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Abstract

Understanding how images of objects and scenes be-
have in response to specific ego-motions is a crucial as-
pect of proper visual development, yet existing visualiear
ing methods are conspicuously disconnected from the phys- g7
ical source of their images. We propose to exploit propri- £
oceptive motor signals to provide unsupervised regulariza
tion in convolutional neural networks to learn visual repre
sentations from egocentric video. Specifically, we enforce
that our learned features exhibit equivarianice they re-
spond predictably to transformations associated with dis-

tinct ego-motions. With three datasets, we show that our ) . )
g We contend that today’s visual recognition algorithms

unsupervised feature learning approach significantly out are crippled much like the passive kitten. The culprit: tear

performs previous approaches on visual recognition and ing from “bags of imaces”. Ever since statistical leamin
next-best-view prediction tasks. In the most challengingI 9 9 Images:. Lver si ISt ng

test, we show that features learned from video captured Onmethods emerged as the dominant paradigm in the recog-

- : nition literature, the norm has been to treat images as i.i.d
an autonomous driving platform improve large-scale scene draws from an underlying distribution. Whether learnin
recognition in static images from a disjoint domain. ying ' g

object categories, scene classes, body poses, or features
themselves, the idea is to discover patterns within a col-
1. Introduction lection of snapshots, blind to their physical source. So is
the answer to learn from video? Only partially. Without
How is visual learning shaped by ego-motion? In their leveraging the accompanying motor signals initiated by the
famous “kitten carousel” experiment, psychologists Held videographer, learning from video data does escape the
and Hein examined this question in 1963] To analyze  passive kitten’s predicament.
the role of self-produced movement in perceptual develop-  Inspired by this concept, we propose to treat visual learn-
ment, they designed a carousel-like apparatus in which twoing as an embodied process, where the visual experience
kittens could be harnessed. For eight weeks after birth, theis inextricably linked to the motor activity behindit.In
kittens were kept in a dark environment, except for one particular, our goal is to learn representations that ekplo
hour a day on the carousel. One kitten, the “active” kit- the parallel signals of ego-motion and pixels. We hypothe-
ten, could move freely of its own volition while attached. size that downstream processing will benefit from a feature
The other kitten, the “passive” kitten, was carried along in space that preserves the connection between “how | move”
a basket and could not control his own movement; rather,and “how my visual surroundings change”.
he was forced to move in exactly the same way as the ac- To this end, we cast the problem in terms of unsuper-
tive kitten. Thus, both kittens received the same visual ex- vised equivariant feature learning. During training, the i
perience. However, while the active kitten simultaneously put image sequences are accompanied by a synchronized
experienced signals about his own motor actions, the passtream of ego-motor sensor readings; however, they need
sive kitten did not. The outcome of t_he experime_nt is re- rrv— - it the motor actv " o i
markable. While the active kitten's visual perception was , tlf?geGrleOgFo;go-%g(t)in?); : thz ?Ssgrr\::r "r’]'qté’v‘i:r?; iniﬁgegpmgg

indiStingUiShable from kittens raised norma”y: th? p!.EESSi. second-hand motion of an object being actively manipulaged., by a
kitten suffered fundamental problems. The implication is person or robot's end effectors.

Figure 2. We learn visual features from egocentric video tha
spond predictably to observer egomotion.

clear: proper perceptual development requires leveraging
self-generated movement in concert with visual feedback
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Figure 1. Our goal is to learn a feature space equivariargdeneotion.

We train with image pairs from video accomparugdheir sensed

ego-poses (left and center), and produce a feature mappafgthat two images undergoing the same ego-pbs@gemove similarly
in the feature space (right).eft: Scatter plot of motion$y; — y;) among pairs of frames 1s apart in video from KITTI car-mounted
camera, clustered into motion pattemmg. Center: Frame pairgx;, ;) from the “right turn”, “left turn” and “zoom” motion pattes
Right: An illustration of the equivariance property we seek in #erhed feature space. Pairs of frames corresponding teegaemotion
pattern ought to have predictable relative positions in¢hened feature space. Best seen in color.

not possess any semantic labels.

The ego-motor signapervised feature learning with videéZ, 24,

, 9] learns

v

could correspond, for example, to the inertial sensor mea-only passively from observed scene dynamics, uninformed
surements received alongside video on a wearable or carby explicit motor sensory cues. Furthermore, while equiv-
mounted camera. The objective is to learn a feature map-ariance is explored in some recent work, unlike our idea,
ping from pixels in a video frame to a space thaéeiv- it typically focuses on 2D image transformations as op-
ariantto various motion classes. In other words, the learned posed to 3D ego-motionlfl, 26] and considers existing
features shouldhange in predictable and systematic ways features §0, 17]. Finally, whereas existing methods that
as a function of the transformation applied to the original learn from image transformations focus on view synthesis
input. See Figl. We develop a convolutional neural net- applications {2, 15, 21], we explore recognition applica-

work (CNN) approach that optimizes a feature map for the

desired egomotion-based equivariance. To exploit the fea-

tures for recognition, we augment the network with a clas-

tions of learning jointly equivariant and discriminativeaf
ture maps.
We apply our approach to three public datasets. On pure

sification loss when class-labeled images are available. Inequivariance as well as recognition tasks, our method con-

this way, ego-motion serves as side information to regular-
ize the features learned, which we show facilitates categor
learning when labeled examples are scarce.

In sharp contrast to our idea, previous work on visual
features—whether hand-designed or learned—primarily
targets featurénvariance Invariance is a special case of
equivariance, where transformations of the input have no
effect. Typically, one seeks invariance to small transirm
tions, e.g., the orientation binning and pooling operation
in SIFT/HOG and modern CNNs both target invariance to
local translations and rotations. While a powerful con-
cept, invariant representations require a delicate batanc
“too much” invariance leads to a loss of useful information
or discriminability. In contrast, more general equivatian
representations are intriguing for their capacity to ingos
structure on the output space without forcing a loss of infor
mation. Equivariance is “active” in that it exploits observ
motor signals, like Hein and Held'’s active kitten.

Our main contribution is a novel feature learning ap-

sistently outperforms the most related techniques in featu
learning. In the most challenging test of our method, we
show that features learned from video captured on a vehicle
can improve image recognition accuracy on a disjoint do-
main. In particular, we use unlabeled KITT,[7] car data

to regularize feature learning for the 397-class scenegreco
nition task for the SUN dataset{]. Our results show the
promise of departing from the “bag of images” mindset, in
favor of an embodied approach to feature learning.

2. Related work

Invariant features Invariance is a special case of equiv-
ariance, wherein a transformed output remains identical to
its input. Invariance is known to be valuable for visual rep-
resentations. Descriptors like SIFT, HOG, and aspects of
CNNs like pooling and convolution, are hand-designed for
invariance to small shifts and rotations. Feature learning
work aims tdearninvariances from date&?[/, 28, 31, 29, 5].
Strategies include augmenting training data by perturbing

proach that couples ego-motor signals and video. To ourimage instances with label-preserving transformatians [

knowledge, ours is the first attempt to ground feature learn-

ing in physical activity. The limited prior work on unsu-

, 5], and inserting linear transformation operators into the
feature learning algorithrp].



Most relevant to our work are feature learning meth- autoencoder” is extended to perform sequence prediction
ods based on temporal coherence and “slow feature analyfor video in [21]. Recurrent neural networks combined with
sis” [32, 10, 27]. The idea is to require that learned features a grammar model of scene dynamics can also predict future
vary slowly over continuous video, since visual stimuli can frames in video14]. Whereas these methods learn a repre-
only gradually change between adjacent frames. Tempo-sentation for image pairs (or tuples) related by some trans-
ral coherence has been explored for unsupervised featuréormation, we learn a representation for individual images
learning with CNNs P2, 37, 9, 3, 19, with applications to in which the behavior under transformations is predictable
dimensionality reductionl[0], object recognition2, 37], Furthermore, whereas these prior methods abstract away the
and metric learning9]. Temporal coherence of inferred image content, our method preserves it, making our features
body poses in unlabeled video is exploited for invariant relevant for recognition.
recognition in I]. These methods exploit video as a source
of free supervision to achieve invariance, analogous to the

|rra_1tge pgrturbatlcin(sj|diﬁ above. Itn co_ntraslt, fum;?thc’dtr?x'Egocentric vision There is renewed interest in egocen-
ploils video coupled With €go-motor signais to achieve Ine . computer vision methods, though none perform fea-

more general property of equivariance. ture learning using motor signals and pixels in concert as
Equivariant representations Equivariant features can W& Propose. Recent methods use ego-motion cues to sepa-

also be hand-designed or learned. For example, equivarift€ foreground and background 35 or infer the first-

ant or “co-variant” operators are designed to detect repeat person gaze b, ] While most work relies _soIer on a'p—
able interest points3[]. Recent work explores ways to parent image motion, the method G exploits a robot’s

learn descriptors with in-plane translation/rotationiegti- motor signals to c_ietect moving objects and][use_s_re-
ance [.4, 26]. While the latter does perform feature learn- inforcement learning to form robot movement policies by

ing, its equivariance properties are crafted for specific 2D €XPloiting correlations between motor commands and ob-
image transformations. In contrast, we target more complexserved motion cues.

equivariances arising from natural observer motions (3D
ego-motion) that cannot easily be crafted, and our method
learns them from data.

Methods to learn representations with disentangled la-  oyr goal s to learn an image representation that is equiv-
tent factors [2, 15 aim to sort properties like pose, il-  ariant with respect to ego-motion transformations. Let
luminationetc into distinct portions of the feature space. ;. < x pe an image in the original pixel space, and let
For example, the transforming auto-encoder learns to ex-,,. « y pe its associated ego-pose representation. The ego-
plicitly represent instantiation parameters of objectpar  pose captures the available motor signals, and could take a
equivariant hidden layer units f]. Such methods target yariety of forms. For examplé; may encode the complete
equivariance in the limited sense of inferring pose param- gpserver camera pose (its position in 3D space, pitch, yaw,

eters, which are appended to a conventional feature Spacgy|l), some subset of those parameters, or any reading from
designed to be invariant. In contrast, our formulation en- 53 motor sensor paired with the camera.

couragequivarianceover thecompletefeature space; we . . . -
. . : . As input to our learning algorithm, we have a training

show the impact as an unsupervised regularizer when train- ) . . .

. L I e setYd of N, image pairs and their associated ego-poses,

ing a recognition model with limited training data.

_ . ) . ) N'u. . . . ._
The work of [L7] quantifies the invariance/equivariance U = {{(;, ."BJ)’ (yl’y-7)>}(i=j):1' The image pairs origi :
i : . . nate from video sequences, though they need not be adja-
of various standard representations, including CNN fea-

tures, in terms of their responses to specified in-plane 2DCent frames in time. The set may contain pairs from multi-

. ; ! . ; ple videos and cameras. Note that this training data does
image transformations (affine warps, flips of the image). We : . N
- - . have any semantic labels (object categorées); they are
adopt the definition of equivariance used in that work, but | . ; i
. . . - e labeled” only in terms of the ego-motor sensor readings.
our goal is entirely different. Whereas] quantifies the

equivariance of existing descriptors, our approach learns  In the following, we first explain how to translate ego-
feature space that is equivariant. pose information into pairwise “motion pattern” annota-

tions (Sec3.1). Then, Sed.3 defines the precise nature
Learning transformations Other methods train with  of the equivariance we seek, and Segdefines our learn-
pairs of transformed images and infer an implicit represen-ing objective. Se@.4 shows how our equivariant feature
tation for the transformation itself. Ir2[], bilinear models  learning scheme may be used to enhance recognition with
with multiplicative interactions are used to learn content limited training data. Finally, in Se8.5 we show how a
independent “motion features” that encode only the trans-feedforward neural network architecture may be trained to
formation between image pairs. One such model, the “gatedproduce the desired equivariant feature space.

3. Approach



3.1. Mining discrete ego-motion patterns particular direction in the feature space (here, as conapute

. . . - by multiplication withM,) has a predictable outcome. The
First we want to organize training sample pairs into a . 97 ="
linear case, as also studied in7], ensures that the struc-

discrete set of ego-motion patterns. For instance, one ego; . ) . :
. . " ture of the mapping has a simple form, and is convenient

motion pattern might correspond to "tilt downwards by ap- for learning sinceV/, can be encoded as a fully connected

proximately 20°”". While one could collect new data ex- laver in a neural neiwork

plicitly controlling for the patterns (e.g., with a turntab y i

and camera rig), we prefer a data-driven approach that can isvzrglg i?:grév\?\/;kr[ \;ve é;ofg;iigggg;xggﬁg;fre
leverage video and ego-pose data collected “in the wild". g 9 b, P

; . . ego-motion pattern (cf. Secl) reflecting the observer's 3D
To this end, we discover clusters among pose difference .
NP movementin the world. In theory, appearance changes of an
vectorsy,; — y; for pairs(i, j) of temporally close frames . . ) i
) J ) image in response to an observer’s ego-motion are not de-
from video (typically<1 second apart; see Sécl for de- g .
X J IR : termined by the ego-motion alone. They also depend on the
tails). For simplicity we applyk-means to findG clus- . : .
. depth map of the scene and the motion of dynamic objects
ters, though other methods are possible. hgte P = : . .
: in the scene. One could easily augment either the frares
{1, ..., G} denote the motion pattern IDe., the cluster to . .
. or the ego-posg; with depth maps, when available. Non-
which (y;, y,;) belongs. We can now replace the ego-pose ; - ) :
e Sd s - 5 observer motion appears more difficult, especially in the
vectors in/ with motion pattern IDs{(x;, x;), psj)- : . . :
o : face of changing occlusions and newly appearing objects.
The left panel of Fidl illustrates a set of motion patterns : . )
. i . , ; However, our experiments indicate we can learn effective
discovered from videos in the KITTE] dataset, which are . . . . ;
: . . representations even with dynamic objects. In our imple-
captured from a moving car. Hepe consists of the posi-

: . mentation, we train with pairs relatively close in time, so a
tion and yaw angle of the camera. So, we are clustering a . .

2 . : to avoid some of these pitfalls.
2D space consisting of forward distance and change in yaw.

; ; While during training we target equivariance for the dis-
As illustrated in the center panel, the largest clustersecor ; i
) ! oo . crete set ofG ego-motions, the learned feature space will
spond to the car’s three primary ego-motions: turning left,

turning riaht. and aoing forward notbe limited to preserving equivariance for pairs originat-
g nght, going ' ing from the same ego-motions. This is because the linear
3.2. Ego-motion equivariance equivariance maps are composable. If we are operating in
_ _ _ ) a space where every ego-motion can be composed as a se-
Givenl/, we X)"'Sh to learn a feature mapping function gyence of “atomic” motions, equivariance to those atomic
zg(.) : X — R” parameterized by that maps a single  mqtions is sufficient to guarantee equivariance to all mo-
image to aD-dimensional vector space that is equivariant tjons, To see this, suppose that the maps for “turn head right
to ego-motion. _To be equivariant, the functlm must re- by 10°” (ego-motion pattern) and “turn head up by 10°”
spondsystematicallyandpredictablyto ego-motion: (ego-motion pattern:) are respectively\/, and M,, i.e.,
zo(x;) ~ f(zo(:), i, y;), 1) z(rx) = M,z(x) gndz(uw) = Myz(z) forall x € X.
Now for a novel diagonal maotiod that can be composed
for some functionf. We consider equivariance for linear from these atomic motions @s= r o u, we have
functionsf(.), following [17]. In this casezg is said to be z(dz) = z((r ow)x) = Myz(ux) = M, M,z(x), (3)
equivariant with respect to some transformatipif there

exists aD x D matrix® M, such that: so thatMy; = M, M, is the equivariance map for novel

ego-motiond, even thougll was notamond, . .., G. This
Ve € X :zg(gx) ~ Myzg(x). 2 property lets us restrict our attention to a relatively dmal
number of discrete ego-motion patterns during training, an
Such anl, is called the “equivariance map” @f on the still learn features equivariant w.r.t. new ego-motions.
feature spaceg(.). It represents the affine transformation L . N
in the feature space that corresponds to transformation 3.3. Equivariant feature learning objective
the pixel space. For example, suppose a motion paitern ~ We now design a loss function that encourages the
corresponds to a yaw turn of 20°, amdandgx are the im-  |earned feature spacg to exhibit equivariance with re-
ages observed before and after the turn, respectivelyvEqui spect to each ego-motion pattern. Specifically, we would
ariance demands that there is some malfjxthat mapsthe |ike to learn the optimal feature space parameférintly
pre-turn image to the post-turn image, once those imagesith its equivariance maps(* = {M5, ..., M} for the
are expressed in the feature spage Hence,zg “orga-  motion pattern clustersthroughG (cf. Sec3.1).
nizes” the feature space in such a way that movementin a To achieve this, a naive translation of the definition of
2For movement withd degrees of freedom, settirg ~ d should suf- equivariance in Eq2) into a minimization .pro_blem over
fice (cf. Sed5.3. We chose small¥ for speed and did not vary it. feature space parametéand theD x D equivariance map
3pias dimension assumed to be includedirfor notational simplicity candidate matrice$1 would be as follows:




wheret;, t; are the video time indices af;, ; andT is a
temporal neighborhood size hyperparameter. This loss en-
(6°, M") =argmin» > d(M,ze(xi),ze(x;)), courages the representations of nearby frames to be simi-
OM T () pii=a} lar to one another. However, crucially, it does not account
(4) for the nature of the ego-motion between the frames. Ac-
whered(., .) is a distance measure. This problem can be de-cordingly, while temporal coherence helps learn invaranc
Composed intdz independent optimization problems, one to small image Changes, it does not target a (more gen-
for each motion, corresponding only to the inner summation eral) equivariant space. Like the passive kitten from Hein
above, and dealing with disjoint data. Theh such prob-  and Held's experiment, the temporal coherence constraint
lem requires only that training frame pairs annotated with \watches video to passively learn a representation; like the

motion patterrp;; = g approximately satisfy Eqj. active kitten, our method registers thbserver motiorex-
However, such a formulation admits problematic so- plicitly with the video to learn more effectively, as we will
lutions that perfectly optimize ite.g for the trivial all- demonstrate in results.

zero feature spacgg(x) = 0,Vx € X with M, set to o .
the all-zeros matrix for aly, the loss above evaluates to 3-4. Regularizing a recognition task
zero. To avoid such solutions, and to force the learned \ynile we have thus far described our formulation for
M,’s to be different from one another (since we would like generic equivariant image representation learning, it can
the learned representation to respatifferently to dlﬁer; optionally be used for visual recognition tasks. Suppose
ent ego-motions), we simultaneously account for the “neg- yhat in addition to the ego-pose annotated pafrae are
atives” of each motion pattern. Our learning objective is: 5150 given a small set N, class-labeled static images,
L = {(zg,cx}n’,, wherecy € {1,...,C}. Let L, de-
(0", M") = arg min > dy (Myzo(i), 20 (25), Dij) » note the unsupervised equivariance loss of Bq (Ve can
" 9:4: 5 integrate our unsupervised feature learning scheme wath th
. . y . (5) recognition task, by optimizing a misclassification loss to
vyheredg(., ) is & "contrastive loss™{(] specific to mo- gether withL.. Let W be aD x C matrix of classifier
tion patterny: weights. We solve jointly foi?” and the mapsg\1:

dg(a,b,c) = 1(c = g)d(a, b)+ (6", W* M*) = argmin L.(0, W, L) + AL.(6, M,U),

L(c # g) max(d — d(a, b),0), (6) o.wM ®
whereL . denotes the softmax loss over the learned features,
Le(W,£) = =5 3 log(0e, (Wze(x:)), ando, () is
the softmax probability of the correct class. The regutariz
weight A is a hyperparameter. Note that neither the super-
vised training dat& nor the testing data for recognition are
di.,.) required to haye any associated.sensor data. Thus, our fea-

in .our objective in Eq %), the contrastive loss operates tures are applicable to standard image recogmt.lon task;. _
. ' X i In this use case, the unsupervised ego-motion equivari-
in the latent fe_ature space. F_or pairs belonging t(_) CIUSterance loss encodes a prior over the feature space that can im-
g, the contras_nve_ losd, penghzes feature space d.'St?‘”CG prove performance on the supervised recognition task with
between the first image and its transformed pair, similar to limited training examples. We hypothesize that a feature

Eq d(4)reat1)1ci):/ees' tr':z;rtrﬁ)gltrrsar?seflgrnrg:;?orgo dgﬁ:;%rs ot;irsihan space that embeds knowledge of how objects change un-
9 &g T€Q . ) oy ._der different viewpoints / manipulations allows a recogni-
not bring the image representations close together. In this

S . tion system to, in some sense, hallucinate new views of an
way, our objectlye learns tha/, s jointly. I.t ensures that object to improve performance.
distinct ego-motions, when applied to an inpytx), map
it to different locations in feature space. 3.5. Form of the feature mapping functionz(.)

We want to highlight the important distinctions between
our objective and the “temporal coherence” objective of
[27] for slow feature analysis. Written in our notation, the
objective of P2] may be stated as:

wherel(.) is the indicator function. This contrastive loss
penalizes distance betweenand b in “positive” mode
(whenc = g), and pushes apart pairs in “negative” mode
(whenec # g), up to a minimum margin distance speci-
fied by the constant. We use thes norm for the distance

For the mappingg(.), we use a convolutional neural
network architecture, so that the parameter veétarow
represents the layer weights. The Idssof Eq (5) is opti-
mized by sharing the weight paramet@ramong two iden-

0" — arg minZ(h (zo(x:), zo (), L(|t; — t;| < T)), tical stacks of layers in a “Siamese” netwofk [0, 27], as
0 shown in the top two rows of Fig. Image pairs frond/ are
@) fed into these two stacks. Both stacks are initialized with

ij



Replicated layers zg - di (.) Eq (8), unless otherwise noted below.

2L x5 _

29 fg = : g * EQUIV+DRLIM: Our approach augmented with tem-
8| x-HH —>d,(.) |= poral coherence regularizatiori.(]).

ET ° ’ ° —

i} HE) HE) g TEMPORAL andDRLIM are the most pertinent baselines
Euﬁ EEﬁ-HIB!l a() because they, like us, use contrastive loss-based formula-
ce - . . tions, but represent the popular “slowness”-based faniily o

Figure 3. Training setup: (top) “Siamese network” for cortipgyl techniques (j7, 3, 9, 19)) for unsupervised feature learning

the equivariance loss of E)( together with (bottom) a third tied  from video. which. unlike our approach, are passive.
stack for computing the supervised recognition softmas kssin ’ ' '

Eq (8). See Sed.1land Supp for exact network specifications. 4.1. Experimental setup details

Recall that in the fully unsupervised mode, our method
trains with pairs of video frames annotated only by their
ego-poses iif. In the supervised mode, when applied to
precognition, our method additionally has access to a set of
class-labeled images ii. Similarly, the baselines all re-

To optimize Eq §), an array of equivarance map, ceive a pool of unsupervised data and supervised data. We
each represented by a fully connected layer, is connected t(?wow detail the data composing these two sets

the top of the second stack. Each such equivariance map

then feeds into a motion-pattern—specific contrastive |035Unsupervised datasets We consider two unsupervised
function d,, whose other inputs are the first stack output gatasets, NORB and KITTI:
and the ego-motion pattern IR);. _ (1) NORB [16]: This dataset has 24,300 966-pixel im-

‘To optimize Eq §), in addition to the Siamese net that  ages of 25 toys captured by systematically varying camera
minimizesL. as above, the supervised softmax loss is min- pose. We generate a random 67%-33% train-validation split

imized through a third replica of theg layer stack with g9 use 2D ego-pose vectaysonsisting of camera eleva-
weights tied to the two Siamese networks stacks. Labellediion and azimuth. Because this dataset has discrete ego-

images fromZ are fed into this stack, and its output is fed pose variations, we consider two ego-motion patteies,
into a softmax layer whose other input is the class label. v — 9 (cf. Sec3.1): one step along elevation and one step
The complete scheme is depicted in Big Optimization  gong azimuth. FOEQUIV, we use all available positive

is done through mini-batch stochastic gradient descent im-pajrs for each of the two motion patterns from the training
plemented through backpropagation with the Caffe pack-jmages, yielding av,, = 45, 417-pair training set. FODR-

identical random weights, and identical gradients areqzhss
through them in every training epoch, so that the weights re-
main tied throughout. Each stack encodes the feature ma
that we wish to trainzg.

age [L7 (more details in Sed and Supp). LIM and TEMPORAL, we create a 50,000-pair training set
) (positives to negatives ratio 1:3). Pairs within one stég-(e
4. Experiments vation and/or azimuth) are treated as “temporal neighbors”
We validate our approach on 3 public datasets and com-aS in the turntable results of§, 27. _
pare to two existing methods, on equivariance (36, (2) KITTI [6, 7]: This dataset contains videos with reg-

recognition performance (Set3) and next-best view se- ?stered GPS/IMU sensor streams _captured on a car driv-
lection (Sec4.4). Throughout we compare the following "9 around 4 types of areas (location classes): “campus”,

methods: “city”, “residential”, “road”. We generate a random 67%-
33% train-validation split and use 2D ego-pose vectors con-
sisting of “yaw” and “forward position” (integral over “fer
ward velocity” sensor outputs) from the sensors. We dis-
* TEMPORAL:  The temporal coherenceapproach  cover ego-motion patterns; (cf. Sec3.1) on frame pairs
of [27], which regularizes the classification loss with < 1 second apart. We compugeclusters and automati-
Eq (7) setting the distance measutg) to the/; dis-  cally retain the& = 3 with the largest motions, which upon
tance ind;. This method aims to learn invariant fea- inspection correspond to “forward motion/zoom”, “right
tures by exploiting the fact that adjacent video frames turn”, and “left turn” (see Fidl, left). ForEQulv, we cre-

e CLSNET. A neural network trained only from the su-
pervised samples with a softmax loss.

should not change too much. ate aN,, = 47,984-pair training set with 11,996 positives.

« DRLIM: The approach of[], which also regularizes ~ FOrDRLIM andTEMPORAL, we create a 98,460-pair train-
the classification loss with Ecf), but settingd(.) to ing set with 24,615 “temporal neighbor” positives sampled
the ¢, distance ind; . <2 seconds apart. We use grayscale “camera 0” frames

(see [1]), downsampled to 3232 pixels, so that we can
adopt CNN architecture choices known to be effective for
tiny images [].

e EQUIV: Our ego-motion equivariant feature learning
approach, combined with the classification loss as in



Tasks— Equivariance error Recognition accuracy % Next-best view
Datasets> NORB NORB-NORB  KITTI-KITTI  KITTI-SUN KITTI-SUN NORB
Methodsg, atomic composite [25 cls] [4 cls] [397 cls] [397 cls, top-10] 1-view— 2-view
random 1.0000 1.0000 4.00 25.00 0.25 2.52 4.00— 4.00
CLSNET 0.9239 0.9145 25.11+0.72 41.810.38 0.7@:0.12 6.10:0.67 -
TEMPORAL[27] | 0.7587 0.8119 35.470.51 45.12-1.21 1.2%0.14 8.24-0.25 29.60— 31.90
DRLIM [10] 0.6404 0.7263 36.60:0.41 47.04-0.50 1.02:0.12 6.78:0.32 14.89— 17.95
EQUIV 0.6082 0.6982 38.48t0.89 50.64-0.88 1.3%0.07 8.59:0.16 38.52+43.86
EQUIV+DRLIM | 0.5814 0.6492 40.78+0.60 50.84-0.43 1.58-0.17 9.570.32 38.46-+43.18

Table 1. (Left) Average equivariance error (Ed)) on NORB for ego-motions like those in the training set i) and novel ego-motions

(composite). (Center) Recognition result for 3 datasetsafmt- standard error) of accuracy % over 5 repetitions. (RightjtMest view
selection accuracy %. Our methaguiv (and augmented with slownessguiv+DRLIM) clearly outperforms all baselines.

Supervised datasets In our recognition experiments, we ance. We closely follow the equivariance evaluation ap-
consider 3 supervised dataséts (1) NORB: We select proach of [L7] to solve for the equivariance maps of features
6 images from each of th€' = 25 object training splits  produced by each compared method on held-out validation
at random to create instance recognition training data. (2)data, before computing, (see Supp).

KITTI : We select 4 images from each of the= 4 location We test both (1) “atomic” ego-motions matching those
class training splits at random to create location recagmit  provided in the training pairsi.é., “up” 5°and “down”
training data.(3B5UN [34]: We select 6 images for each of 20°) and (2) composite ego-motions (“up-+right”, “up+left”

C = 397 scene categories at random to create scene recog-down+right”). The latter lets us verify that our method’s
nition training data. We preprocess them identically to the equivariance extends beyond those motion patterns used for
KITTI images above (grayscale, crop to KITTI aspect ra- training (cf. Sed.3). First, as a sanity check, we quantify
tio, resize to32 x 32). We keep all the supervised datasets equivariance for the unsupervised loss of Bjji( isola-
small, since unsupervised feature learning should be mostion, i.e., learning with onlyZ/. Our EQUIV method’s av-
beneficial when labeled data is scarce. Note that while theeragep, error is 0.0304 and 0.0394 for atomic and com-
video frames of the unsupervised datagétgre associated posite ego-motions in NORB, respectively. In comparison,

with ego-poses, the static images®have no such auxil- DRLIM—which promotes invariance, not equivariance—
iary data. achievegp, = 0.3751 and 0.4532. Thus, without class su-
pervision EQUIV tends to learn nearly completely equivari-
Network architectures and optimization For KITTI, ant features, even for novel composite transformations.
we closely follow the cuda-convnetl][ recommended Next we evaluate equivariance for all methods using fea-

CIFAR-10 architecture: 32 conv(5x5)-max(3x3)-ReLU tures optimized for the NORB recognition task. Table
— 32 conv(5x5)-ReLU-avg(3x3)» 64 conv(5x5)-ReLU-  (left) shows the results. As expected, we find that the fea-
avg(3x3)— D =64 full feature units. For NORB, we use a  tures learned witlEQuIV regularization are again easily the
fully connected architecture: 20 full-Rel-¢) D =100 full most equivariant. We also see that for all methods error
feature units. Parentheses indicate sizes of convolution o js |ower for atomic motions than composite motions, since
pooling kernels, and pooling layers have stride length 2. they are more equivariant for smaller motions (see Supp).
We use Nesterov-accelerated stochastic gradient descent. -
The base learning rate and regularizatimare selected ~4-3. Recognition results
with greedy cross-validation. The contrastive loss margin = Next we test the unsupervised-to-supervised transfer
parameten in Eq (6) is set to 1.0. We report all results pipeline of Sec3.4 on 3 recognition tasks: NORB-NORB,
for all methods based on 5 repetitions. For more details ONKITTI-KITTI, and KITTI-SUN. The first dataset in each
architectures and optimization, see Supp. pairing is unsupervised, and the second is supervised.
Tablel (center) shows the results. On all 3 datasets, our
method significantly improves classification accuracy, not
First, we test the learned features for equivariance.just over the no-prioCLSNET baseline, but also over the
Equivariance is measured separately for each ego-motiorclosest previous unsupervised feature learning methods.

4.2. Equivariance measurement

g through the normalized erra;: All the unsupervised feature learning methods vyield
, large gains ovecLSNET on all three tasks. HowevepRr-
pg = E |l|ze(x) — M, z6(97)|2/]|26 () — 26 (ga:)llz} ; LIM andTEMPORAL are significantly weaker than the pro-
9

.. /. . 4To verify thecLSNETbaseline is legitimate, we also ran a Tiny Image
where E[.] denotes the empirical mean/, is the equiv- nearest neighbor baseline on SUN asdr][ It obtains 0.61% accuracy

ariance map, ang, = 0 would signify perfect equivari-  (worse tharcLsNET, which obtains 0.70%).
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Figure 4. Nearest neighbor image pairs (cols 3 and 4 in eaxct)in pairwise equivariant feature difference space &ious query image
pairs (cols 1 and 2 per block). For comparison, cols 5 and & glixel-wise difference-based neighbor pairs. The dimettf ego-motion
in query and neighbor pairs (inferred from ego-pose vedfterénces) is indicated above each block. See text.

posed method. Those methods are based on the “slow4.4. Next-best view selection for recognition
feature analysis” principle3]—nearby frames must be - . L
close to one another in the learned feature space. We ob- Nex}, we show prehmm:ary results qf a direct gpp:hca_tlon
serve in practice (see Supp) that temporally close franges ar of equ_|var|ant features tq next-best view selection”. &iv

mapped close to each other after only a few training epochs._One view of a NORB object, the task is to t?” a hypot_het—
This points to a possible weakness in these methods—evetj_‘lCal robot how to move next to help recognize the object,

with parameters (temporal neighborhood size, regulariza—'a_e'’t_WhICh netlg_hlzor{/r:/g V'eV\II y\:(;ﬁldfbets:hretducg Obj.;:;fre'
tion \) cross-validated for recognition, the slowness prior Iction uncertainty. e exploit the fact that equivarl

is too weak to regularize feature learning effectivelycsin tures behave predictably under ego-motions to identify the

strengthening it causes loss of discriminative infornratio optimal_nextvie_w. O_urmethqd for this task, s_imilarin spiri
g ng it cau ISeriminative | I to [39], is described in detail in Supp. Tahlgright) shows

In contrast, our method requirsgstematideature space  the results. On this task toaQuiv features easily outper-
responses to ego-motions, and offers a stronger prior.form the baselines.
EQUIV+DRLIM further improves oveEQUIV, possibly be- o )
cause: (1) oUEQUIV implementation only exploits frame ~ 4-5. Qualitative analysis
pairs arising from specific motion patterns as positives,

while DRLIM more broadly exploits all neighbor pairs, and ¢, e learning, we pose a nearest neighbor task ifethtire

(2), DRLIM andEQUIV IOSS?S are compatibleelRUM re- differencespace to retrieve image pairs related by similar
quires that small perturbations affect features in smajisya ego-motion to a query image pair (details in Supp). Fig

andeQuIv requires that they affect them systematically. shows examples. For a variety of query pairs, we show the

The most exciting resultis KITTI-SUN. The KITTI data  tOP neighbor pairs in theQuiv space, as well as in pixel-
itself is vastly more challenging than NORB due to its d_lfference space forc_om_panson. Overall the_y V|suallyjcor_1
noisy ego-poses from inertial sensors, dynamic scenes witHirm the desired equivariance property: neighbor-pairs in
moving traffic, depth variations, occlusions, and objects EQUIV'S difference space exhibit a similar transformation
that enter and exit the scene. Furthermore, the fact we(turning, zoomingetc), whereas those in the original im-
can transfeEQuIV features learned without class labels on 29€ Space often do not. Consider the first azimuthal rotation
KITTI (street scenes from Karlsruhe, road-facing camera NORB query in row 2, where pixel distance, perhaps domi-
with fixed pitch and field of view) to be useful for a su- nated by the lighting, identifies a wrong ego-motion match,
pervised task on the very different domain of SUN (“in the Whereas our approach finds a correct match, despite the
wild” web images from 397 categories mostly unrelated to changed object identity, starting azimuth, lightieg: The
streets) indicates the generality of our approach. Our best©d Poxes show failure cases. For instance, in the KITTI
recognition accuracy of 1.58% on SUN is achieved with failure case shown (row 1, column 3), large foreground mo-
only 6 labeled examples per class. ti80% better than ~ tion of a truck in the query image causes our method to
the nearest competing baselireMPoRrALand over 6 times ~ Wrongly miss the rotational motion.
better than chance. Top-10 accuracy trends are similar.

To qualitatively evaluate the impact of equivariant fea-

: . . 5. Conclusion
While we have thus far kept supervised training sets

small to simulate categorization problems in the “long'tail Over the last decade, visual recognition methods have
where training samples are scarce and priors are most usefocused almost exclusively on learning from “bags of im-
ful, new preliminary tests with larger labeled trainingsset ages”. We argue that such “disembodied” image collec-
on SUN show that our advantage is preserved. \Witt?0 tions, though clearly valuable when collected at scale, de-
samples for each of 397 classes on KITTI-SUMuIv prive feature learning methods from the informative physi-
scored 3.66+/-0.08% accuracy vs. 1.66+/-0. 18f0SNET. cal context of the original visual experience. We presented
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toencodersICML, 2008.2 (Elaborating on para titled “Network architectures andiOpt
L. Wiskott and T. J. Sejnowski. Slow feature analysissur mization” 4.1) As mentioned in the paper, for KITTI, we closely
pervised learning of invarianceBleural computation2002. follow the cuda-convnetl] recommended CIFAR-10 architecture:
3,7 32 conv(5x5)-max(3x3)-ReLU- 32 conv(5x5)-RelLU-avg(3x3)
Z. Wu, S. Song, A. Khosla, X. Tang, and J. Xiao. 3d — 64 conv(5x5)-RelLU-avg(3x3)» D =64 full feature units. A

shapenets for 2.5 d object recognition and next-best-view schematic representation for this architecture is shoviigi.
prediction.CVPR 2015.8 We use Nesterov-accelerated stochastic gradient descent a

J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba plemented in Caffel[3], starting from weights randomly initial-
Sun database: Large-scale scene recognition from abbey tozed according tod]. The base learning rate and regularization
z00.CVPR 2010.2, 7,11 As are selected with greedy cross-validation. Specificédly,
C. Xu, J. Liu, and B. Kuipers. Moving object segmentatio ~ €ach task, the optimal base learning rate (from 0.1, 0.@010.
using motor signalsECCV, 2012.3 0.0001) was identified focLSNET. Next, with this base learn-
K. Yamada, Y. Sugano, T. Okabe, Y. Sato, A. Sugimoto, and ing rate fixed, the optimal regularizer weight (forLIM, TEM-

K. Hiraki. Attention prediction in egocentric video using PORAL andEQUIV) was selected from a logarithmic grid (steps
motion and visual saliencSIVT, 2012.3 of 10°-%). For EQUIV+DRLIM, the DRLIM loss regularizer weight
W. Zou, S. Zhu, K. Yu, and A. Y. Ng. Deep learning of in- fixed for DRLIM was retained, and only theQuiv loss weight

variant features via simulated fixations in vid&iPS 2012. was cross-validated. The contrastive loss margin paramete
36 Eq (6) in DRLIM, TEMPORAL and EQUIV were set uniformly to

1.0. Since no other part of these objectives (including tfe s
max classification loss) depends on the scale of feaflniégrent
choices of marging in these methods lead to objective functions
with equivalent optima - the features are only scaled by tofac
ForEQUIV+DRLIM, we set theoRLIM andEQUIV margins respec-
tively to 1.0 and 0.1 to reflect the fact that the equivariamzgs
M, of Eq (5) applied to the representatian (gz) of the trans-
formed image must bring it closer to the original image repre
tation zg () than it was before.e. | Myze(gx) — zo(x)|2 <
lzo (g) — 2o (x)|l2.

5Technically, theeQuiv objective in Eq §) may benefit from setting
different margins corresponding to the different ego-motpatterns, but
we overlook this in favor of scalability and fewer hyperpaggers.
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In addition, to allow fast and thorough experimentation,ast Tasks— _ atomc | composite
the number of training epochs for each method on each datasef D2asets up (u)” | "right (r) T u-+ dr
based on a number of initial runs to assess the scale of time us ::aLnSd’\?Err; é‘gggg é'gggg é'gggg é‘g(l)gg é'gggg
ally taken _be_fore the_cl_assification softmax loss on vaidatiata TEMPORAL[27] 07140 | 08033 |l 0.8089 | 0.8061 | 0.8207
began to risé.e. overfitting began. All future runs for that method DRLIM [10] 05770 | 0.7038 || 0.7281| 0.7182 | 0.7325
on that data were run to roughly match (to the nearest 50@0) th | equiv 0.5328 0.6836 0.6913| 0.6914 | 0.7120
number of epochs identified above. For most cases, this nrumbe | EQUIV+DRLIM 0.5293 | 0.6335 || 0.6450 | 0.6460 | 0.6565

was of the order 050000. Batch sizes (for both the classification Table 2. The “normalized error” equivariance measpydor in-
stack and the Siamese networks) were set to 16 (found to havedividual ego-motions (Eq1()) on NORB, organized as “atomic”
no major difference from 4 or 64) for NORB-NORB and KITTI-  (motions in theeQuIv training set) and “composite” (novel) ego-
KITTI, and to 128 (selected from 4, 16, 64, 128) for KITTI-SUN  motions.

where we found it necessary to increase batch size so that-mea

ingful classification loss gradients were computed in eaGDS

iteration, and training loss began to fall, despite thedargmber itis for the larger “right” ego-motion (20°). Further, therers for

(39(7)) of cI.asTes. | 0G hi o o . “right” are close to those for the composite motions (“ughtf,
na Slig € Te_s aK-40 GPU machine, NORB-N R_B training “up+left” and “down+right”), establishing that while eqairiance
tasks took~15 minutes, KITTI-KITTI tasks took=30 minutes, is diminished for larger motions, it is not affected by whetthe

and KITTI-SUN tasks took<2 hours. motions were used in training or not. In other words, if tearior

6.3. Equivariance measurement (Main Sed.?2) equivariance to a suitable discrete set of atomic ego-mst{of.
Sec6.3in the paper), the feature space generalizes well to new

Computing p, - details In Sec4.2in the main paper, we  ego-motions.

proposed the following measure for equivariance. For each e

motion g, we measure equivariance separately through the nor-

malized errop,: 6.4. Recognition results (Main Seé.3)
pg=E Izo(2) — Myzo(g@)]l] (10)  Restricted slowness is a weak prior We now present evi-
2o () — 2o (9)|2 dence supporting our claim in the paper that the principls@f/-

ness, which penalizes feature variation within small terapwin-
dows, provides a prior that is rather weak. In every stodhast
gradient descent (SGD) training iteration for theLIM andTEM-
PORAL networks, we also computed a “slowness” measure that is
independent of feature scaling (unlike theLIM andTEMPORAL
losses of E¢f themselves), to better understand the shortcomings
of these methods.

where E[.] denotes the empirical mean/, is the equivariance
map, andp, = 0 would signify perfect equivariance. We closely
follow the equivariance evaluation approachbi][to solve for the
equivariance maps of features produced by each comparéddet
on held-out validation data (cf. Secl from the paper), before
computingpy. Such maps are produced explicitly by our method,
but not the baselines. Thus, as ir'], we compute their mapdy
solving a least squares minimization problem based on tfieide Given training pairgx;, ;) annotated as neighbors or non-
tion of equivariance in Ec@) in the paper: neighbors byn;; = 1(|t; — t;| < T) (cf. Eq (7) in the paper),
we computed pairwise distancés; = d(ze(s) (1), Ze(s) (5)),
M, = arg min Z l|zo (i) — Mzg(x;)]l2.  (11) wheref(s) is the parameter vector at SGD training iteratioand
Mo yiu)=g d(.,.) is set to the/s distance fopRLIM and to the/; distance for
TEMPORAL (cf. Secd).
M;’s computed as above are used to computs as in Eq (0).
M, andp, are computed on disjoint subsets of the validation data.
Since the output features are relatively low in dimensidh £
100), we find regularization for Ed.{) unnecessary.

We then measured how well these pairwise distankgspre-
dict the temporal neighborhood annotatiey), by measuring the
Area Under Receiver Operating Characteristic (AUROC) when
varying a threshold on\;;.

These “slowness AUROC"s are plotted as a function of trgnin
iteration number in Fig/, for DRLIM and COHERENCENetworks
trained on the KITTI-SUN task. Compared to the standardeend
gAUROC value of 0.5, these slowness AUROCS tend to be near 0.9

already even before optimization begins, and reach peak@CHR
very close to 1.0 on both training and testing data withinuabo
4000 iterations (batch size 128). This points to a possildaka
ness in these methods—even with parameters (temporalbwgigh
hood size, regularization) cross-validated for recognition, the
slowness prior is too weak to regularize feature learnifgcef
tively, since strengthening it causes loss of discrimimatnfor-

SFor uniformity, we do the same recovery &f/, for our method; our mation. In contrast, our method requigsstematideature space
results are similar either way. responses to ego-motions, and offers a stronger prior.

Equivariance results - details While results in the main pa-
per (Table2) were reported as averages over atomic and composite
motions, we present here the results for individual motiorka-
ble 2. While relative trends among the methods remain the same a
for the averages reported in the main paper, the new numb#gs h
demonstrate that, for composite motions is no bigger than for
atomic motions, as we would expect from the argument predent
in Sec6.3in the main paper.

To see this, observe that even among the atomic motigrsy
all methods is lower on the small “up” atomic ego-motion {3gn
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6.5. Next-best view selection (Main Set.4)

We now describe our method for next-best view selection for
recognition on NORB. Given one view of a NORB object, the task
is to tell a hypothetical robot how to move next to help redngn
the objecti.e. which neighboring view would best reduce object
prediction uncertainty. We exploit the fact that equivatifeatures
behave predictably under ego-motions to identify the oplinext
view.

We limit the choice of next viewg to { “up”, “down”,
“up+right” and “up+left” } for simplicity in this preliminary test.
We build ak-nearest neighbor (k-NN) image-pair classifier for
each possiblg, using only training image pair&e, gx) related
by the ego-motiory. This classifierC, takes as input a vector

of length2D, formed by appending the features of the image pair
(each image’s representation is of leng@hand produces the out-
put probability of each class. S@},([ze(x), ze(gx)]) returns
class likelihood probabilities for all 25 NORB classes. guit
class probabilities for the k-NN classifier are computednrifiine
histogram of class votes from the nearest neighbors. We set
k = 25.

At test time, we first compute features (o) on the given
starting imagexo. Next we predict the featuree (gao) corre-
sponding to each possible surrounding vigvas M, ze (o), per
the definition of equivariance (cf. Ezjin the paper).

With these predicted transformed image features and thie pai
wise nearest neighbor class probabilitiég.), we may now pick
the next-best view as:

9" = arggmin H(Cy([z6(w0), Myzo(zo)])),  (12)

where H(.) is the information-theoretical entropy function. This
selects the view that would produce the least predicted énpady
class prediction uncertainty.

6.6. Qualitative analysis (Main Seet.5)

To qualitatively evaluate the impact of equivariant featur
learning, we pose a pair-wise nearest neighbor task irfiedueire
differencespace to retrieve image pairs related by similar ego-
motion to a query image pair (details in Supp). Given a ledrne
feature space(.) and a query image paitc;, x;), we form the
pairwise feature differencé;; = z(x;) — z(x;). In an equivari-
ant feature space, other image pdits, ;) with similar feature
difference vectorgl,; ~ d;; would be likely to be related by sim-

7Equivariance mapMé for all methods are computed as described in
Sec6.3in this document (and Set2in the main paper)



ilar ego-motion to the query pdirThis can also be viewed as an
analogy completion tasks; : ; = x :7, where the right answer
should applyp;; to ), to obtainz,;. For the results in the paper,
the closest pair to the query in the learned equivariantifeapace

is compared to that in the pixel space. Some more examples are
shown in Fig8.

8Note that in our model of equivariance, this isn't strictiye, since
the pair-wise difference vectat/yzg () — zg(x) need not actually be
fixed for a given transformatiop, V. For small motions (and the right
kinds of equivariant map31,), this still holds approximately, as we find
in practice.



