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Abstract

In this paper we evaluate the quality of the activation

layers of a convolutional neural network (CNN) for the gen-

eration of object proposals. We generate hypotheses in a

sliding-window fashion over different activation layers and

show that the final convolutional layers can find the object

of interest with high recall but poor localization due to the

coarseness of the feature maps. Instead, the first layers of

the network can better localize the object of interest but with

a reduced recall. Based on this observation we design a

method for proposing object locations that is based on CNN

features and that combines the best of both worlds. We build

an inverse cascade that, going from the final to the initial

convolutional layers of the CNN, selects the most promising

object locations and refines their boxes in a coarse-to-fine

manner. The method is efficient, because i) it uses the same

features extracted for detection, ii) it aggregates features

using integral images, and iii) it avoids a dense evaluation

of the proposals due to the inverse coarse-to-fine cascade.

The method is also accurate; it outperforms most of the

previously proposed object proposals approaches and when

plugged into a CNN-based detector produces state-of-the-

art detection performance.

1. Introduction

In recent years, the paradigm of generating a reduced

set of object location hypotheses (or window candidates)

to be evaluated with a powerful classifier has become very

popular in object detection. Most of the recent state-of-

the-art detection methods [6, 12, 14, 25] are based on such

proposals. Using limited number of these proposals also

helps with weakly supervised learning, in particular learn-

ing to localize objects without any bounding box annota-

tions [7, 22]. This approach can be seen as a two-stage

cascade: First, selection of a reduced set of promising and
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Figure 1: DeepProposal object proposal framework. Our

method uses deep convolutional layers features in a

coarse-to-fine inverse cascading to obtain possible object

proposals in an image. Starting from dense proposal sam-

pling from the last convolutional layer (layer 5) we grad-

ually filter irrelevant boxes until the initial layers of the

net (layer 2). In the last stage we use contours extracted

from layer 2, to refine the proposals. Finally the generated

boxes can be used within an object detection pipeline.

class-independent hypotheses and second, a class-specific

classification of each hypothesis. This pipeline has the ad-

vantage that, similarly to sliding window, it casts the detec-

tion problem to a classification problem. However, in con-

trast to sliding window, more powerful and time consuming

detectors can be employed as the number of candidate win-

dows is reduced.

Methods for the generation of the window candidates are

based on two very different approaches. The first approach

uses bottom-up cues like image segmentation [3, 23], object

edges and contours [28] for window generation. The second

approach is based on top-down cues which learn to separate

correct object hypotheses from other possible window loca-

tions [1, 5]. So far, the latter strategy seems to have inferior

performance. In this paper we show that, with the proper

features, accurate and fast top-down window proposals can

be generated.

We consider for this task the convolutional neural net-

work (CNN) “feature maps” extracted from the intermedi-

ate convolutional layers of the Alexnet [18] trained on 1000

classes of ImageNet. In the first part of this work we present

a performance analysis of different CNN layers for gener-
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ating proposals. More specifically, similarly to BING [5],

we select a reduced set of window sizes and aspect ratios

and slide them on each possible location of the feature map

generated by a certain CNN layer. The relevance (or object-

ness) of the windows is learned using a linear classifier. As

the proposal generation procedure should be fast, we base

the feature aggregation for each candidate window on aver-

age pooling, which can be computed in constant time using

integral images [24]. From this analysis we see that there

is not a single best layer for candidate windows generation.

Instead we notice that deeper layers, having a more seman-

tic representation, perform very well in recalling the objects

with a reduced set of hypotheses. Unfortunately, as noticed

also for other tasks [13], they provide a poor localization of

the object due to their coarseness. In contrast, earlier lay-

ers are better in accurately localizing the object of interest,

but their recall is reduced as they do not represent strong

object cues. Thus, we conclude that, for a good window

candidate generation, we should leverage multiple layers of

the CNN. However, even with the very fast integral images

for the feature extraction, evaluating all window locations

at all feature layers is too expensive. Instead we propose a

method based on a cascade starting from the last convolu-

tional layer (layer 5) and going down with subsequent re-

finements until the initial layers of the net. As the flow of

the cascade is inverse to the flow of the feature computation

we call this approach an inverse cascade. Also, as we start

from a coarse spatial window resolution, and throughout the

layers we select and spatially refine the window hypotheses

until a reduced and spatially well localized set of hypothe-

ses, we call our method coarse-to-fine inverse cascade. An

overview of our approach is illustrated in Fig. 1. We eval-

uate the performance of the method in terms of recall vs.

number of proposals as well as in terms of recall vs. ob-

ject overlap. We show that in both evaluations the method

is better than the current state of the art, and computation-

ally very efficient. However, the best of the method comes

when it is associated with a CNN-based detector [11]. In

this case the approach does not need to compute any fea-

ture, because it reuses the same features already computed

by the CNN network for detection. Thus, we can execute

the full detection pipeline efficiently.

In the next section, we describe related work. Next, in

section 3, we analyze the quality of different CNN layers

for window proposal generation. Section 4 describes our

inverse coarse-to-fine cascade. In section 5 we compare

our method with the state-of-the-art, both in terms of object

proposal generation as in terms of object detection perfor-

mance. Section 6 concludes the paper.

2. Related work

Object proposal methods Object proposal generators

aim at obtaining an accurate object localization with few

object window hypotheses. These proposals can help ob-

ject detection in two ways: searching objects in fewer loca-

tions to reduce the detector running time and/or using more

sophisticated and expensive models to achieve better per-

formance.

Object proposal methods can be grouped mainly in two

approaches. The first measures objectness (i.e. how likely

an image window is an object) of densely sampled win-

dows [1, 5, 28]. Alexi et al. [1] propose an objectness mea-

sure based on image saliency and other cues like color and

edges. BING [5] presents a very fast proposal generator by

training a classifier on edge features, but it suffers from low

localization accuracy. Cracking BING [27] showed that the

BING classifier has minimal impact on locating objects and

without looking at the actual image a similar performance

can be obtained. Edgeboxes [28] uses structural edges of

[8], a state-of-the-art contour detector, to compute proposal

scores in a sliding window fashion without any parameter

learning. For a better localization it uses a final window re-

finement step. Like these methods, our approach densely

samples hypotheses in a sliding window fashion. However,

in contrast to them, we use a hierarchy of high-to-low level

features extracted from a deep CNN which has proven to be

effective for object detection [12, 25].

An alternative approach to sliding-window methods is

segmentation-based algorithms. This approach applies to

the multiple levels of segmentation and then merge the

generated segments in order to generate objects propos-

als [3, 4, 21, 23]. More specifically, selective search [23] hi-

erarchically aggregates multiple segmentations in a bottom-

up greedy manner without involving any learning proce-

dure, but based on low level cues, such as color and tex-

ture. Multiscale Combinatorial Grouping (MCG) [3] ex-

tracts multiscale segmentations and merges them by using

the edge strength in order to generate objects hypotheses.

Carreira et al. [4] propose to segment the object of inter-

est based on graphcut. It produces segments from randomly

generated seeds. As in selective search, each segment rep-

resents a proposal bounding box. Randomized Prim’s [21]

uses the same segmentation strategy as selective search.

However, instead of merging the segments in a greedy man-

ner it learns the probabilities for merging, and uses those to

speed up the procedure. Geodesic object proposals [17] are

based on classifiers that place seeds for a geodesic distance

transform on an over-segmented image.

3. CNN layers for object proposals

In this section we analyze the quality of the different lay-

ers of a CNN as features for window proposal generation.

3.1. Basic Approach

Sliding window Computing all possible boxes in a fea-

ture map of size N ×N is in the order of O(N4) and there-
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fore computationally unfeasible. Hence, similarly to [5] we

select a set of window sizes that best cover the training data

in terms of size and aspect ratio and use them in a slid-

ing window fashion over the selected CNN layer. This ap-

proach is much faster than evaluating all possible windows

and avoids to select windows with sizes or aspect ratios dif-

ferent from the training data and therefore probably false

positives.

For the selection of the window sizes, we start with a

pool of windows Wall in different sizes and aspect ratios

Wall : {ω|ω ∈ Z
2,Z = [1..20]}. It is important to select

a set of window sizes that gives high recall (with IoU>

0.5) and at the same time produces well localized proposals.

To this end, for each window size, we compute its recall

with different IoU thresholds and greedily pick one window

size at a time that maximizes
∑

α recall(IoU > α) over

all the objects in the training set. Using this procedure, 50
window sizes are selected for the sliding window procedure.

In Fig. 2(middle) we show the maximum recall that can be

obtained with the selected window sizes, which is an upper

bound of the achievable recall of our method.

Multiple scales Even though it is possible to cover all

possible objects using a sliding window on a single scale

of feature map, it is inefficient since by using a single scale

the stride is fixed and defined by the feature map resolu-

tion. For an efficient sliding window the window stride

should be proportional to the window size. Therefore, in

all the experiments we evaluate our set of windows on mul-

tiple scales. For each scale, we resize the image such that

min(w, h) = s where s ∈ {227, 300, 400, 600}. Note that

the first scale is the network original input size.

Pooling As the approach should be very fast we represent

a window by average pooling of the convolutional features

that are inside the window. As averaging is a linear opera-

tion, after computing the integral image, the features of any

proposal window can be extracted in a constant time. Let

f(x, y) be the specific channel of the feature map from a

certain CNN layer and F (x, y) its integral image. Then, av-

erage pooling avr of a box defined by the top left corner

a = (ax, ay) and the bottom right corner b = (bx, by) is

obtained as:

avr(a, b) =
F (bx, by)− F (ax, by)− F (bx, ay) + F (ax, ay)

(bx − ax)(by − ay)
.

(1)

Thus, after computing the integral image, the average pool-

ing of any box is obtained with a constant computational

cost that corresponds to summing 4 integral values and di-

viding by the area of the box.

Pyramid One of the main cues to detect general objects is

the object boundaries. Using an approach based on average

pooling can dilute the importance of the object boundaries

because it discards any geometrical information among fea-

tures. Therefore, to introduce more geometry to the descrip-

tion of a window we consider a spatial pyramid representa-

tion [19]. It consists of dividing the proposal window into a

number of same size sub-windows (e.g. 2×2), and for each

one build a different representation.

Bias on size and aspect ratio Objects tend to appear at

specific sizes and aspect ratios. Therefore we add in the

feature representation 3 additional dimensions (w, h,w ×
h) where w and h are the width and height of window ω

respectively. This can be considered as an explicit kernel

which lets the SVM learn which object sizes can be covered

in a specific scale. For the final descriptor, we normalize the

pooled features and size-related features separately with l2
norm.

Classifier We train a linear classifier for each scale sepa-

rately. For a specific scale, the classifier is trained with ran-

domly selecting 10 regions per image that overlap the anno-

tation bounding boxes more than 70%, as positive training

data and 50 regions per image that overlap less than 30%

with ground-truth objects as negative data. In all experi-

ments we use a linear SVM [10] because of its simplicity

and fast training. We did not test non-linear classifiers since

they would be too slow for our approach.

Non-maximal suppression The ranked window propos-

als in each scale are finally reduced through a non-maximal

suppression step. A window is removed if its IoU with a

higher scored window is more than threshold α. Varying

the threshold α is a trade-off between recall and accurate

localization. So, this threshold is directly related to the IoU

criteria that is used for evaluation (see sec 3.2). By tuning

α, it is possible to maximize recall at arbitrary IoU of β.

Particularly, in this work we define two variants of Deep-

Proposal namely DeepProposal50 and DeepProposal70 for

maximizing recall at IoU of β = 0.5 and β = 0.7 respec-

tively by fixing α to β + 0.05 (like [28]). In addition, to

aggregate boxes from different scales, we use another non-

maximal suppression, fixing α = β.

3.2. Evaluation

For evaluating the quality of proposals, like previous

works on object proposal generation, we focus on the PAS-

CAL VOC 2007 dataset [9]. PASCAL VOC 2007 includes

9,963 images with 20 object categories. 4,952 images are

used for testing, while the remaining ones are used for train-

ing. We use two different evaluation metrics; the first is De-

tection Rate (or Recall) vs. Number of proposals. This mea-

sure indicates how many objects can be recalled for a certain

number of proposals. We use Intersection over union (IoU)
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Figure 2: (Left) Recall versus number of proposals for IoU=0.7. (Middle) recall versus overlap for 1000 proposals for

different layers. (Right) Recall versus number of proposals at IoU=0.7 on layer 5 for different number of window sizes.

All are reported on the PASCAL VOC 2007 test set.
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Figure 3: (Left) Recall versus number of proposals in IoU=0.7 for different spatial pyramid levels (Middle) Recall versus

IoU for 1000 proposals for different stages of the cascade. (Right) Recall versus number of proposals in IoU=0.7 for the

different stages of the cascade. All are reported on the PASCAL VOC 2007 test set.

as evaluation criterion for measuring the quality of an object

proposal ω. IoU is defined as |ω∩b
ω∪b

| where b is the ground

truth object bounding box. Initially, an object was consid-

ered correctly recalled if at least one generated window had

an IoU of 0.5 with it, the same overlap used for evaluating

the detection performance of a method. Unfortunately this

measure is too lose because a detector, for working prop-

erly, needs also good alignment with the object [15]. Thus

we evaluate our method for an overlap of 0.7 as well. We

also evaluate recall vs. overlap for a fixed number of pro-

posals. As shown in [15], the average recall obtained from

this curve seems highly correlated with the performance of

an object detector.

In this section, we investigate the effect of different pa-

rameters of our method, namely the different convolutional

layers, and the number of used windows.

Layers We evaluate each convolutional layer (from 1 to 5)

of Alexnet [18] using the sliding window settings explained

above. We use Alexnet which is trained by Caffe toolbox

[16]. For sake of simplicity, we do not add spatial pyra-

mids on top of pooled features in this set of experiments.

As shown in Fig. 2 (left) the top convolutional layers of the

CNN perform better than the bottom ones. Also their com-

putational cost is lower as their representation is coarser.

Note this simple approach already performs on par or even

better than the best proposal generator approaches. For in-

stance, our approach at layer 3 for 100 proposals achieves

a recall of 52%, whereas selective search [23] obtains only

40%. This makes sense because the CNN features are spe-

cific for object classification and therefore can easily local-

ize the object of interest.

However, this is only one side of the coin. If we compare

the performance of the CNN layers for high overlap (see

Fig. 2 (middle)), we see that segmentation based methods

are much better [23, 3]. For instance the recall of selec-

tive search for 1000 proposals at 0.8 overlap is around 55%
whereas our at layer 3 is only 38%. This is due to the coarse-

ness of the CNN feature maps that do not allow a precise

bounding box alignment to the object. In contrast, lower

levels of the net have a much finer resolution that can help

to align better, but their encoding is not powerful enough to

properly localize objects. In Fig. 2 (middle) we also show

the maximum recall for different overlap that a certain layer

can attain with our selected sliding windows. In this case,

the first layers of the net can recall many more objects with
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Layer Feature map size Recall(#1000,0.5) Max(0.5) Recall(#1000,0.8) Max(0.8)

5 36× 52× 256 88% 97% 36% 70%

4 36× 52× 256 91% 97% 36% 79%

3 36× 52× 256 92% 97% 38% 79%

2 73× 105× 396 87% 98% 29% 86%

1 146× 210× 96 73% 99% 18% 89%

Table 1: Characteristics and performance of the CNN layers. Feature map size is reported for an image of size 600× 860.

Recall(#1000,β) is the recall of 1000 proposals for the overlap threshold β. Max(β) is the maximum recall for the overlap

threshold β using our selected window sizes set.

high overlap. This shows that a problem of the higher layers

of the CNN is the lack of a good spatial resolution.

In this sense we could try to change the structure of the

net in a way that the top layers still have high spatial reso-

lution. However, this would be computationally expensive

and, more importantly, it would not allow to reuse the same

features used for detection. Instead, in the next section we

propose an efficient way to leverage the expressiveness of

the top layers of the net together with the better spatial res-

olution of the bottom layers.

Number of Sliding Windows In Fig. 2 (right) we present

the effect of a varying number of window sizes in the slid-

ing window procedure for proposal generation. The win-

dows are selected based on the greedy algorithm explained

in Sec 3.1. As the number of used window sizes increases,

we obtain a better recall at a price of a higher cost. For the

next experiments we will set the number of windows to 50
because that is a good trade-off between speed and top per-

formance. The values in the figure refer to layer 5, however,

similar behavior has been observed for the other layers.

Spatial Pyramid We evaluate the effect of using a spa-

tial pyramid pooling in Fig. 3 (left). As expected, adding

geometry improves the quality of the proposals. Moving

from a pure average pooling representation (sp level=0) to

a 2 × 2 pyramid (sp level=1) gives a gain that varies be-

tween 2 and 4 precent in terms of recall, depending on the

number of proposals. Moving from the 2 × 2 pyramid to

the 4× 4 (sp level=2) gives a slightly lower gain. At 4× 4
the gain does not saturate yet. However, as we aim at a fast

approach, we also need to consider the computational cost,

which is linear in the number of spatial bins used. Thus, the

representation of a window with a 2 × 2 spatial pyramid is

5 times slower than a flat representation and the 4× 4 pyra-

mid is 21 times slower. Thus, for our final representation

we limit the use of the spatial pyramid to 2× 2.

4. Inverse Cascade

Even if the features used for our object proposals come

without any additional computational cost (because they are

needed for the detector), still a dense evaluation in a sliding

window fashion over the different layers would be too ex-

pensive. Instead here we leverage the structure of the CNN

layers to obtain a method that combines in an efficient way

the high recall of the top convolutional layers of a CNN,

with the fine localization provided at the bottom layers of

the net. In Table 1 we summarize the characteristics of each

CNN layer.

We start the search with the top convolutional layers of

the net, that have features well adapted to recognize objects,

but are coarse, and then move to the bottom layers, that use

simpler features but have a much finer spatial representation

of the image (see Fig. 1). As we go from a coarse to a

fine representation of the image and we follow a flow that

is exactly the opposite of how those features are computed

we call this approach coarse-to-fine inverse cascade. We

found that a cascade with 3 layers is an optimal trade-off

between complexity of the method and gain obtained from

the cascading strategy.

Stage 1: Dense Sliding Window on Layer 5 The first

stage of the cascade uses layer 5. As the feature repre-

sentation is coarse, we can afford a dense sliding window

approach with 50 different window sizes collected as ex-

plained in Sec. 3.1. Even though a pyramid representation

could further boost the performance, we do not use spatial

binning at this stage to not increase the computational cost.

We linearly map the window scores to [0, 1] such that the

lowest and highest scores are mapped to 0 and 1 respec-

tively. Afterwards we select the best N1 = 4000 windows

obtained from a non-maximum suppression algorithm with

threshold β + 0.05 in order to propagate them to the next

stage.

Stage 2: Re-scoring Selected Windows on Layer 3 In

this stage, as we use a reduced set of windows, we can af-

ford to spend more computation time per window. There-

fore we add more geometry in the representation by encod-

ing each window with a pyramid representation composed

of two levels: 1 × 1 and 2 × 2. The proposal scores from

this layer are again mapped to [0, 1]. The final score for each

proposal is obtained multiplying the scores of both stages.

Afterwards we apply a non-maximal suppression with over-

lap threshold β + 0.05 and select the 3000 best candidates.
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At the end of this stage, we aggregate the boxes from differ-

ent scales using non-maximal suppression with threshold β

and select the Ndesired = 1000 best for refinement.

Stage 3: Local Refinement on Layer 2 The main objec-

tive of this stage is to refine the localization obtained from

the previous stage of the cascade. For this stage the best

candidate is layer 2 because it has a higher resolution than

upper layers and contains low-level information which is

suitable for the refinement task. Specifically, we refine the

Ndesired windows received from the previous stage using

the procedure explained in [28]. To this end, we train a

structured random forest [8] on the second layer of the con-

volutional features to estimate contours similarly to Deep-

Contour [26]. After computing the edgemap, a greedy iter-

ative search tries to maximize the score of a proposal over

different locations and aspect ratios using the scoring func-

tion used in [28]. It is worth mentioning that since our con-

tour detector is based on the CNN-features, we again do not

need to extract any extra features for this step.

4.1. Evaluation

We discuss the performance of the inverse cascade stage

by stage in terms of both computational cost and perfor-

mance. A summary of the computational cost of each stage

is given in Table 2. The entire cascade has a computational

cost of 0.75 seconds, which is the composition of 0.3 , 0.25
and 0.2 for the first, second and third stage respectively.

Note the first stage is very fast because even if we use a

dense sliding window approach, with the integral image and

without any pyramid level the cost of evaluating each win-

dow is very low.

As shown in Fig. 3 (middle and right), the second stage

is complementary to the first and employed with a 2 × 2
pyramid improves the recall of the cascade by 5%. How-

ever, this boost is valid only up to an overlap of 0.75. After

this point the contribution of the second stage is negligible.

This is due to the coarse resolution of layer 5 and 3 that do

not allow a precise overlap of the candidate windows with

the ground truth object bounding boxes. We found that, for

our task, layer 3 and 4 have a very similar performance (Re-

call@1000 is 79% in both cases) and adding the latter in

the pipeline could not help in improving performance (Re-

call@1000 is still 79%).

As shown in [15], for a good detection performance, not

only the recall is important, but also a good alignment of

the candidates as well. At stage 3 we improve the align-

ment without performing any further selection of windows;

instead we refine the proposals generated by the previous

stages by aligning them to the edges of the object. In our

experiments for contour detection we observed that layer

1 of CNN did not provide as good performance as layer 2

(0.61 vs. 0.72 AP on BSDS dataset [2]) so we choose sec-

ond layer of network for this task. Fig. 3 (middle) shows

this indeed improves the recall for high IoU values (above

0.7).

5. Experiments

In this section we compare the quality of the proposed

DeepProposal with state-of-the-art object proposals. In sec-

tion 5.1 we compare the quality of our DeepProposal in

terms of recall and localization accuracy for PASCAL VOC

2007. Then, in section 5.2 detection results are reported for

PASCAL VOC 2007 [9] using Fast-RCNN [11]. Finally in

section 5.3, we evaluate the generalization performance of

DeepProposal on unseen categories.

5.1. Comparison with state­of­the­art

In this section, we compare our DeepProposal against

well-known, state-of-the-art object proposal generators.

Fig. 4 and Fig. 6 show the recall with changing number of

the object proposals or IoU threshold respectively. These

curves reveal how DeepProposal performs on varying IoU.

From Fig. 4, we can conclude that, even with a small num-

ber of windows, DeepProposal can achieve higher recall for

any IoU threshold. Methods like BING [5] and objectness

[1] are providing high recall only at IoU = 0.5 because they

are tuned for IoU of 0.5.

When comparing results over a variety of IoU thresh-

olds (Fig. 6), we can see DeepProposal achieves competi-

tive or higher recall and produces large enough number of

proposal boxes. In table 3 we evaluate the quality of pro-

posals generated by all methods in a different way. Achiev-

ing 75% recall with IoU value 0.7 would be possible with

540 windows of DeepProposal, 800 of Edge boxes, 1400
using selective search proposals and 3000 of Randomized

Prim’s windows [21]. Other methods are not comparable

with these values of recall and IoU threshold.

Figure 6 shows the curves related to recall over changing

amount of IoU with 100 and 1000 proposals. Again, Deep-

Proposal obtains good results in this test as well. The hand

crafted segmentation based methods like selective search

and MCG have good recall rate at higher IoU values. In-

stead DeepProposal perform better in the range of IoU =

[0.6, 0.8] which is desirable in practice and playing an im-

portant role in object detectors performance [15].

Figure 6 (right) shows average recall(AR) versus num-

ber of proposals for different methods. For a specific num-

ber of proposals, AR measures the proposal quality across

IoU of [0.5, 1]. Hosang et al. [15] shows that AR corre-

lates well with detection performance. Using this criteria,

DeepProposal are on par or better than other methods with

700 or fewer boxes but with more boxes, selective search

and Edgeboxes performs better.

The runtime tests for our proposed method and the oth-

ers are available in Table 3. Since our approach is using the

2583



Stage Layer input candidates Method Pyramid NMS Total time per image

1 5 ∼80.000 Slid. Window 1 Yes 0.30s

2 3 4.000 Re-scoring 1 + 2× 2 Yes 0.25s

3 2 1.000 Refinement - No 0.20s

Table 2: Characteristics of the stages of our inverse cascade (NMS: non maximum suppression).
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Figure 4: Recall versus number of proposals on the PASCAL VOC 2007 test set

for (left) IoU threshold 0.5 and (right)IoU threshold 0.7.
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Figure 5: Detection results on PAS-

CAL VOC 2007.

CNN features which are used by state-of-the-art object de-

tectors like RCNN [12] and SppNet [14] and does not need

any extra cues and features, we can consider just running

time of our algorithm without CNN extraction time1. Deep-

Proposal takes 0.75 second on CPU and 0.4 second on a

regular GPU which is just a bit slower than Edgeboxes. The

fastest method is BING which has the lowest accuracy in

any evaluation. The other methods which are segmentation

based, take considerably more time.

5.2. Object detection Performance

In the previous experiments we evaluate our proposal

generator with different metrics and show that it is among

the best methods in all of them. However, we believe the

best way to evaluate the usefulness of the generated propos-

als is a direct evaluation of the detector performance par-

ticularly that recently it has become clear (see [15]) that an

object proposal method with high recall at 0.5 IoU does not

automatically lead to a good detector.

The most performing detectors at the momet are:

RCNN [12], SppNet [14] and fast-RCNN [11]. All are

based on CNN features and use object proposals for detect-

ing the object of interest. The first uses the window propos-

als to crop the corresponding regions of the image, compute

the CNN features and obtain a classification score for each

region. This approach is slow and takes around 10 sec on a

high-end GPU and more than 50 sec on the GPU used for

our experiments. SppNet and fast-RCNN instead compute

the CNN features only once, on the entire image. Then, the

1If features have to be (re)computed, that adds 0.7 sec. extra computa-

tion time on a low-end GPU.

proposals are used to select the sub-regions of the feature

maps from where to pull the features. This allows this ap-

proach to be much faster. With these approaches then, we

can also reuse the CNN features needed for the generation

of the proposal so that the complete detection pipeline can

be executed without any pre-computed component roughly

in 1 second on our GPU.

We compare the detection performance of our DeepPro-

posal70 with selective search. Both methods are evaluated

training a detector using the corresponding proposals, so

that detector and proposal generator are matched and the

comparison is fair. The training is conducted using fast-

RCNN on PASCAL VOC 2007. In Fig. 5 we report the de-

tector mean average precision on the PASCAL VOC 2007

test data for different number of used proposals. As ex-

pected the difference between the two approaches is quite

relevant and it appears mostly in a regime with low num-

ber of proposals. For instance, when using 100 proposals

selective search obtains a mean average precision of 28.1,

while our proposals already reach 53.2. Also, our proposals

reach almost the top performance with only 300 bounding

boxes, while selective search needs more than 2000 boxes to

reach its best performance. This is an important factor when

seeking for maximum speed. We believe that this different

behavior is due to the fact that our method is supervised to

select good object candidates, whereas selective search is

not.

Using SppNet fine-tuned for selective search, we obtain

a mAP of 52.2 with DeepProposal which is lower than 54.5

of the selective search. Similar behavior has been reported

for other methods since the model is trained on selective
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Figure 6: Recall versus IoU threshold on the PASCAL VOC 2007 test set for (left) 100 proposal windows and (middle)1000

proposal windows. (right) Average Recall between [0.5,1] IoU on the PASCAL VOC 2007 test set

AUC N@25% N@50% N@75% Recall Time

BING[5] .19 292 - - 29% .2s

Objectness[1] .26 27 - - 39% 3s

Rand. Prim’s[21] .30 42 349 3023 71% 1s

Selective Search[23] .34 28 199 1434 79% 10s

Edge boxes 70[28] .42 12 108 800 84% .3s

MCG[3] .42 9 81 1363 78% 30s

DeepProposal70 .49 5 50 540 82% .75s

Table 3: Our method compared to other methods for IoU threshold of 0.7. AUC is the area under recall vs. IoU curve for

1000 proposals. N@25%, N@50%, N@75% are the number of proposals needed to achieve a recall of 25%, 50% and 75%

respectively. For reporting Recall, at most 2000 boxes are used. The runtimes for other method were obtained from [15].

search [15].

Another advantage of our approach, being based on

learning, is that it can focus on specific classes. In this

sense we train a special version of DeepProposal for cars,

where the positive training samples are collected only from

car instances. In this setting the performance of the car de-

tector improves from 57.6% to 60.4% using SppNet. Thus,

in this scenario, our proposals can also be use to improve a

detector performance.

5.3. Generalization to unseen categories

We evaluate the generalization capability of our ap-

proach on Microsoft COCO dataset [20]. The evaluation

of the approach has been done by learning either from the

20 classes from VOC07 or from 5, 10, 20, 40, 80 randomly

sampled from COCO. When the DeepProposal is trained

by only 5 classes, the recall at 0.5 IoU with 1000 proposals

is slightly reduced (56%). With more classes, either using

VOC07 or COCO, recall remains stable around 59% - 60%.

This shows that the method can generalize over all classes.

We believe this is due to the simplicity of the classifier (av-

erage pooling on CNN features) that avoids overfitting spe-

cific classes. Note that in this case our recall is slightly

lower than the Selective Search with 1000 proposals (63%).

This is probably due to the presence of very small objects

that our system is not tuned for. These results on COCO

demonstrate that our proposed method is capable to gener-

alize learnt objectness beyond the training categories.

6. Conclusion

DeepProposal, the method that is proposed in this pa-

per is a way to produce object proposal windows, based on

convolutional neural network activation features as used in

state-of-the-art object detectors. We provide an algorithm

to use one kind of feature for both localization and detec-

tion, which makes the object detectors needless of any extra

features or different method to extract possible locations of

objects. By employing an efficient coarse to fine cascade

on multiple layers of CNN features, we have a framework

of objectness measurement that acts strongly on objects lo-

cations and our method can find reasonable accurate pro-

posals, fast. Source code will be made available online.
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