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Abstract

Eigenvalue problems are ubiquitous in computer vision, covering a very broad spectrum of 

applications ranging from estimation problems in multi-view geometry to image segmentation. 

Few other linear algebra problems have a more mature set of numerical routines available and 

many computer vision libraries leverage such tools extensively. However, the ability to call the 

underlying solver only as a “black box” can often become restrictive. Many ‘human in the loop’ 

settings in vision frequently exploit supervision from an expert, to the extent that the user can be 

considered a subroutine in the overall system. In other cases, there is additional domain 

knowledge, side or even partial information that one may want to incorporate within the 

formulation. In general, regularizing a (generalized) eigenvalue problem with such side 

information remains difficult. Motivated by these needs, this paper presents an optimization 

scheme to solve generalized eigenvalue problems (GEP) involving a (nonsmooth) regularizer. We 

start from an alternative formulation of GEP where the feasibility set of the model involves the 

Stiefel manifold. The core of this paper presents an end to end stochastic optimization scheme for 

the resultant problem. We show how this general algorithm enables improved statistical analysis of 

brain imaging data where the regularizer is derived from other ‘views’ of the disease pathology, 

involving clinical measurements and other image-derived representations.

1. Introduction

The explosion of photo or data sharing platforms in the last ten years has led to large and 

rich datasets where deriving a single all-encompassing representation for downstream 

statistical inference is challenging. Images often come with tags or user comments, and 

webpages can be characterized in terms of their textual content as well as the genre of 

related webpages. Even when working specifically with images, it is common to perform 

different feature extractions in the hope that all aspects of the image content are ‘covered’ by 

at least one feature type. Performing machine learning by fusing different views of the data 

is a well studied problem [3, 4, 6, 16, 26, 33].

HHS Public Access
Author manuscript
Proc IEEE Int Conf Comput Vis. Author manuscript; available in PMC 2016 April 12.

Published in final edited form as:
Proc IEEE Int Conf Comput Vis. 2015 December ; 2015: 1841–1849. doi:10.1109/ICCV.2015.214.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Independent of the specific inference question of interest, observe that once the multiple 

views are in hand, practitioners often utilize off-the-shelf data exploration techniques to get 

a better sense of the derived representations and/or to identify reasonable parameter 

estimates for the subsequent components of the processing pipeline. To this end, spectral 

analysis is widely used for the evaluation of the heterogeneity in the groups and for feature 

selection [29]. In the latter setting, it is common to obtain the projection of the original 

distribution on the principal bases of the covariance and proceed with analyzing the 

embedded versions of the examples in the lower dimensional space instead. Frequently this 

may provide nicer affinity matrices which may be more suitable for machine learning tasks. 

When faced with multiple views, the above strategy can be applied to each view one by one, 

and the resultant affinity (or kernel) matrices can be averaged. But various recent results 

suggest that there is practical value in operating on each view separately and then enforcing 

consistency between the results obtained from each [24]. For example, in co-clustering, one 

imposes the constraint that leading eigenvectors across multiple views should be similar [4]. 

In the applied math literature, a more general version of the problems motivated from 

physics and engineering applications are studied as coupled eigenvalue problems [28]. From 

the perspective of the multi-view setup, this will entail solving a set of eigenvalue problems 

concurrently for the “primary” and multiple “secondary” views. It turns out that when 

restricted to only two views, the formulation in some sense generalizes a very recent 

approach [14] for finding common eigenbases computed independently on different shapes.

The multiple view and co-clustering discussion above, while interesting, is not entirely 

essential to motivate eigenvalue problems in vision. Instances of eigen-decomposition are 

ubiquitous in computer vision in applications ranging from face recognition, indexing/

hashing, registration, shape analysis to segmentation [10, 12, 22, 31, 34]. As soon as a 

formulation reduces to the eigenvalue form, a mature set of numerical analysis tools can be 

deployed directly. Their numerical behavior is well understood, and when faced with 

degenerate cases, it is also relatively easy to find robust pre-conditioners from the literature. 

That is, a black-box solver suffices. On the other hand, when a practitioner has additional 

supplementary information available for data, the existing solvers provide very little 

guidance on how such regularizers can be incorporated within the numerical optimization. In 

practice, such meta information may correspond to noisy labels in a semi-supervised setting, 

shape priors in segmentation, partial knowledge of a few eigen bases and so on [15]. In fact, 

we can also think of additional views of the data as regularizers on the primary eigen-

decomposition. As we gradually move to systems where both the human and the statistical 

model mutually cooperate, it is important to derive end to end frameworks that offer such 

flexibility, yet retain much of the attractive numerical properties of their black-box 

counterparts.

With the foregoing motivation in mind, the main goal of this paper is to derive efficient 

numerical optimization schemes to solve a generalized eigenvalue problem with a 

nonsmooth regularizer, where few (if any) alternatives are currently available. We assume 

that the “mass matrix” in the eigenvalue formulation either comes naturally from the basic 

design (e.g., generalized Rayleigh [2]) or is a representation of the secondary views of the 

data. Separately, our formulation permits a fairly general (i.e., nonsmooth) regularizer. This 

may encode either partially observed or noisy meta knowledge about the data, common in 
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crowd-sourced deployments or applications where a specific type of information is more 

expensive to obtain. Since a large majority of the data may be unobserved, standard 

imputation techniques are not applicable. The contribution of this work is to derive efficient 

numerical optimization schemes which solve the above problem as a trace minimization 

with generalized Stiefel constraints. We derive the update schemes and provide a detailed 

description of its properties. As an example, we show the applicability of these ideas to a 

statistical inference problem on brain imaging data, where we work with multiple derived 

representations of the image as well as measurements which are available only on a small 

subset of the participants.

2. Useful manifolds in numerical optimization

First, we present an overview of some manifolds that appear often in numerical optimization 

problems, which will serve as background material for much of the technical description that 

follows.

For vector spaces V and W denote by L(V, W) the vector space of linear maps from V to W. 

Thus, the space of L(ℝN, ℝp) may be identified with the space ℝN×p of N×p matrices. An 

injective linear map u : ℝN → V is called a N–frame in V. The set GFN,p = {u ∈ L(ℝN,ℝp) : 

rank(u) = N} of N–frames in ℝp is called the Stiefel manifold. As a special case, when N = 

p, GFN,N :=GFN is the General Linear group or the set of N × N matrices with nonzero 

determinant. In short, a Stiefel manifold is the set of N×p orthonormal matrices (with a 

Riemannian structure). The set of all N–dimensional (vector) subspaces α ⊆ ℝp is called the 

Grassmann manifold of N–planes in ℝp and denoted by GRN,p. With these definitions it is 

easy to see that the Grassmann manifold is just the Stiefel manifold quotiented by the 

Orthogonal group (set of orthogonal matrices) in N–dimensions. Let Sn be the set of n × n 
symmetric projection matrices with trace equal to p. Then we have that Sn is homeomorphic 

to GRN,p where the homeomorphism sends each element of Sn to its column space. Hence 

one may consider optimizing over Sn instead of GRN,p and vice-versa. Readers can see [1] 

for more details on these topics such as exponential map, tangent space and retraction.

Now, we will look at one prominent application of the manifolds described above in the 

context of computer vision, namely, Spectral clustering. Spectral clustering refers to a 

popular graph partitioning technique that analyzes the eigen structure of a matrix derived 

from the pairwise similarities of nodes, to identify clusters inherent in the data. The nodes in 

the graph represent individual data examples such as pixels in an image or vectors in a 

distribution χ. The algorithm, however, does not make use of the native space of χ, but rather 

the space induced by the chosen measure of similarity or the kernel matrix M. This works 

well because with a proper choice of M, the cohesiveness of clusters of points can be 

characterized via stability of the eigenvectors of its Laplacian matrix associated with the 

graph. Ordinary spectral clustering is formulated as

(1)
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where tr(·) denotes the trace functional. Observe that this is actually an implicit optimization 

over the Grassmann manifold rather than the Stiefel manifold. This is because, the objective 

function is invariant to a rotation in ℝp of the decision variables, that is, replacing V with 

VQ so that Q ∈ ℝp×p, QTQ = I, we have that,

where the second equality is due to the similarity invariance property of the trace functional.

3. Regularized Generalized Eigenvalue Problem (R-GEP)

The Generalized Eigenvalue Problem (GEP) is a very well studied problem, particularly in 

finite element analysis, control theory, etc. [27]. In computer vision and machine learning, 

GEP can be used for binary classification [7] and face recognition tasks [8], among others. 

This problem constitutes the key computational phase of the Heat Kernel Smoothing 

procedure used in [23] to smooth signals over anatomical surfaces in 3D medical images. A 

relaxed version of the Normalized cuts problem used widely in image segmentation 

applications can also be formulated as a GEP [25]. It is expressable as the following 

numerical optimization problem,

(2)

where the decision variable of the optimization problem V is the matrix containing the first p 
eigenvectors of the matrix M which are the eigenvectors corresponding to the largest p 
eigenvalues of the matrix M with respect to another arbitrary matrix D. The pair {M, D} is 

also commonly referred to as the matrix pencil. When D is the identity matrix, this problem 

reduces to the standard eigenvalue problem hence we note that Principal Component 

Analysis (PCA) is a special case of this problem by setting M to be the similarity matrix 

YTY. While D can be singular, it is assumed to be a positive definite (p.d) matrix in many 

applications.

Now, we motivate the regularization part of the problem. Let n = {1, …, N} be the set of 

subjects and suppose that we are given supplementary information for a subset n′ ⊆ n, |n′| = 

N′. One can also think of the supplementary information as data procured from more 

expensive sources. For instance, in our applications some modalities are expensive ($5000+) 

or may involve invasive procedures so not all participants will opt in. Another example is in 

various crowd sourced platforms where expert level annotation may be available only for 

few examples due to high acquisition cost. Let the data associated with n′ be  ∈ ℝs×N′ 

where  is the number of supplementary features for each subject in n′. The key assumption 

is that  contains complementary information which captures the underlying pattern among 

the subjects, hence helping our primary goal. Practical aspects of this setup are further 

explained in (5). Let Γ = T  ∈ ℝN′×N′ be the corresponding similarity matrix and α ∈ ℝ N′ 

be its leading eigenvector. We can think of the magnitude of coordinates of α as weights on 

the subjects in n′. Let V.1 ∈ ℝ N denote the first column of V and V.1|n′ be the restriction of 
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V.1 to the set n′ (the notation is suppressed when the context is clear). The simplest way to 

take advantage of the complementary information of α in our model is to use the ℓ0 norm 

(which counts the number of nonzero entries) of the difference between V.1 and α which 

seeks fidelity between them while keeping the number of places they are different small. It is 

well known that this gives us a computationally intractable problem but can be approximated 

for practical purposes by its best convex surrogate, the ℓ1 norm. Hence the optimization 

problem is

(3)

where λ > 0 is the regularization parameter. Even though in principle one can add |n′| 

regularization terms, this generally does not provide significant improvements as shown 

empirically (see supplement). In the next section we explain how this optimization problem 

can be solved efficiently to exploit the structure of the problem. Note that the regularization 

term in problem (3) is specifically chosen with the application in mind, but the algorithm 

described in the following section can be used for any nonsmooth function, say g : ℝN×p → 

ℝ with the following properties. We assume that g is a real valued convex (nonsmooth) 

function on {V ∈ ℝN×p : VTDV = I} and that at least one element sg ∈ ∂g(V) can be 

computed efficiently for every V in the feasible set. Note that outside of the feasible set we 

do not have any assumptions on g unlike most projection based algorithms.

4. Algorithm

We solve the optimization problem (3) with a coordinate descent method over the 

generalized Stiefel manifold. The main intuition of our algorithm is to decrease the function 

by finding the next iterate along a curve that lies in the feasible set. The constraints in (2) 

and (3) describe a manifold over the decision variables, specifically the generalized Stiefel 

manifold GFN,p. We can therefore construct curves in this manifold using the exponential 

map, or constructions such as Cayley curves [32]. In the text below, we describe an 

algorithm that constructs descent curves on the generalized Stiefel manifold. These curves 

are constructed to have two key properties. First, the curves only vary along a subset of the 

dimensions/decision variables, so that methods such as coordinate descent can be used to 

parallelize or reduce the problem [21]. Second, the directional derivative of the objective 

along the tangent to the curve will be negative, meaning that an iterate chosen from a 

suitable distance along this curve will have decreased objective values relative to the current 

iterate.

To simplify calculations, we describe the update steps for the unregularized in problem (2). 

This can be extended to the regularized problem in (3) by adding the subdifferential of the 

regularization function to the subdifferential used here.

Algorithm 1 Stochastic coordinate descent on GFN,p

Require: f : GFN,p → ℝ, D ∈ ℝN×N, V0 ∈GFN,p(D)

1 for t = 1, …, T do
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2 Select rows ℐ ⊆ {1, …,N}

3

U0 Vℐ ⋅ − Dℐℐ
−1 DℐℐVℐ .

4 [Q QR] ← U0 for Q nonsingular

5 Take G ∈ ∂Vℐ·f(V)

6 G′ ← Gℐ  + Gℐ𝒥 ̄RT

7 Construct a descent curve Y on GFi,p(Dℐℐ) through U0 in the direction of – G′ (22)

8 Pick step size τt satisfying Armijo-Wolfe condition [18]

9 Vt+1 ← Y(τt)

10 end for

We start by describing a constructive way of dividing the optimization problem into smaller 

subproblems while still maintaining the orthogonality constraints with respect to the given 

positive definite matrix D. Note that if D is the identity matrix this reduces to the usual 

Stiefel constraints.

Suppose we have a subset ℐ of i row indices, corresponding to rows of V. The submatrix 

consisting only of these rows is denoted by Vℐ. ∈ ℝi×p. We seek to construct a descent curve 

by reducing (2) to the subproblem over only this submatrix. We are given a feasible iterate 

V, and seek to compute the next iterate W such that it also lies in the generalized Stiefel 

manifold GFN,p and is thus feasible for the problem in (3), and W only differs from V in the 

rows selected by ℐ. To start, assume w.l.o.g. that ℐ selects the first i rows of V. Then we 

write the constraint VTDV = I as

(4)

We are interested in the case that the rows not selected, with indices in the complement ℐ̄, 

are fixed. Writing the constraints only the free variable Vℐ·, we have:

(5)

On the subproblems, it will be sufficient to choose new iterates which preserve the equality. 

This is a general quadratic equality constraint, so it will be more difficult than a Stiefel 

constraint. Note that this constraint also includes rows not in the selected set, i.e., Vℐ̄·. 

However, we can ignore rows which are not neighbors of ℐ in the graph representation of 

nonzeros of D. As a result, when D is sparse, this computations below will still be of order 

≪ N.

The constraint on Vℐ· will be of the form
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(6)

for a matrix P1 that is constant w.r.t. Vℐ·. If we assume that Dℐℐ is full-rank, we can 

complete the square:

(7)

where the matrix  is still constant with respect to the 

selected submatrix.

Note that D ≻ 0 implies Dℐℐ ≻ 0, so we can assume the inverse matrices above exist when 

D is positive definite.

We next describe the constraints over subproblem decision matrix U. If we take any 

orthogonal U, and say

(8)

this provides a new iterate that satisfies the constraints in (4) and subsequent equations.

The descent curve will then be computed around the point:

(9)

given V is the previous iterate. Here, we note that for the regularized problem (3), we simply 

add λsign (V·1 – α) to the first column of the subdifferential.

4.1. Alternate Form

The previous derivation provides the most general means to construct the subproblem over 

U, and would be used e.g., if the chosen descent curve is a geodesic constructed from the 

exponential map of a subgradient around U0. We can in general perform optimization on this 

subproblem using any choice of retraction. This is a general class of mappings from the 

tangent space of a manifold to the manifold and preserves the key properties of the 

exponential function necessary to perform feasible descent on a manifold, for more details, 

see [1]. A computationally efficient retraction on the Stiefel manifold is given by the Cayley 

transform. A form of this transformation suitable for the generalized Stiefel manifold is 

given by Equation (1.2) and Lemma 4.1 of [32]. This allows us to eliminate the potentially 

expensive computation of matrix square roots. Here we would instead consider

(10)
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which will satisfy the constraint in (5) if UTDℐℐU = P. Note the construction from [32] still 

assumes that Dℐℐ ≻ 0 and P is nonsingular.

4.2. Singularity Correction

We can relax the assumptions in the above subproblem construction, in that we do not 

necessarily require that the constraint matrix P to be nonsingular. This section describes a 

transformation of the subproblem that allows us to consider singular P.

First rewrite (7) as:

(11)

Assume, as above, that Dℐℐ ≻ 0. Then for any matrix that satisfy this equation, P will be 

nonsingular iff  is nonsingular. We achieve the “singularity correction” 

by transforming the subproblem into a problem over only a maximal set of linearly 

independent columns of the latter matrix. Assume w.l.o.g. that

(12)

for a i × r nonsingular matrix Q and a r × (p – r) matrix R. Let  be the indices of the 

columns corresponding to Q. Then

(13)

and

Taking R to be fixed, and expressing the constraint only on the submatrix Q of linearly 

independent columns, we can expect the equality to be true iff

(14)

So given U ∈ ℝi×r such that UTDℐℐU = P , we let

(15)
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(16)

We now show feasibility after performing the singularity correction.

Lemma 1. With the above notations, Vℐ≻ constructed is feasible.

Proof. The proof consists of simple linear algebraic calculations, that is, first observe that,

Now it is enough to show that this block matrix produces P when multiplied with the square 

matrix Dℐℐ as

As a footnote, while we can allow P to be singular, it is still necessary for the correctness of 

our method that Dℐℐ ≻ 0 for any choice of ℐ. However, it is sufficient to show that D ≻ 0:

(17)

This derivation therefore produces valid subproblems of (2) as long as the constraint matrix 

D is positive definite.

4.3. Computing a Descent Curve

A descent direction for the subproblem will come from differentiating f ○ V(U) w.r.t. U, 

where V is related to U by (8):

(18)

We pick a subgradient G ∈ ∂Vℐ· f ○ V(U) and then perform the singularity correction on G 
with the same R in (12):

(19)
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To generate a descent curve, we can project a subgradient of f ○ W onto the tangent space of 

the manifold GFi,p (Dℐℐ) at U0, where W is the next feasible point for any orthonormal U 
such that

(20)

assuming w.l.o.g. that ℐ selects the first |ℐ| rows of the matrix. This construction preserves 

the constraints while leaving the complement ℐ̄ unchanged, so it is clear that W is also 

feasible. Then, a skew-symmetric matrix is defined as

(21)

and the curve Y as a function of τ by the Crank-Nicolson-like design as in [32] is

(22)

So one can think of Y as a function of a single parameter τ on which we perform a linear 

search over the descent curve with sufficient decrease in the objective value in each iteration.

Theorem 2. Let F := f+g and Vt be a point V at iteration t. F(Vt) is a monotonically 

nonincreasing sequence for (3) and hence for (2).

Proof. Note that from lemma (1), at every iteration t we produce a feasible point and from 

section (4.3) they satisfy the strong Wolfe conditions. Combining both gives us the desired 

result.

5. Experiments

Figure 1 shows a slice of an example pair of a DTI image, the corresponding FA image and 

the connectivity matrix (with 160 regions of interest).

Our experiments evaluate the efficacy of R-GEP in fusing multiple sources via measuring 

performance improvement for downstream statistical analysis tasks. We also discuss about 

running time for Alg. 1.

5.1. Data

The dataset for our experiments is comprised of brain imaging data, cognitive test scores and 

other demographic data from 102 middle-aged and older adults. In this cohort, 58 of the 

subjects are healthy (according to a dementia rating scale [17]), while the rest are diseased. 

Recall that the data used in our model come from three sources. The primary source is 3D 

volumetric Fractional Anisotropy (FA) imaging data, while the single secondary source is 

connectivity information derived from the corresponding 3D Diffusion Tensor Images (DTI). 

For each voxel in the brain image space, a DTI image provides the rate and directionality of 
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diffusion of water. The two sources are related in the sense that FA summarizes the degree of 

diffusion of water within each voxel (i.e., 3D pixel) of a DTI. However, there is information 

loss in this summarization, and hence using DTI-derived connectivity information as a 

secondary source for any statistical analysis performed in FA space is expected to increase 

the statistical power. Using the DTI data and performing a pre-processing step such as 

tractography, one can construct a connectivity matrix that corresponds to an adjacency graph 

where the nodes represent anatomical regions of interest and the edges weights (non-

negative) give the strength of their connection (e.g., derived using fiber counting procedures 

[19]).

Note that the secondary source in this case is a third order tensor where each slice i 
corresponds to a subject's adjacency matrix. Using Canonical Polyadic decomposition [13] 

on this tensor, we can then compute the subject space factor matrix CN×r, where r represents 

the tensor decomposition rank. The resulting factor matrix C will respect the structure of the 

adjacency graph, and hence the mass matrix D in (3) is given by CCT. The incomplete priors 

n′ from which we derive α for the regularization term as described in Section 3, include 7 

different cerebrospinal fluid (CSF) scores that measure specific types of protein levels in the 

brain that may be related to the disease [30]. These measures are positive scalars and are 

generally available for a smaller subset of the cohort (in our case, 60 out of 102) because it is 

a relatively more involved procedure.

5.2. Evaluations setup

Our evaluations are two-fold. Recall that the embeddings V learned by our model in (3) 

should, as a first order requirement, retain the structural and group-level characteristics of 

the input data, for example, the healthy versus diseased discrimination power. If such sanity 

checks are satisfied, we can evaluate improvements obtained in downstream statistical 

analysis. Therefore, using V as the feature representations for the inputs, we first check for 

changes in our ability to classify the healthy versus diseased subjects using an off the shelf 

machine learning library.

The comparison is performed against three models of incremental complexities. First, we 

compare the results to a baseline model which relies only on the primary source/view (FA 

data). Second, we also compare the results to ‘intermediate’ models that include a PCA 

based approach on FA data and a GEP (2) setup which does not use any regularizer. Lastly, a 

PCA-avg model is also evaluated where the primary and secondary source kernel are 

averaged. See supplement for the extended versions of Table 1 and 2.

We further repeat the same set of experiments to evaluate the power of these representations 

in replicating the disease progression. This is achieved via regressing the representations 

using existing disease markers as an outcome/dependent variable (example, a cognitive score 

like MMSE [5]). We used linear-SVM for both classification and regression setups. For the 

baseline model, the input features are FA and for the other models, the inputs are V. All 

results are 10-fold cross validated.
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5.3. Results

Table 1 and 2 present the classification and regression results respectively. In either case, the 

rows correspond to PCA rank (p). The columns represent the baseline model, PCA on 

primary source, PCA on primary and secondary source (PCA-avg) and the GEP and R-GEP 

models (with different choices of tensor decomposition rank r). Refer to the supplement for 

an expanded version of these tables. It is clear from the accuracy results in Table 1 that 

introducing additional sources of information always increases the performance (63.4% 

accuracy for baseline to > 91% for R-GEP). Same is the case with regression results in Table 

2 (0.68 correlation coefficient from baseline to > 0.78 for R-GEP). R-GEP outperforms the 

rest (especially GEP) across multiple choices of p and r. These trends support the hypothesis 

that our incomplete priors (CSF measures) are predictive of the disease [9]. It is interesting 

to see that even when only the primary source is used, the performance improves from 

baseline to PCA (second to third columns), which is perhaps due to nature of the imaging 

data itself.

As the length of the embeddings p increases, both the accuracies and correlations for the R-

GEP model are not necessarily monotonic. This implies that for the statistical task of interest 

(e.g., discriminating healthy versus diseased in Table 1), there may be a ‘sweet spot’ for p. 

Smaller values of p seem to perform better. It should be noted that all these interpretations 

are sensitive to the number of data instances, the specific choices of data sources, and the 

chosen task at hand. The results for GEP and R-GEP (last six columns in Tables 1 and 2) for 

a given p show that the performance changes only marginally (in most of the cases) for 

different t. More precisely, there seems to be no single t which gives best set of accuracies 

and/or correlations across all the p. This is ideal because r is not an outcome of the model, 

and it only governs the way we compute the mass matrix. Note that the two sources do 

provide complementary information, which can be seen by the performance differences of 

the PCA-avg model to that of the PCA.

An interesting exploratory tool is to compute the sensitivity (or weight) of each feature (or 

voxel) in classifying the healthy versus diseased subjects. Computing these weights is 

straight forward for the baseline case since it corresponds to a linear SVM. However, for R-

GEP the feature space is V and not the voxel space, see Figure 1. We used a trick from [20], 

where results from a SVM method can be used to assess sensitivities in the original feature 

space. Figure 2 shows two pairs of these feature sensitivity maps of the baseline model to the 

best case of R-GEP in the classification case. Sensitivity of a voxel is proportional to the 

absolute value of the weights (here, green is smaller and red is larger). The regions selected 

by R-GEP are different from the baseline, and more importantly, R-GEP assigned weights 

more contiguously compared to the baseline. It should be noted that the baseline is a simple 

linear SVM and so unsatisfactory sensitivity maps are expected. These results support the 

premise that incorporating secondary and incomplete priors increase performance, and our 

R-GEP model combines these information sources in a meaningful way offering good 

improvements. Additional experiments using positron emission tomography (PET) images 

from a study on pre-clinical Alzheimer's disease are available on the project webpage.

We note that there is a broad spectrum of ways in which information from disparate sources 

can be combined, e.g., multiple kernel learning with data imputation for incomplete features 
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[11]. The purpose of these experiments is not to claim that the proposed ideas are the best 
means for multi-view data fusion. Instead, the experiments suggest that independent of 

which statistical machinery we choose to deploy, methods such as the one presented here 

can be used as a pre-processing step to harmonize information across the views to construct 

meaningful low dimensional embeddings that can then be fed to the downstream analysis.

5.4. Discussion

Table 3 shows the runtime of Alg. 1 versus the condition number (denoted by κ) of D. We 

note two aspects of our algorithm. Firstly, as the problem size N increases, the increase in 

the runtime is not significant implying that the algorithm is scalable to large datasets. 

Secondly, we see that κ has a significant impact on the convergence (Table 3). Intuitively, 

this means that when the data matrix consists of points that are similar in some sense, κ of 

the similarity matrix induced increases. In these cases, as expected, finding a good descent 

direction becomes harder, and we tend to make very little progress towards the optimal 

(local) solution at each iteration. Recall that this issue is very common in most numerical 

optimization algorithms, and the solution involves applying either standard (or specialized) 

preconditioning techniques (refer to [18]). The results presented here do not utilize any 

preconditioning. For reasonable values of κ, the runtime scales approximately linearly. For κ 

= 3, the solver returns the correct solution for N = 1000 in ≈ 5s, N = 5000 in ≈ 2min and N 
= 10000 in ≈ 7min.

6. Conclusion

This paper describes a manifold optimization framework to obtain solutions to generalized 

eigenvalue problems with a nonsmooth regularizer. Given (i) the numerous problems in 

vision that involve GEP and (ii) a practical need to incorporate various forms of meta 

knowledge or supervision into such formulations, our algorithm addresses an important gap 

where few alternatives are available currently. As long as the inputs are well conditioned, the 

method is scalable and efficient. We show a concrete application to a brain imaging problem 

where the framework helps improve standard statistical machine learning experiments which 

seek to utilize diverse types of imaging modalities for disease diagnosis. In this case, 

incorporating a nonsmooth regularizer has the direct consequence that it yields higher 

sensitivity/specificity and arguably more interpretable visual results. Our solver can be used 

in a plug and play manner in various other settings in vision where a regularization is 

expected to meaningfully bias and improve the performance. The extended version of this 

paper, the supplementary material and the code are available at http://pages.cs.wisc.edu/

∼sjh/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
DTI image showing tensor directionality, followed by the FA image and the connectivity 

matrix.
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Figure 2. 
Feature sensitivity. First column shows the FA image. Second column shows overlays of the 

weights assigned by baseline linear kernel on this FA image. Last column shows overlays 

from the base R-GEP case in Table 1. Green (Red) corresponds to smaller (larger) weights.
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Table 3

Effect of condition number κ on the runtime (in seconds) of Alg. 1.

Condition Problem size (N)

number κ 10 30 50 100

1 0.04 0.06 0.27 0.46

5 0.04 2.91 36.18 91.5

10 0.05 8.00 71.55 514.2

20 0.35 75.86 324.2 >1000
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