering Next we justify the useful-
ness of clustering patches into meta objects. Without patch
clustering, we can directly take the collection of screened
patches as a large codebook, and treat every patch as a vi-
sual word. We then apply LSAQ [17] (with 100 nearest
neighbors) coding and SPM pooling to build the image-

level representation. The resulting recognition rate on MIT
Indoor 67 is 72.81% (eighth row in Table. 3), which is
around 6.1% lower than the result of MetaObject-CNN.
This controlled experiment demonstrates that patch clus-
tering for meta object creation is crucial in our pipeline.
Clustering patches into meta objects improves the gener-
ality and representativeness of those discovered discrimi-
native patches because clustering emphasizes the common
semantic meaning shared among similar patches while tol-
erating less important differences among them. Fig. 4 (bot-
tom) shows the impact of the number of clusters in the bot-
tom level on the final recognition rate. It is risky to group
patches into an overly small number of clusters because it
would assign patches with different semantic meanings to
the same meta object. Creating too many clusters is also
risky due to the poor generality of the semantic meanings
of meta objects.

Importance of Local Fine-Tuning Local fine-tuning has
also proven to be effective in our pipeline. We tried us-
ing the responses from the RIM clustering model directly
for pooling. On MIT Indoor 67, the recognition rate with-
out local fine-tuning is 76.10% (ninth row from the bot-
tom in Table. 3), which is around 2.8% lower than that
with local fine-tuning. This demonstrates local fine-tuning
actually defines better separation boundaries between clus-
ters, which is consistent with the common sense about fine-
tuning. We have also used the CNN locally fine-tuned on
SUN397 to perform cross-dataset classification on MIT In-
door 67. The recognition rate is 76.52% (bottom row in
Table. 3), which indicates CNNs fine-tuned over one scene
patch dataset have the potential to perform well on other
scene datasets.

4. Conclusions
We have introduced a novel pipeline for scene classifi-

cation, which is built on top of pre-trained CNN networks
via explicitly harvesting discriminative meta objects in a lo-
cal manner. Through extensive comparisons in a series of
controlled experiments, our method generates state-of-the-
art results on two popular yet challenging datasets, MIT
Indoor 67 and Sun397. Recent studies on convolutional
neural networks, such as GoogLeNet [28], indicate that us-
ing deeper models would improve recognition performance
more substantially than shallow ones. Therefore training
better generic CNNs would certainly improve its transfer
learning capability as well. Nevertheless, our approach is
intrinsically orthogonal to this line of effort. Exploring
other local fine-tuning methods would be an interesting di-
rection for future work.
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