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Abstract

Large scale object detection with thousands of classes
introduces the problem of many contradicting false positive
detections, which have to be suppressed. Class-independent
non-maximum suppression has traditionally been used for
this step, but it does not scale well as the number of classes
grows. Traditional non-maximum suppression does not
consider label- and instance-level relationships nor does it
allow an exploitation of the spatial layout of detection pro-
posals. We propose a new multi-class spatial semantic reg-
ularisation method based on affinity propagation cluster-
ing [8, 22], which simultaneously optimises across all cat-
egories and all proposed locations in the image, to improve
both the localisation and categorisation of selected detec-
tion proposals. Constraints are shared across the labels
through the semantic WordNet hierarchy. Our approach
proves to be especially useful in large scale settings with
thousands of classes, where spatial and semantic interac-
tions are very frequent and only weakly supervised detec-
tors can be built due to a lack of bounding box annotations.
Detection experiments are conducted on the ImageNet and
COCO dataset, and in settings with thousands of detected
categories. Our method provides a significant precision im-
provement by reducing false positives, while simultaneously
improving the recall.

1. Introduction

Human assistance technologies or question answering
require a precise and detailed object recognition of a visual
scene. Recently, large scale detection approaches have been
proposed which aim to distinguish hundreds or thousands
of object categories [1, 3, 11, 12, 23]. While impressive
progress has been shown, they suffer from competing object
category candidate detections as can be seen in Figure 1 (a).
Commonly, non-maximum suppression (NMS) is used to
select the bounding boxes with the highest detection score
for each category. This method is not globally optimal as
only locally overlapping boxes are suppressed by the high-
est scoring box. Further, in the multi-class case, it does not
take semantic relations between objects into account, e.g.

1. Angora cat
2. Angora cat
3. doggy bag
4. Pembroke
5. cat box
6. lapdog
7. kitty
8. settee
9. kitten
10. kitten
11. mouser
12. mouser
13. jird
14. beanbag
15. tabby
16. Angora rabbit
17. in-basket
18. tortoiseshell-cat
19. Manx cat
20. pet
21. pet
22. footstool
23. Persian cat
24. Persian cat
25. couch

26. Eames chair
27. clothes hamper
28. love seat
29. Shetland sheepdog
30. shoebox
31. Boarfish
32. tabby cat
33. tabby cat
34. pufferfish
35. couch
36. giant squid
37. stray
38. ottoman
39. wire matrix printer
40. covered couch
41. papillon
42. Blenheim spaniel
43. Russian wolfhound
44. tamarisk gerbil
45. Cardigan Welsh corgi
46. Pekinese
47. Pomeranian
48. sand cat
49. reclining chair
50. water bed

(a) Competing box proposals from different categories

(b) Non-Maximum Suppression (NMS) (c) MAPC (ours)

Figure 1. Raw and spatially regularised detection of 7,404 classes
using the LSDA extension [12] of the R-CNN method [9]. (a)
Top 50 scoring candidate detections and associated categories are
listed: all proposals which support the depicted cat are green, for
chair blue. Black entries do not describe any object in this picture.
(b) NMS clusters boxes only according to their overlap not accord-
ing to their class leading to multiple detections of different fine-
grained classes for the same object. (c) Our approach (MAPC)
exploits category relationships, clustering overlapping boxes with
similar classes together which results in less false positives on the
same object and enables to detect classes which are suppressed by
NMS because of their overlap.

the couch, floorstool and beanbag proposals should support
the settee candidate detection box in Figure 1, such that it is
not suppressed by doggy bag as in Figure 1(b).

With thousands of different object categories, semantic
relationships become a valuable source of information. Us-
ing semantics, consistency can be ensured across different
detections. Hence, this work examines the benefit of a se-
mantic hierarchy to object detection of thousands of object
categories. We show that in such a large scale setting se-
mantic constraints significantly improve detection.
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The key contribution of this work is a large scale spatial
semantic regulariser for the correct selection of candidate
object detection proposals. Under the framework of Affinity
Propagation Clustering (APC) [8], our developed method is
characterised by two new ideas.

First, we present an approach which unifies within and
across class selection of candidate object detections. Our
new multi-class affinity propagation clustering (MAPC) al-
lows for global reasoning over the whole image simulta-
neously, rather than reasoning locally over image parts or
single classes separately, to determine the correct setup of
an image. Unlike NMS or [20], which perform the selec-
tion separately for each class, our algorithm uses the rela-
tionships of highly related fine-grained categories in a large
scale detection setting. Based on WordNet relationships,
our algorithm knows that golden retrievers, dalmatians and
dachshunds are all different dog breeds and should support
each other, rather than suppress, if the corresponding boxes
cover almost identical regions of interest in the image.

Second, we propose a large scale detection evaluation in-
cluding over a thousand categories, which requires discrim-
inating among competing classes, in contrast to standard de-
tection challenges, which focus on a per category mean Av-
erage Precision (mAP) evaluation. We demonstrate that our
algorithm improves performance in two challenging scenar-
ios. First, for a large number of objects per image, we show
results on COCO. Second, for a large number of categories,
we evaluate on a subset of ImageNet, which is labeled with
bounding boxes of 1,825 categories, a large scale detection
scenario, which has not been previously evaluated.

2. Related Work
Our work is most related to spatial regularisation over

detection proposals. In most detection methods, detection
proposals (raw bounding box outputs with scores from de-
tectors) need to be regularised over space to remove dou-
ble detections on the same object, prune false positives, and
improve localisation. Although greedy non-maximum sup-
pression (NMS) is the most often used spatial regularisation
approach, other approaches, such as merging nearby detec-
tion boxes, are sometimes shown to be more robust [25].
In [29], overlapping detections are averaged and a thresh-
old is set based on overlapping box numbers. In [25], a
greedy merge strategy is proposed to group detection pro-
posals together and reward bounding box coherence. Spa-
tial and cooccurrence priors are introduced in [2, 28] to
prune detection results. In [7], labels of detection proposals
are obtained via approximate inference over several types
of spatial relationships instead of greedy NMS. Recently,
Affinity Propagation Clustering (APC) [8], an unsupervised
clustering method based on message passing, has been used
to cluster proposed bounding boxes of the same class based
on their overlap [22]. In [22], background and repellence

terms are introduced to APC to allow the suppression of
false positives and to avoid selecting object proposals lying
too close to each other. Our work builds on [22], but is dif-
ferent in that: (1) our algorithm clusters object proposals
of the same and different classes simultaneously, whereas
[22] is applied only within each class, (2) we introduce new
constraints to ensure that one label per detection proposal is
selected, and (3) we design our similarity measure such that
semantically close objects get clustered together.

Another line of related work is exploiting semantic cat-
egory hierarchies in visual recognition and detection [4, 6,
11, 14, 15, 17, 20, 24, 30]. Real world object categories of-
ten form a hierarchical structure, which can provide useful
information for large scale detection. Such hierarchical re-
lationships can be obtained from predefined semantic struc-
tures such as WordNet, or learned by data-driven methods.
In [4], a conditional random field based hierarchy-exclusion
Graph is proposed to represent subsumption and exclusion
relationships between classes. In [11, 14], the ImageNet
hierarchy, which is based on WordNet, is used to transfer
bounding box annotations and segmentations to semanti-
cally close categories. In [6], an accuracy-specificity trade-
off based on the ImageNet hierarchy is optimised through
the DARTS algorithm. PST [20] uses the WordNet hierar-
chy to transfer knowledge from known to novel categories
and propagates information between instances of the novel
categories. In [24] a visual hierarchy is discovered based
on the Chinese Restaurant Prior and used to share detector
parameters between classes. [15] learn a semantic hierar-
chy based on visual and semantical constraints. Our work
is complementary to previous methods in this area, as we in-
tegrate a semantic hierarchy into Multi-class Affinity Prop-
agation Clustering (MAPC) for spatial regularisation, while
hierarchies have been only used to train classifiers or share
features in previous methods.

Our work is also related to large scale detection. In [3],
large scale detectors on over 100,000 classes are trained
based on hashing. In [1], NEIL, a semi-supervised learning
system, is proposed to train detectors from Internet images.
One major obstacle for large scale detection is the lack of
bounding box annotations, which has been recently partially
resolved by weakly supervised methods such as knowl-
edge transfer [11], Multiple Instance Learning [27, 18], do-
main adaptation [12] or combined approaches [13]. Among
these methods, LSDA [12] is a framework for classifier-to-
detector adaptation, and was shown to effectively train large
scale detectors based on image-level labels. Thus, in this
paper we use LSDA to train a baseline detector on 7,404
leaf classes of the ImageNet hierarchy. However, we note
that our spatial regularisation method does not depend on
how detectors are trained, and can be applied to arbitrary
sets of detectors.

To our knowledge, this is the first time that hierarchical



Figure 2. MAPC message passing. Messages are passed between
all candidate detections until a subset of detections gets selected
as exemplars. IoU stands for Intersection over Union, and simLin

is the Lin measure. For simplicity not all messages are depicted.

semantic relationships are used together with spatial infor-
mation to determine the correct scene configuration from
contradicting candidate object detections. Furthermore, it
is even more challenging to apply this algorithm on a large
scale setting, as it requires inference over thousands of fine-
grained and diverse categories. Our detection system is
unique in its amount of categories, both in terms of the de-
gree of fine-grained detail, for instance incorporating dif-
ferent dog breeds, and the variety of categories, including
various animals, plants, fruits, and man-made structures.

3. Spatial semantic regulariser

In this section we describe our spatial semantic regu-
lariser. Our method is based on Affinity Propagation Clus-
tering (APC), which has shown to outperform other cluster-
ing techniques such as k-means clustering [8]. [22] success-
fully adapted APC to the task of selecting candidate object
detections of the same class. This method is denoted as
Single-class APC (SAPC) in the following.

Our main contributions are to extend the previous work
on APC [8, 10, 22] to multi-class detection and a large scale
setting with thousands of fine-grained classes. Therefore,
we incorporate a new constraint ensuring that each bound-
ing box exemplar gets assigned only one label. Similar to
[22], we use an intercluster repellence term and a back-
ground category to remove false positives. Additionally, in
order to leverage the visual similarity of semantically re-
lated fine-grained classes, we introduce hierarchical label
relations into APC to cluster semantically similar objects.
The resulting Multi-class APC (MAPC) algorithm is pre-
sented in Figure 2 after introducing standard APC.

3.1. Standard affinity propagation clustering

APC is a message passing based clustering method. It
uses data similarities to identify exemplars such that the

sum of similarities between cluster exemplars and cluster
members is maximised. Let s(i, j) denote the similarity be-
tween data points i and j ∈ {1, ..., N} with N being the
number of data points. s(i, j) ≤ 0 indicates how well j
would serve as an exemplar for i [8]. The self-similarity
s(i, i) indicates how likely a certain point will be chosen
as an exemplar. Using the binary formulation of [10], we
encode the exemplar assignment with a set of N2 binary
variables cij : cij = 1 if i is represented by j and cij = 0
otherwise. A valid clustering must hold two constraints: (i)
each point is represented by exactly one exemplar and (ii)
when j represents any other point i, then j must be an exem-
plar representing itself. In the following objective function,
I represents constraint (i) and E represents constraint (ii):

EAPC({cij}) =
∑
i,j

Sij(cij) +
∑
i

Ii(ci1, ..., ciN )

+
∑
j

Ej(c1j , ..., cNj)
(1)

Sij(cij) =

{
s(i, j) if cij = 1

0 otherwise
(2)

Ii(ci1, ..., ciN ) =

{
−∞ if

∑
j cij 6= 1

0 otherwise
(3)

Ej(c1j , ..., cNj) =


−∞ if cjj = 0 and ∃i 6= j

s.t. cij = 1

0 otherwise
(4)

Max-sum message passing is applied to maximise equa-
tion (1) [8, 10] consisting of two messages: The responsi-
bility ρij (sent from i to j) describes how suited j would
be as an exemplar for i. The availability αij (sent from j
to i) reflects the accumulated evidence for point i to choose
point j as its exemplar:

αij =

{∑
k 6=j max(ρkj , 0) for i = j

min(0, ρjj +
∑
k/∈{k,j}max(ρkj , 0)) for i 6= j

(5)
ρij = s(i, j)−max

q 6=j
(s(i, j) + αiq) (6)

3.2. Affinity propagation clustering for multi-class
object detection

We introduce our novel Multi-class Affinity Propagation
Clustering (MAPC) algorithm, which extends SAPC [22]
from single-class to multi-class detection. In multi-class de-
tection most object detectors propose multiple category la-
bels with a certain confidence score for each bounding box.
However, the label with the highest confidence is not always
the correct one. Hence, not only the correct location but also



the correct class for each box has to be inferred. Therefore,
we redefine each data point i or j as a combined box-class
detection, e.g. box1-dog, box1-cat, or box2-cat. This allows
us to define a similarity measure s(i, j) between detections
which includes both the spatial relation between bounding
boxes and the relation between their labels (7):

s(i, j) = λ IoU(i, j) + (1− λ) simLin(i, j) (7)

Whereas SAPC bases its similarities solely on the IoU
between bounding boxes [22], our similarity measure clus-
ters overlapping detections, represented by the IoU(i, j)
term, as well as semantically similar detections, represented
by the simLin(i, j) term. An example can be seen in Fig-
ure 3. λ is a weighting factor trading off spatial and se-
mantic similarity. The Intersection over Union is defined
as IoU(i, j) =

|Ai∩Aj |
|Ai∪Aj | , where Ai is the area of the image

covered by the bounding box of i. It is used to describe
the overlap and hence the visual similarity of two detec-
tions. The Lin measure simLin(i, j) =

2IC(lcs(Ci,Cj))
IC(Ci)IC(Cj)

de-
notes how semantically similar the labels of two detections
are. lcs(Ci, Cj) denotes the lowest common subsumer of
the classes Ci of i and Cj of j in the WordNet hierarchy
and IC(C) = log p(C) equals to the information content
of a class, where p(C) is the probability of encountering an
instance of the class C in a corpus. The relative corpus fre-
quency of C and the probabilities of all child classes that C
subsumes are used to estimate the probability p(C) [19, 21].

The self-similarity is defined as s(i, i) = − 1
p−θbg , where

p is the detection score generated by the object detector and
θbg is a background threshold used to discard detections
scoring lower than θbg before APC inference.

To further avoid that contradicting detections are chosen
as exemplars, we introduce a new constraint: If class Ci is
an exemplar for a specific box k (i.e. cii = 1), no other
class can be an exemplar for box k:

Ẽk(c11, ..., cNN ) =

{
−∞ if

∑
j with box k cjj > 1

0 otherwise
(8)

The remaining algorithm exactly follows [22], which
uses a repellence term R =

∑
i 6=j Rij(cii, cjj), but with

r(i, j) = −(s(i, j) + 1) to avoid selecting semantic-
spatially close exemplars, and a background category to
allow for false positives to be suppressed, denoted by the
Ĩi(ci1, ..., ciN ) term in equation (9). Linearly combining
all of the terms presented yields in the following objective
function to be maximised:

ẼAPC = wa
∑
i

Sii + wb
∑
i 6=j

Sij + wc
∑
i

Ĩi

+ wd
∑
i<j

Rij + we
∑
j

Ej + wf
∑
k

Ẽk
(9)

Spatial similarity

Semantic similarity

Semantic-Spatial similarity Final cluster representative

Figure 3. Combining spatial and semantic similarity in MAPC. All
red boxes form one cluster in which the blue box emerged as their
exemplar. With a semantic-spatial similarity, semantically simi-
lar and spatially localised detections get clustered which finally
results in a well localised true positive detection.

All function arguments in equation (9) were left out for the
sake of clarity. To solve this optimisation problem the mes-
sage passing paradigm of [22] is used. All messages are ini-
tialised with zero and iteratively updated until convergence.

4. Experiments
In this section we evaluate the performance of MAPC

in a large scale setting. At this time, there is no standard-
ised large scale dataset with both a large amount of object
instances within one image as well as a large amount of
different object categories. Hence, we evaluate MAPC on
two different datasets. We use the Microsoft COCO dataset
[16] for the evaluation on a large amount of object instances
within one image. To evaluate on a large amount of fine-
grained categories, we create a new dataset built of images
with bounding box annotations from ImageNet [5]. This
dataset covers 1,825 categories, but contains only a few ob-
ject instances per image due to incomplete annotations.

However, we believe that in a setting with both, thou-
sands of fine-grained categories as well as dozens of ob-
ject instances per image, our method would perform best.
Hence, we also present qualitative results in the supplemen-
tal material, where we show the performance of our MAPC
algorithm on all 7,404 LSDA categories [12].

We mainly use precision and recall as well as the F1-
score, which is the harmonic mean of precision and re-
call, to evaluate MAPC on these datasets. The mAP met-
ric, which is usually used to evaluate the performance on
detection tasks, is not an appropriate performance measure
for our multi-class detection setup. mAP is a metric for re-
trieval tasks. Traditionally, single-class detection has been
seen as a retrieval task: all window detections that contain
an object of the given class are to be retrieved. As most
object detectors were designed as window-scoring methods
it was obvious to rank all window detections according to



their scores. With the clustering view, there is no absolute
score which could be used for a global ranking and mAP
can not be used correctly. The multi-class setting makes it
even less suited. mAP favors multiple detections for each
class and overall punishes across class selection of object
proposals. In contrast, our method actually tries to provide
a better way of selecting detections across classes. Hence,
we can not use mAP to evaluate this task. For a true under-
standing of a depicted scene we have to focus especially on
a high precision and F1-score for selecting object proposals
across classes, while trying to maintain the recall. It is ob-
vious that a high recall could also be achieved by selecting
many object proposals without doing across class suppres-
sion. As can be seen in Figure 1(a) within class suppression
alone—which would be desirable for the mAP measure—
still leaves the question unanswered which objects are actu-
ally depicted in an image. For a more detail investigation of
wrong detections, we examine whether a false positive oc-
curred due to a wrong localisation or classification. Wrong
label is the amount of all false positives with wrong labels
of all false positives. Wrong overlap is the amount of all
false positives with a wrong location of all false positives.

To setup MAPC and determine all of its parameters, we
use grid search on a training set obtained from ImageNet
[5] as follows: First, we search for all ImageNet categories
with available bounding box annotations. Next, we deter-
mine which of these categories overlap with the 7,404 cate-
gories of the LSDA detector [12]. This results in 1,825 cat-
egories with annotated images. Next, we discard all images
used during the LSDA training and in the ImageNet test set
described in section 4.2. We obtain our final training set by
randomly selecting two annotated images per category from
the remaining images. After performing grid search on this
training set the MAPC parameters are set such that recall
and precision are maximised.

In all our experiments common non-maximum suppres-
sion (NMS) is used as the baseline. More specifically, de-
tections of the same category overlapping more than a de-
fined IoU threshold are suppressed in a first step. Then, all
the remaining detections are suppressed across all classes
with a different IoU threshold. Both NMS thresholds were
determined using grid search as previously described. The
best configuration resulted in a higher IoU threshold for
within class suppression than for across class suppression.
The intuition for this is that detections of the same class in-
stance are typically located at similar positions in the image.
Thus, in order to suppress within classes a higher thresh-
old is necessary. This baseline will be denoted as Within
Class and Across Class NMS (WC+AC-NMS). MAPC is
also compared against SAPC [22]. However, SAPC was de-
signed for single-class detection. As we evaluate in a multi-
class detection scenario, we simply accumulate the per class
output of SAPC across all classes for a first SAPC version.

However, accumulating all detections without suppressing
across classes is more suitable for an object retrieval task
than for multi-class object detection. Thus, in a second ver-
sion, we use across class NMS (AC-NMS) on top of the
accumulated SAPC output to select object detections also
across classes. This makes SAPC [22] better comparable to
our method. The IoU threshold for this across class NMS
was also determined using grid search.

4.1. Multiple instance detection on COCO

The Microsoft COCO dataset [16] consists of images
that depict objects in their real world context rather than
centered objects. Because of this, the detection on COCO
is much more challenging than on the mostly centered Ima-
geNet pictures. Hence, this dataset is chosen to evaluate the
performance of our semantic spatial regulariser in a contex-
tual setup with numerous object instances per image.

4.1.1 Experimental setup

COCO consists of 80 different categories with on average 7
object instances per image. In a first experiment, we use the
latest LSDA setup with 7,404 fine-grained categories [12].
15 COCO categories neither overlap with the leaf node cate-
gories of LSDA nor with either of their parents in the Word-
Net hierarchy1. For those of the remaining 65 categories
which overlap with a parent category, we use all of their
children as an input to our method and the baselines. For
example we detect beagle and dachshunds instead of their
parent category dog. This results in 1,133 fine-grained child
categories, which all methods have to infer on. We simply
relabel the children output after inference to their parent cat-
egories to compare it with the COCO ground truth. We nei-
ther train LSDA nor adapt the MAPC paramters to COCO.

In a second experiment, we fine-tune our detection net-
work on the COCO training set using all 80 COCO cate-
gories as input to our method and the baselines. Both ex-
periments are evaluated on the COCO validation set.

4.1.2 Experimental results

Table 1 shows the detection results of our first experiment
without finetuning our detector on COCO on the COCO val-
idation set. As can be seen MAPC outperforms WC+AC-
NMS by 3.16% in terms of precision when maintaining
the recall. This performance gain can be explained by less
wrongly labeled (65.13%) and wrongly localised (74.31%)
detections. The F1 score for the chosen setup is 13.46% for
WC+AC-NMS versus 15.09% for MAPC. In Figure 5(c) &
(d) we vary the IoU evaluation threshold above which a de-
tection is counted as a true positive. As can be seen MAPC

1traffic light, fire hydrant, stop sign, snowboard, person, kite, fork,
sandwich, hot dog, pizza, donut, cake, potted plant, book, teddy bear



MAPC (optimal precision) MAPC (optimal F1)

Figure 4. Different optimisation criteria. When optimised for F1
score instead of precision, MAPC selects more detections, result-
ing in more true and false positives.

is always better than WC+AC-NMS. In general, almost
all operating points of MAPC lie above WC+AC-NMS as
can be seen in the precision-recall curve depicted in Fig-
ure 5(a). These results clearly show that MAPC is superior
to WC+AC-NMS in scenarios with a lot of object instances
per image. Also when compared to SAPC [22] our MAPC
method shows an improvement over all numbers, except for
the recall of 20.72% since no across class suppression is
applied. Hence, many detections are selected resulting in
a cluttered outcome, which manifests in the low precision
value of 5.25% and decreases the F1-score to 8.38%. As
[22] was designed for within class suppression and does
not suppress across classes, these results are not surprising.
However, when across class NMS (AC-NMS) is applied on
the accumulated outcome of [22] the precision increases to
14.66% at the cost of a recall decrease. Overall the F1-score
increases to 13.12%. However, MAPC performs best on the
COCO validation set amongst all tested methods.

The greater precision of MAPC can be especially seen
when we look at example images. The pictures in Figure 6
show the output of WC+AC-NMS and MAPC after opti-
mising both algorithms for the highest precision with com-
parable recall. The detector not fine-tuned on COCO was
used. Green boxes are true positive detections. Red boxes
are false positive detections. WC+AC-NMS reaches its pre-
cision limit after suppressing all overlapping boxes, while
MAPC can also suppress non-overlapping boxes. At the
same time, MAPC still enables the selection of overlapping
object proposals as can be clearly seen in the example pic-
tures. Allowing a greater overlap for WC+AC-NMS would
increase true positives at the cost of lower precision and a
cluttered detection output. In general, MAPC outputs less
false positives and better localised true positives.

If required, MAPC can also be optimised towards a
higher recall. Figure 4 examplarily compares a F1 score

Method Pre- Re- Wrong Wrong F1
cision call Label Overlap Score

WC+AC-NMS 13.44 13.47 79.39 88.97 13.46
SAPC [22] 5.25 20.72 74.79 72.73 8.38
SAPC + AC-NMS 14.66 11.86 81.36 87.15 13.12
MAPC (ours) 16.60 13.84 65.13 74.31 15.09

Table 1. Detection results on COCO without finetuning, in %.

Method Pre- Re- Wrong Wrong F1
cision call Label Overlap Score

WC+AC-NMS 23.50 24.80 62.99 94.97 24.10
SAPC [22] 15.66 32.61 69.01 72.43 21.17
SAPC + AC-NMS 30.01 21.97 74.95 92.90 25.39
MAPC (ours) 37.64 24.23 55.47 71.79 29.50

Table 2. Detection results on COCO, fine-tuned on COCO, in %.

Method Pre- Re- Wrong Wrong F1
cision call Label Overlap Score

WC+AC-NMS 8.34 11.29 91.90 85.53 9.59
SAPC [22] 3.46 22.57 93.69 68.05 6.00
SAPC + AC-NMS 9.76 10.34 91.02 81.54 10.04
MAPC (ours) 10.94 16.22 86.41 68.57 13.07

Table 3. Detection results on ImageNet without finetuning, in %.

optimised MAPC to a precision optimised MAPC. Clearly
more boats get detected when we optimise towards F1, but
also more false positives are selected. All in all, MAPC
can be optimised towards a high recall and a high precision,
while WC+AC-NMS reaches its precision limit when try-
ing to suppress non overlapping boxes. Thus, MAPC can
be preciser in selecting the correct bounding box proposals.

In our second experiment, we fine-tune our object de-
tector on COCO. The results can be seen in table 2. As
expected all of our metrics highly improve. Most striking
the MAPC precision rises to 37.64%, while the recall re-
mains comparable, which increases the F1 score difference
between MAPC and WC+AC-NMS to 5.40%. Also the F1
score of SAPC strongly improves to 21.17%. All methods
obviously greatly profit from better detections. Thus, a de-
tector which provides good candidate detections in the first
place is crucial for all of the examined methods.

4.2. Fine-grained multi-class detection on ImageNet

In this section we evaluate MAPC on a large scale multi-
class detection setup constructed from ImageNet data [5].
Since there is no standardised dataset with thousands of cat-
egories, we construct our own dataset to evaluate MAPC on
a large amount of fine-grained categories. The final dataset
covers 1,825 categories, but only a few object instances per
image due to incomplete annotations of ImageNet.

4.2.1 Experimental setup

In order to construct a dataset with numerous fine-grained
categories, we search for all ImageNet categories with avail-
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Figure 5. % & (b) Precision-recall curve for WC+AC-NMS, SAPC + AC-NMS and MAPC on COCO (a) and on the set of 1,825 ImageNet
categories (b) without finetuning. The curved lines mark points of equal F1 score. The F1 score increases from lower left to upper right.
Multiple operating points are obtained by varying the across class IoU threshold in AC-NMS (for WC+AC-NMS and SAPC + AC-NMS)
and wa for MAPC. MAPC consistently outperforms WC+AC-NMS and SAPC + AC-NMS on COCO and ImageNet. SAPC + AC-NMS
is superior to WC+AC-NMS in the lower precision range. (c) & (d) F1-score plotted against IoU evaluation threshold for COCO (c) and
on the set of 1,825 ImageNet categories (d). MAPC consistently outperforms WC+AC-NMS on both datasets.

able detection annotations. As we use the LSDA detector
[12], we determine which of these categories overlap with
its 7,404 categories. This results in 1,825 categories with
annotated images. Next, all images used during the train-
ing of the LSDA detector are discarded. As most of the
remaining images have only one object annotated, we fur-
ther restrict our test set to images with at least two annotated
objects. This way, we ensure that we evaluate on a true de-
tection setup rather than a localisation setup. After this step,
we obtain our final fine-grained ImageNet test set.

4.2.2 Experimental results

Table 3 shows the detection results on our large scale Ima-
geNet detection dataset. The same tendencies as on COCO
can also be observed here. The precision and recall for
MAPC are 2.60% and 4.93% higher than for WC+AC-
NMS. The F1-score increases from 9.59% to 13.07%. False
positives due to wrong labels drop by 5.49% and locali-
sation errors drop from 85.53% to 68.57%. Again SAPC
performs better after applying across class NMS. However,
MAPC still performs best, which confirms our results on
COCO. What is striking however is that the improvement
to WC+AC-NMS and SAPC + AC-NMS is bigger in the
fine-grained setting. Also the improvement of MAPC over
WC+AC-NMS, when the IoU evaluation threshold is var-
ied, is bigger than on COCO, which can be seen in Fig-
ure 5. It seems that the more fine-grained the categories, the
more visually similar are semantically similar categories,
and thus, the more useful the label relations from the Word-
Net are. This indicates that our approach is especially useful
in a large scale setting when a lot of visually similar fine-

grained object categories are competing against each other.

5. Conclusions and Future Work
We presented MAPC, a large scale multi-class regu-

lariser which globally maximises both the semantic and
spatial similarity, and thus, visual similarity of clusters of
detection proposals. MAPC reduces false positives signif-
icantly in multi-class detection, resulting in an improved
classification and localisation. Our results show that the se-
lection of detection proposals can be significantly improved
over baseline class-independent non-maximum suppression
by formulating a clustering problem across class labels and
spatial dimensions, which can be solved by affinity propa-
gation. Overall, we consistently improve precision and re-
call for different operating points and evaluation thresholds.

As future work, it would be interesting to compare the
fine-grained category detection on COCO with detectors
trained on all parent categories to see whether training more
fine-grained classes to detect the actual parent class helps
the detection of objects. MAPC could also be extended to
the temporal domain, in order to cluster over consecutive
video frames for activity recognition and video description.
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Supplementary Material

Abstract

This document accompanies the paper: ”Spatial Se-
mantic Regularisation for Large Scale Object Detection”.
It contains an additional detection experiment on COCO,
where we use the VGG net [26] in RCNN [9], to examine
the influence of the neural network architecture on our ap-
proach. Further, it comprises additional exemplary detec-
tion results to show the key differences of multi-class affin-
ity propagation clustering (MAPC) to single-class affin-
ity propagation clustering (SAPC) [22] and non-maximum
suppression (NMS). Results are shown using the COCO
classes, the 1,825 ImageNet classes as mentioned in the
main paper and all 7,404 fine-grained classes of the LSDA
large-scale detector [12]. The example images show that
MAPC both localises and classifies objects in images better
than SAPC + AC-NMS and WC+AC-NMS. We also show
some failure cases of MAPC. We further break down the
iterations of our algorithm on one example for a detailed
step-by-step explanation of MAPC. Code will be published
on our website.

6. Multiple Instance Detection on COCO based
on VGG net

In order to examine the influence of the network archi-
tecture on the selection process, we conduct a third exper-
iment on the COCO dataset, additionally to the two exper-
iments mentioned in the main paper. As in the second ex-
periment, we fine-tune our detection network on the COCO
training set using all 80 COCO categories as input to our
method and the baselines. However, we replace the origi-
nal RCNN detection network architecture [9] by VGG net, a
deeper neural network architecture, which has shown to sig-
nificantly improve classification and detection performance
[26]. We evaluate our method against the baselines using
the output of fine-tuned VGG net as the input to all regu-
larisation methods and obtain the results depicted in Table
4.

When we compare Table 4 with the COCO tables from
the main paper, we can clearly see that all methods bene-
fit from the deeper VGG net except WC+AC-NMS. Com-
pared to our second COCO experiment the F1 score of
SAPC improves from 21.17% to 25.56%, SAPC + AC-
NMS improves from 25.39% to 27.67 % and MAPC im-
proves from 29.50% to 33.96%. Only WC+AC-NMS drops
from 24.10% to 16.29 %. Whereas the recall and precision
of all other methods increases or at least stays the same, the
precision of WC+AC-NMS decreases significantly. The ob-

tained numbers by itself are not able to explain this behav-
ior. However, a qualitative analysis of several obtained de-
tection results gives an explanation for the drop in precision
of WC+AC-NMS. When we look at the detection results of
WC+AC-NMS in the images of Figure 8, we can see that
a lot of small non-overlapping false positive detections are
obtained. VGG learns better than the original RCNN net-
work, that the COCO dataset contains a lot of small objects,
and thus, scores object that are usually small in the dataset,
such as groups of persons, higher. This creates a lot of small
non-overlapping detection proposals scattered all over the
image. In these cases, NMS simply cannot suppress the
false positive detections, since they do not overlap with any
higher scoring detection. SAPC and MAPC however do not
need false positive detections to overlap to be able to sup-
press them. Thus, both APC methods are able to suppress
more false positive detections than NMS, which suppres-
sion ability is limited by the necessity of overlapping de-
tection proposals. This results in an upper boundary for the
precision of NMS. Hence, especially when using the VGG
net, the better precision of our MAPC method compared
to NMS gets obvious. But also in comparison to SAPC
and SAPC + AC-NMS, MAPC has a significantly higher F1
score. When using the VGG net, the gap between MAPC
and the two SAPC approaches gets even bigger. In the end,
MAPC improves the detection performance in terms of the
F1 score by 6.29%, when compared to SAPC + WC-NMS,
and even by 8.40%, when compared to the original SAPC
method. Summarising, our results clearly show that MAPC
is able to improve the detection performance over state-of-
the-art methods in terms of precision, while maintaining the
recall.

7. Comparison of MAPC, SAPC and NMS on
COCO and ImageNet

In this section we show and discuss example images,
where our MAPC method outperforms the SAPC and NMS
baselines. We use the original LSDA network not fine-tuned
to the COCO dataset. All regularisation methods were op-
timized to maximize the F1-score. The images were not se-
lected randomly, but chosen based on the best performance
of each method.

We evaluate on images from COCO and ImageNet on all
categories of the 7,404 categories of the LSDA large scale
detector [12], which overlap with the respective dataset.
Following the experimental setup in the main paper, we
evaluate on 65 categories, i.e. on their 1,133 child cate-
gories, for the COCO validation set and on 1,825 categories
for the ImageNet 1,825 categories set. Since a dataset with
ground truth annotations for all 7,404 LSDA categories is
missing, we also present qualitative MAPC results on all
7,404 categories of the LSDA detector. We evaluate against
the WC+AC-NMS and the SAPC + AC-NMS baseline as



Method Precision Recall Wrong Label Wrong Overlap F1 Score
WC+AC-NMS 11.26 29.41 51.28 98.42 16.29
SAPC ([22]) 21.11 32.39 80.71 76.95 25.56
SAPC + AC-NMS 32.96 23.84 82.93 93.19 27.67
MAPC (ours) 37.23 31.21 55.18 75.71 33.96

Table 4. Detection results on COCO, fine-tuned on COCO using VGG net, in percent. Within Class and Across Class NMS (WC+AC-
NMS), Single-class APC (SAPC), Single-class APC and Across Class NMS (SAPC + AC-NMS), are compared against Multi-class APC
(MAPC).

Ground Truth WC+AC-NMS SAPC + AC-NMS MAPC (ours)

Figure 8. Detection examples when using VGG net with WC+AC-NMS, SAPC + AC-NMS and MAPC on Microsoft COCO. Ground truth:
blue, true positives: green, false positives: red.

defined in the main paper.

Exemplary, Figures 9, 12 and 15 depict images, where
MAPC both localised and classified objects better, result-
ing in an overall significantly better detection result. For
both, a large number of object instances per image as in
COCO, as well as a large number of detection classes as
in our ImageNet 1,825 categories dataset or our qualita-
tive dataset with 7,404 categories, MAPC performs better
than the baselines. Hence, based on LSDA detections, our
method enables a very fine-grained and precise detection,
be it between different types of bags, flowers or trees.

The following sections analyse more images qualita-
tively and are organised as follows. Section 7.1 discusses
images, where MAPC significantly better localised objects.
Section 7.2 analyses images, where MAPC significantly
better classified objects. Finally, we show some failure
cases of MAPC in Section 7.3.

7.1. Improved localisation

In this section, we show and generally discuss images,
where MAPC significantly better localises objects than the
baselines. These images can be seen in Figures 10, 13
and 16. As can be seen, WC+AC-NMS often selects big-
ger detection proposals that group multiple objects together.
Thereby, NMS simply takes the maximum scoring detec-
tion proposal and locally suppresses all other detections
which overlap with this detection. Hence, if large pro-
posals score high in a detection setup, those detection pro-
posals suppress all other detection proposals, which makes
a more detailed detection on the object level impossible.
But also in other scenarios, where such large detections
do not appear, WC+AC-NMS performs worse in localising
objects as can be seen in the images. In contrast, SAPC
[22] optimizes over the whole set of detection propos-
als, which improves the localisation compared to WC+AC-



NMS. However, SAPC does not regularise across classes.
Thus, MAPC, which groups spatially and semantically sim-
ilar detections together, does much better in localising ob-
jects. MAPC benefits from the fact that usually multiple
similarly sized and classified detection proposals lie on the
same object due to the visual similarity of such proposals.
Hence, local semantically and spatially similar clusters of
detection proposals are formed over objects all over the im-
age, which are grouped together by MAPC. This results in
a precise object localisation, as can be seen in the images.

7.2. Improved Classification

In this section, we show and generally discuss images,
where MAPC significantly better classified objects than the
baselines. These images can be seen in Figures 11, 14 and
17. When we look at these images, we can see that MAPC
clearly benefits from taking semantic similarities into ac-
count during the labeling of detection proposals. As in
multi-class detection each object detection is not only clas-
sified by one class, but by a confidence score distribution
across all classes, the problem of labelling each detection
with the correct class arises. Hence, the MAPC similar-
ity was formulated such that not only the spatial similarity,
but also the semantic class similarity between all detection
proposals in one cluster is maximized. In contrast, SAPC
and NMS do not take class labels into account at all. NMS
simply suppresses overlapping detections by the top scoring
detection, whereas SAPC only relies on spatial relations for
its inference. Further, when SAPC and NMS is applied to
object detection, each detection proposal is simply labeled
by the top scoring class. The input for MAPC however can
also contain multiple classes per detection proposal. MAPC
will then select the class for each detection, which maxi-
mizes the semantic and spatial similarity between all detec-
tion proposals in one cluster at the same time. All in all, this
results in significantly better classified detections.

7.3. Erroneous Examples

In this section we look at images, where MAPC performs
worse than SAPC + AC-NMS or WC+AC-NMS. As can
be seen in Figure 18, MAPC sometimes results in multiple
detections for the same object. Hence, MAPC not always
eliminates all false positives. These false positives can be
both from the same category or a different category than
the underlying true positive detection. This means that the
semantic or spatial clustering respectively did not work cor-
rectly. In these cases, the parameters can be adjusted un-
til all false positives are eliminated. Nonetheless, there are
cases, where MAPC detects the wrong category or localises
an object in the wrong area, whereas SAPC + AC-NMS or
WC+AC-NMS find the correct object and label it correctly.

8. MAPC explained step-by-step
In order to better understand how MAPC works, this

section will explain step-by-step how MAPC clusters are
formed throughout the iterative message passing updates
on one example. This example is also used to verify that
indeed spatially and semantically similar object detection
proposals are clustered together, and that the detections are
selected, which best represent these clusters. The most rel-
evant iterations of MAPC are depicted in Figure 19. All
detection proposals which are cluster representatives are
coloured green. All detection proposals which are not clus-
ter representatives but belong to one of the green represen-
tatives are depicted in red. All detection proposals which
belong to the background cluster are not depicted.

MAPC is an iterative algorithm, which follows the mes-
sage passing paradigm of [22] until convergence. As can
be seen in the first image of Figure 19, all detection pro-
posals are in the background cluster at the initial iteration
(Figure 19 (a)). In the following, messages are passed be-
tween all detection proposals. Based on the spatial semantic
similarity, detection proposals with similar classes and loca-
tions get clustered together and first clusters with represen-
tatives emerge (Figure 19 (b)). More clusters are formed in
this process (Figure 19 (c)). These clusters are grouped to-
gether until the similarity between each representative and
each detection proposal in the clusters is maximized (Fig-
ure 19 (d)). Once the setup of clusters with their respec-
tive representatives does not change anymore, the algorithm
converges (Figure 19 (e)). All detection proposals, except
the cluster representatives, get removed, which results in
the depicted object detections (Figure 19 (f)). It can be ob-
served that throughout the whole process cluster representa-
tives are mainly different types of chairs or cats. Thus, this
example shows that object detections are chosen as cluster
representatives that represent the spatial and semantic dis-
tribution of all detection proposals. Summarizing, MAPC
clusters semantically and spatially similar detection propos-
als, representing them by the object detections which maxi-
mize the similarity between all detection proposals and their
representatives.



Ground Truth WC+AC-NMS SAPC + AC-NMS MAPC (ours)

Figure 9. Examples where MAPC outperforms WC+AC-NMS and SAPC + AC-NMS on Microsoft COCO. Ground truth: blue, true
positives: green, false positives: red.



Ground Truth WC+AC-NMS SAPC + AC-NMS MAPC (ours)

Figure 10. Examples where MAPC better localises objects than WC+AC-NMS and SAPC + AC-NMS on Microsoft COCO. Ground truth:
blue, true positives: green, false positives: red.



Ground Truth WC+AC-NMS SAPC + AC-NMS MAPC (ours)

Figure 11. Examples where MAPC better classifies objects than WC+AC-NMS and SAPC + AC-NMS on Microsoft COCO. Ground truth:
blue, true positives: green, false positives: red.



Ground Truth WC+AC-NMS SAPC + AC-NMS MAPC (ours)

Figure 12. Examples where MAPC outperforms WC+AC-NMS and SAPC + AC-NMS on 1,825 ImageNet categories. Ground truth: blue,
true positives: green, false positives: red.



Ground Truth WC+AC-NMS SAPC + AC-NMS MAPC (ours)

Figure 13. Examples where MAPC better localises objects than WC+AC-NMS and SAPC + AC-NMS on 1,825 ImageNet classes. Ground
truth: blue, true positives: green, false positives: red.



Ground Truth WC+AC-NMS SAPC + AC-NMS MAPC (ours)

Figure 14. Examples where MAPC better classifies objects than WC+AC-NMS and SAPC + AC-NMS on 1,825 ImageNet classes. Ground
truth: blue, true positives: green, false positives: red.



WC+AC-NMS SAPC + AC-NMS MAPC (ours)

Figure 15. Examples where MAPC outperforms WC+AC-NMS and SAPC + AC-NMS on 7,404 ImageNet categories. No ground truth is
available. Detections: blue.



WC+AC-NMS SAPC + AC-NMS MAPC (ours)

Figure 16. Examples where MAPC better localises objects than WC+AC-NMS and SAPC + AC-NMS on 7,404 ImageNet classes. No
ground truth is available. Detections: blue.



WC+AC-NMS SAPC + AC-NMS MAPC (ours)

Figure 17. Examples where MAPC better classifies objects than WC+AC-NMS and SAPC + AC-NMS on 7,404 ImageNet classes. No
ground truth is available. Detections: blue.



Ground Truth WC+AC-NMS SAPC + AC-NMS MAPC (ours)

Figure 18. Examples where MAPC performs worse than WC+AC-NMS or SAPC + AC-NMS on Microsoft COCO. Ground truth: blue,
true positives: green, false positives: red.



START: All boxes are in the background
(a)

Representatives get clustered
(d)

First cluster representatives emerge
(b)

More cluster representatives emerge
(c)

Algorithm converges to two clusters
(e)

END: All boxes except representatives are 
removed

(f)

Figure 19. MAPC clustering process step-by-step. Cluster representatives: green bounding boxes. Cluster members: red bounding boxes.
All bounding boxes which belong to the background cluster are not depicted. The number of iterations is illustrated in the lower right
corner of each picture.


