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Abstract

Today, there are two major paradigms for vision-based
autonomous driving systems: mediated perception ap-
proaches that parse an entire scene to make a driving de-
cision, and behavior reflex approaches that directly map an
input image to a driving action by a regressor. In this paper,
we propose a third paradigm: a direct perception approach
to estimate the affordance for driving. We propose to map
an input image to a small number of key perception indi-
cators that directly relate to the affordance of a road/traffic
state for driving. Our representation provides a set of com-
pact yet complete descriptions of the scene to enable a sim-
ple controller to drive autonomously. Falling in between the
two extremes of mediated perception and behavior reflex,
we argue that our direct perception representation provides
the right level of abstraction. To demonstrate this, we train
a deep Convolutional Neural Network using recording from
12 hours of human driving in a video game and show that
our model can work well to drive a car in a very diverse
set of virtual environments. We also train a model for car
distance estimation on the KITTI dataset. Results show that
our direct perception approach can generalize well to real
driving images. Source code and data are available on our
project website.

1. Introduction
In the past decade, significant progress has been made in

autonomous driving. To date, most of these systems can be
categorized into two major paradigms: mediated perception
approaches and behavior reflex approaches.

Mediated perception approaches [19] involve multiple
sub-components for recognizing driving-relevant objects,
such as lanes, traffic signs, traffic lights, cars, pedestrians,
etc. [6]. The recognition results are then combined into a
consistent world representation of the car’s immediate sur-
roundings (Figure 1). To control the car, an AI-based en-
gine will take all of this information into account before
making each decision. Since only a small portion of the
detected objects are indeed relevant to driving decisions,
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Figure 1: Three paradigms for autonomous driving.

this level of total scene understanding may add unneces-
sary complexity to an already difficult task. Unlike other
robotic tasks, driving a car only requires manipulating the
direction and the speed. This final output space resides in
a very low dimension, while mediated perception computes
a high-dimensional world representation, possibly includ-
ing redundant information. Instead of detecting a bound-
ing box of a car and then using the bounding box to es-
timate the distance to the car, why not simply predict the
distance to a car directly? After all, the individual sub-tasks
involved in mediated perception are themselves considered
open research questions in computer vision. Although me-
diated perception encompasses the current state-of-the-art
approaches for autonomous driving, most of these systems
have to rely on laser range finders, GPS, radar and very ac-
curate maps of the environment to reliably parse objects in
a scene. Requiring solutions to many open challenges for
general scene understanding in order to solve the simpler
car-controlling problem unnecessarily increases the com-
plexity and the cost of a system.

Behavior reflex approaches construct a direct mapping
from the sensory input to a driving action. This idea dates
back to the late 1980s when [17, 18] used a neural network
to construct a direct mapping from an image to steering an-
gles. To learn the model, a human drives the car along the
road while the system records the images and steering an-
gles as the training data. Although this idea is very elegant,
it can struggle to deal with traffic and complicated driving
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(a) one-lane (b) two-lane, left (c) two-lane, right (d) three-lane (e) inner lane mark. (f) boundary lane mark.

Figure 2: Six examples of driving scenarios from an ego-centric perspective. The lanes monitored for making driving
decisions are marked with light gray.

maneuvers for several reasons. Firstly, with other cars on
the road, even when the input images are similar, different
human drivers may make completely different decisions,
which results in an ill-posed problem that is confusing when
training a regressor. For example, with a car directly ahead,
one may choose to follow the car, to pass the car from the
left, or to pass the car from the right. When all these scenar-
ios exist in the training data, a machine learning model will
have difficulty deciding what to do given almost the same
images. Secondly, the decision-making for behavior reflex
is too low-level. The direct mapping cannot see a bigger
picture of the situation. For example, from the model’s per-
spective, passing a car and switching back to a lane are just a
sequence of very low level decisions for turning the steering
wheel slightly in one direction and then in the other direc-
tion for some period of time. This level of abstraction fails
to capture what is really going on, and it increases the diffi-
culty of the task unnecessarily. Finally, because the input to
the model is the whole image, the learning algorithm must
determine which parts of the image are relevant. However,
the level of supervision to train a behavior reflex model, i.e.
the steering angle, may be too weak to force the algorithm
to learn this critical information.

We desire a representation that directly predicts the af-
fordance for driving actions, instead of visually parsing the
entire scene or blindly mapping an image to steering angles.
In this paper, we propose a direct perception approach [7]
for autonomous driving – a third paradigm that falls in be-
tween mediated perception and behavior reflex. We propose
to learn a mapping from an image to several meaningful af-
fordance indicators of the road situation, including the angle
of the car relative to the road, the distance to the lane mark-
ings, and the distance to cars in the current and adjacent
lanes. With this compact but meaningful affordance repre-
sentation as perception output, we demonstrate that a very
simple controller can then make driving decisions at a high
level and drive the car smoothly.

Our model is built upon the state-of-the-art deep Convo-
lutional Neural Network (ConvNet) framework to automat-
ically learn image features for estimating affordance related
to autonomous driving. To build our training set, we ask
a human driver to play a car racing video game TORCS
for 12 hours while recording the screenshots and the corre-

sponding labels. Together with the simple controller that we
design, our model can make meaningful predictions for af-
fordance indicators and autonomously drive a car in differ-
ent tracks of the video game, under different traffic condi-
tions and lane configurations. At the same time, it enjoys a
much simpler structure than the typical mediated perception
approach. Testing our system on car-mounted smartphone
videos and the KITTI dataset [6] demonstrates good real-
world perception as well. Our direct perception approach
provides a compact, task-specific affordance description for
scene understanding in autonomous driving.

1.1. Related work

Most autonomous driving systems from industry today
are based on mediated perception approaches. In computer
vision, researchers have studied each task separately [6].
Car detection and lane detection are two key elements of
an autonomous driving system. Typical algorithms output
bounding boxes on detected cars [4, 13] and splines on de-
tected lane markings [1]. However, these bounding boxes
and splines are not the direct affordance information we use
for driving. Thus, a conversion is necessary which may re-
sult in extra noise. Typical lane detection algorithms such as
the one proposed in [1] suffer from false detections. Struc-
tures with rigid boundaries, such as highway guardrails or
asphalt surface cracks, can be mis-recognized as lane mark-
ings. Even with good lane detection results, critical infor-
mation for car localization may be missing. For instance,
given that only two lane markings are usually detected reli-
ably, it can be difficult to determine if a car is driving on the
left lane or the right lane of a two-lane road.

To integrate different sources into a consistent world
representation, [5, 22] proposed a probabilistic generative
model that takes various detection results as inputs and out-
puts the layout of the intersection and traffic details.

For behavior reflex approaches, [17, 18] are the seminal
works that use a neural network to map images directly to
steering angles. More recently, [11] train a large recurrent
neural network using a reinforcement learning approach.
The network’s function is the same as [17, 18], mapping
the image directly to the steering angles, with the objective
to keep the car on track. Similarly to us, they use the video
game TORCS for training and testing.
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Figure 3: Illustration of our affordance representation. A lane changing maneuver needs to traverse the “in lane system”
and the “on marking system”. (f) shows the designated overlapping area used to enable smooth transitions.

In terms of deep learning for autonomous driving, [14]
is a successful example of ConvNets-based behavior re-
flex approach. The authors propose an off-road driving
robot DAVE that learns a mapping from images to a human
driver’s steering angles. After training, the robot demon-
strates capability for obstacle avoidance. [9] proposes an
off-road driving robot with self-supervised learning ability
for long-range vision. In their system, a multi-layer con-
volutional network is used to classify an image segment as
a traversable area or not. For depth map estimation, Deep-
Flow [20] uses ConvNets to achieve very good results for
driving scene images on the KITTI dataset [6]. For im-
age features, deep learning also demonstrates significant
improvement [12, 8, 3] over hand-crafted features, such as
GIST [16]. In our experiments, we will make a compari-
son between learned ConvNet features and GIST for direct
perception in driving scenarios.

2. Learning affordance for driving perception
To efficiently implement and test our approach, we use

the open source driving game TORCS (The Open Racing
Car Simulator) [21], which is widely used for AI research.
From the game engine, we can collect critical indicators for
driving, e.g. speed of the host car, the host car’s relative po-
sition to the road’s central line, the distance to the preced-
ing cars. In the training phase, we manually drive a “label
collecting car” in the game to collect screenshots (first per-
son driving view) and the corresponding ground truth val-
ues of the selected affordance indicators. This data is stored
and used to train a model to estimate affordance in a su-
pervised learning manner. In the testing phase, at each time
step, the trained model takes a driving scene image from the
game and estimates the affordance indicators for driving.
A driving controller processes the indicators and computes
the steering and acceleration/brake commands. The driving
commands are then sent back to the game to drive the host
car. Ground truth labels are also collected during the test-
ing phase to evaluate the system’s performance. In both the
training and testing phase, traffic is configured by putting a
number of pre-programmed AI cars on road.

2.1. Mapping from an image to affordance

We use a state-of-the-art deep learning ConvNet as our
direct perception model to map an image to the affordance
indicators. In this paper, we focus on highway driving with
multiple lanes. From an ego-centric point of view, the host
car only needs to concern the traffic in its current lane and
the two adjacent (left/right) lanes when making decisions.
Therefore, we only need to model these three lanes. We
train a single ConvNet to handle three lane configurations
together: a road of one lane, two lanes, or three lanes.
Shown in Figure 2 are the typical cases we are dealing with.
Occasionally the car has to drive on lane markings, and in
such situations only the lanes on each side of the lane mark-
ing need to be monitored, as shown in Figure 2e and 2f.

Highway driving actions can be categorized into two ma-
jor types: 1) following the lane center line, and 2) changing
lanes or slowing down to avoid collisions with the preceding
cars. To support these actions, we define our system to have
two sets of representations under two coordinate systems:
“in lane system” and “on marking system”. To achieve two
major functions, lane perception and car perception, we pro-
pose three types of indicators to represent driving situations:
heading angle, the distance to the nearby lane markings, and
the distance to the preceding cars. In total, we propose 13
affordance indicators as our driving scene representation,
illustrated in Figure 3. A complete list of the affordance in-
dicators is enumerated in Figure 4. They are the output of
the ConvNet as our affordance estimation and the input of
the driving controller.

The “in lane system” and “on marking system” are acti-
vated under different conditions. To have a smooth transi-
tion, we define an overlapping area, where both systems are
active. The layout is shown in Figure 3f.

Except for heading angle, all the indicators may output
an inactive state. There are two cases in which a indicator
will be inactive: 1) when the car is driving in either the “in
lane system” or “on marking system” and the other system
is deactivated, then all the indicators belonging to that sys-
tem are inactive. 2) when the car is driving on boundary
lanes (left most or right most lane), and there is either no



always:
1) angle: angle between the car’s heading and the tangent of the road

“in lane system”, when driving in the lane:
2) toMarking LL: distance to the left lane marking of the left lane
3) toMarking ML: distance to the left lane marking of the current lane
4) toMarking MR: distance to the right lane marking of the current lane
5) toMarking RR: distance to the right lane marking of the right lane
6) dist LL: distance to the preceding car in the left lane
7) dist MM: distance to the preceding car in the current lane
8) dist RR: distance to the preceding car in the right lane

“on marking system”, when driving on the lane marking:
9) toMarking L: distance to the left lane marking
10) toMarking M: distance to the central lane marking
11) toMarking R: distance to the right lane marking
12) dist L: distance to the preceding car in the left lane
13) dist R: distance to the preceding car in the right lane

Figure 4: Complete list of affordance indicators in our
direct perception representation.

left lane or no right lane, then the indicators corresponding
to the non-existing adjacent lane are inactive. According to
the indicators’ value and active/inactive state, the host car
can be accurately localized on the road.

2.2. Mapping from affordance to action

The steering control is computed using the car’s position
and pose, and the goal is to minimize the gap between the
car’s current position and the center line of the lane. Defin-
ing dist center as the distance to the center line of the lane,
we have:

steerCmd = C∗(angle−dist center/road width) (1)

where C is a coefficient that varies under different driving
conditions, and angle ∈ [−π, π]. When the car changes
lanes, the center line switches from the current lane to the
objective lane. The pseudocode describing the logic of the
driving controller is listed in Figure 5.

At each time step, the system computes desired speed.
A controller makes the actual speed follow the
desired speed by controlling the acceleration/brake.
The baseline desired speed is 72 km/h. If the car is
turning, a desired speed drop is computed according to
the past few steering angles. If there is a preceding car
in close range and a slow down decision is made, the
desired speed is also determined by the distance to the
preceding car. To achieve car-following behavior in such
situations, we implement the optimal velocity car-following
model [15] as:

v(t) = vmax(1− exp(− c

vmax
dist(t)− d)) (2)

where dist(t) is the distance to the preceding car, vmax

is the largest allowable speed, c and d are coefficients to
be calibrated. With this implementation, the host car can
achieve stable and smooth car-following under a wide range
of speeds and even make a full stop if necessary.

while (in autonomous driving mode)
ConvNet outputs affordance indicators
check availability of both the left and right lanes
if (approaching the preceding car in the same lane)

if (left lane exists and available and lane changing allowable)
left lane changing decision made

else if (right lane exists and available and lane changing allowable)
right lane changing decision made

else
slow down decision made

if (normal driving)
center line= center line of current lane

else if (left/right lane changing)
center line= center line of objective lane

compute steering command
compute desired speed
compute acceleration/brake command based on desired speed

Figure 5: Controller logic.

3. Implementation
Our direct perception ConvNet is built upon Caffe [10],

and we use the standard AlexNet architecture [12]. There
are 5 convolutional layers followed by 4 fully connected
layers with output dimensions of 4096, 4096, 256, and 13,
respectively. Euclidian loss is used as the loss function. Be-
cause the 13 affordance indicators have various ranges, we
normalize them to the range of [0.1, 0.9].

We select 7 tracks and 22 traffic cars in TORCS, shown
in Figure 6 and Figure 7, to generate the training set. We
replace the original road surface textures in TORCS with
over 30 customized asphalt textures of various lane config-
urations and asphalt darkness levels. We also program dif-
ferent driving behaviors for the traffic cars to create differ-
ent traffic patterns. We manually drive a car on each track
multiple times to collect training data. While driving, the
screenshots are simultaneously down-sampled to 280×210
and stored in a database together with the ground truth la-
bels. This data collection process can be easily automated
by using an AI car. Yet, when driving manually, we can
intentionally create extreme driving conditions (e.g. off the
road, collide with other cars) to collect more effective train-
ing samples, which makes the ConvNet more powerful and
significantly reduces the training time.

In total, we collect 484,815 images for training. The
training procedure is similar to training an AlexNet on Ima-
geNet data. The differences are: the input image has a reso-
lution of 280× 210 and is no longer a square image. We do
not use any crops or a mirrored version. We train our model
from scratch. We choose an initial learning rate of 0.01, and
each mini-batch consists of 64 images randomly selected
from the training samples. After 140,000 iterations, we stop
the training process.

In the testing phase, when our system drives a car in
TORCS, the only information it accesses is the front facing
image and the speed of the car. Right after the host car over-
takes a car in its left/right lane, it cannot judge whether it is



Figure 6: Examples of the 7 tracks used for training.
Each track is customized to the configuration of one-lane,
two-lane, and three-lane with multiple asphalt darkness lev-
els. The rest of the tracks are used in the testing set.

Figure 7: Examples of the 22 cars used in the training
set. The rest of the cars are used in the testing set.

safe to move to that lane, simply because the system can-
not see things behind. To solve this problem, we make an
assumption that the host car is faster than the traffic. There-
fore if sufficient time has passed since its overtaking (in-
dicated by a timer), it is safe to change to that lane. The
control frequency in our system for TORCS is 10Hz, which
is sufficient for driving below 80 km/h. A schematic of the
system is shown in Figure 8.

4. TORCS evaluation
We first evaluate our direct perception model on the

TORCS driving game. Within the game, the ConvNet out-
put can be visualized and used by the controller to drive
the host car. To measure the estimation accuracy of the af-
fordance indicators, we construct a testing set consisting of
tracks and cars not included in the training set.

In the aerial TORCS visualization (Figure 10a, right),
we treat the host car as the reference object. As its vertical
position is fixed, it moves horizontally with a heading com-
puted from angle. Traffic cars only move vertically. We do
not visualize the curvature of the road, so the road ahead is
always represented as a straight line. Both the estimation
(empty box) and the ground truth (solid box) are displayed.

4.1. Qualitative assessment

Our system can drive very well in TORCS without any
collision. In some lane changing scenarios, the controller
may slightly overshoot, but it quickly recovers to the de-
sired position of the objective lane’s center. As seen in the
TORCS visualization, the lane perception module is pretty
accurate, and the car perception module is reliable up to 30
meters away. In the range of 30 meters to 60 meters, the
ConvNet output becomes noisier. In a 280 × 210 image,
when the traffic car is over 30 meter away, it actually ap-
pears as a very tiny spot, which makes it very challenging
for the network to estimate the distance. However, because
the speed of the host car does not exceed 72 km/h in our
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Figure 8: System architecture. The ConvNet processes
the TORCS image and estimates 13 indicators for driving.
Based on the indicators and the current speed of the car, a
controller computes the driving commands which will be
sent back to TORCS to drive the host car in it.

tests, reliable car perception within 30 meters can guaran-
tee satisfactory control quality in the game.

To maintain smooth driving, our system can tolerate
moderate error in the indicator estimations. The car is a
continuous system, and the controller is constantly correct-
ing its position. Even with some scattered erroneous estima-
tions, the car can still drive smoothly without any collisions.

4.2. Comparison with baselines

To quantitatively evaluate the performance of the
TORCS-based direct perception ConvNet, we compare it
with three baseline methods. We refer to our model as
“ConvNet full” in the following comparisons.

1) Behavior reflex ConvNet: The method directly maps
an image to steering using a ConvNet. We train this model
on the driving game TORCS using two settings: (1) The
training samples (over 60,000 images) are all collected
while driving on an empty track; the task is to follow the
lane. (2) The training samples (over 80,000 images) are
collected while driving in traffic; the task is to follow the
lane, avoid collisions by switching lanes, and overtake slow
preceding cars. The video in our project website shows the
typical performance. For (1), the behavior reflex system
can easily follow empty tracks. For (2), when testing on the
same track where the training set is collected, the trained
system demonstrates some capability at avoiding collisions
by turning left or right. However, the trajectory is erratic.
The behavior is far different from a normal human driver
and is unpredictable - the host car collides with the preced-
ing cars frequently.

2) Mediated perception (lane detection): We run the
Caltech lane detector [1] on TORCS images. Because only
two lanes can be reliably detected, we map the coordinates
of spline anchor points of the top two detected lane mark-
ings to the lane-based affordance indicators. We train a sys-
tem composed of 8 Support Vector Regression (SVR) and 6
Support Vector Classification (SVC) models (using libsvm
[2]) to implement the mapping (a necessary step for medi-
ated perception approaches). The system layout is similar to
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Figure 9: GIST baseline. Procedure of mapping GIST de-
scriptor to the 13 affordance indicators for driving using
SVR and SVC.

the GIST-based system (next section) illustrated in Figure 9,
but without car perception.

Because the Caltech lane detector is a relatively weak
baseline, to make the task simpler, we create a special train-
ing set and testing set. Both the training set (2430 samples)
and testing set (2533 samples) are collected from the same
track (not among the 7 training tracks for ConvNet) without
traffic, and in a finer image resolution of 640×480. We dis-
cover that, even when trained and tested on the same track,
the Caltech lane detector based system still performs worse
than our model. We define our error metric as Mean Abso-
lute Error (MAE) between the affordance estimations and
ground truth distances. A comparison of the errors for the
two systems is shown in Table 1.

3) Direct perception with GIST: We compare the hand-
crafted GIST descriptor with the deep features learned by
the ConvNet’s convolutional layers in our model. A set of
13 SVR and 6 SVC models are trained to convert the GIST
feature to the 13 affordance indicators defined in our sys-
tem. The procedure is illustrated in Figure 9. The GIST
descriptor partitions the image into 4 × 4 segments. Be-
cause the ground area represented by the lower 2 × 4 seg-
ments may be more relevant to driving, we try two different
settings in our experiments: (1) convert the whole GIST
descriptor, and (2) convert the lower 2 × 4 segments of
GIST descriptor. We refer to these two baselines as “GIST
whole” and “GIST half” respectively.

Due to the constraints of libsvm, training with the full
dataset of 484,815 samples is prohibitively expensive. We
instead use a subset of the training set containing 86,564
samples for training. Samples in the sub training set are col-
lected on two training tracks with two-lane configurations.
To make a fair comparison, we train another ConvNet on
the same sub training set for 80,000 iterations (referred to as
“ConvNet sub”). The testing set is collected by manually
driving a car on three different testing tracks with two-lane
configurations and traffic. It has 8,639 samples.

The results are shown in Table 2. The dist (car distance)
errors are computed when the ground truth cars lie within

(a) Autonomous driving in TORCS (b) Testing on real video

Figure 10: Testing the TORCS-based system. The esti-
mation is shown as an empty box, while the ground truth is
indicated by a solid box. For testing on real videos, without
the ground truth, we can only show the estimation.

Parameter angle to LL to ML to MR to RR to L to M to R
Caltech lane 0.048 1.673 1.179 1.084 1.220 1.113 1.060 0.895
ConvNet full 0.025 0.260 0.197 0.179 0.239 0.291 0.262 0.231

Table 1: Mean Absolute Error (angle is in radians, the rest
are in meters) on the testing set for the Caltech lane detector
baseline.

[2, 50] meters ahead. Below two meters, cars in the adjacent
lanes are not visually present in the image.

Results in Table 2 show that the ConvNet-based system
works considerably better than the GIST-based system. By
comparing “ConvNet sub” and “ConvNet full”, it is clear
that more training data is very helpful for increasing the ac-
curacy of the ConvNet-based direct perception system.

5. Testing on real-world data
5.1. Smartphone video

We test our TORCS-based direct perception ConvNet
on real driving videos taken by a smartphone camera. Al-
though trained and tested in two different domains, our sys-
tem still demonstrates reasonably good performance. The
lane perception module works particularly well. The algo-
rithm is able to determine the correct lane configuration, lo-
calize the car in the correct lane, and recognize lane chang-
ing transitions. The car perception module is slightly nois-
ier, probably because the computer graphics model of cars
in TORCS look quite different from the real ones. Please
refer to the video on our project website for the result. A
screenshot of the system running on real video is shown in
Figure 10b. Since we do not have ground truth measure-
ments, only the estimations are visualized.

5.2. Car distance estimation on the KITTI dataset

To quantitatively analyze how the direct perception ap-
proach works on real images, we train a different ConvNet
on the KITTI dataset [6]. The task is estimating the distance
to other cars ahead.

The KITTI dataset contains over 40,000 stereo image
pairs taken by a car driving through European urban areas.
Each stereo pair is accompanied by a Velodyne LiDAR 3D
point cloud file. Around 12,000 stereo pairs come with of-



Parameter angle to LL to ML to MR to RR dist LL dist MM dist RR to L to M to R dist L dist R
GIST whole 0.051 1.033 0.596 0.598 1.140 18.561 13.081 20.542 1.201 1.310 1.462 30.164 30.138
GIST half 0.055 1.052 0.547 0.544 1.238 17.643 12.749 22.229 1.156 1.377 1.549 29.484 31.394
ConvNet sub 0.043 0.253 0.180 0.193 0.289 6.168 8.608 9.839 0.345 0.336 0.345 12.681 14.782
ConvNet full 0.033 0.188 0.155 0.159 0.183 5.085 4.738 7.983 0.316 0.308 0.294 8.784 10.740

Table 2: Mean Absolute Error (angle is in radians, the rest are in meters) on the testing set for the GIST baseline.

ficial 3D labels for the positions of nearby cars, so we can
easily extract the distance to other cars in the image. The
settings for the KITTI-based ConvNet are altered from the
previous TORCS-based ConvNet. In most KITTI images,
there is no lane marking at all, so we cannot localize cars
by the lane in which they are driving. For each image, we
define a 2D coordinate system on the zero height plane: the
origin is the center of the host car, the y axis is along the
host car’s heading, while the x axis is pointing to the right
of the host car (Figure 11a). We ask the ConvNet to esti-
mate the coordinate (x, y) of the cars “ahead” of the host
car in this system.

There can be many cars in a typical KITTI image, but
only those closest to the host car are critical for driving de-
cisions. So it is not necessary to detect all the cars. We
partition the space in front of the host car into three areas
according to x coordinate: 1) central area, x ∈ [−1.6, 1.6]
meters, where cars are directly in front of the host car. 2)
left area, x ∈ [−12, 1.6) meters, where cars are to the left
of the host car. 3) right area, x ∈ (1.6, 12] meters, where
cars are to the right of the host car. We are not concerned
with cars outside this range. We train the ConvNet to es-
timate the coordinate (x, y) of the closest car in each area
(Figure 11a). Thus, this ConvNet has 6 outputs.

Due to the low resolution of input images, cars far away
can hardly be discovered by the ConvNet. We adopt a two-
ConvNet structure. The close range ConvNet covers 2 to 25
meters (in the y coordinate) ahead, and its input is the entire
KITTI image resized to 497×150 resolution. The far range
ConvNet covers 15 to 55 meters ahead, and its input is a
cropped KITTI image covering the central 497 × 150 area.
The final distance estimation is a combination of the two
ConvNets’ outputs. We build our training samples mostly
from the KITTI officially labeled images, with some addi-
tional samples we labeled ourselves. The final number is
around 14,000 stereo pairs. This is still insufficient to suc-
cessfully train a ConvNet. We augment the dataset by us-
ing both the left camera and right camera images, mirroring
all the images, and adding some negative samples that do
not contain any car. Our final training set contains 61,894
images. Both ConvNets are trained on this set for 50,000
iterations. We label another 2,200 images as our testing set,
on which we compute the numerical estimation error.

5.3. Comparison with DPM-based baseline

We compare the performance of our KITTI-based Con-
vNet with the state-of-the-art DPM car detector (a mediated
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Figure 11: Car distance estimation on the KITTI dataset.
(a) The coordinate system is defined relative to the host car.
We partition the space into three areas, and the objective
is to estimate the coordinate of the closest car in each area.
(b) We compare our direct perception approach to the DPM-
based mediated perception. The central crop of the KITTI
image (indicated by the yellow box in the upper left image
and shown in the lower left image) is sent to the far range
ConvNet. The bounding boxes output by DPM are shown
in red, as are its distance projections in the LiDAR visual-
ization (right). The ConvNet outputs and the ground truth
are represented by green and black boxes, respectively.

perception approach). The DPM car detector is provided by
[5] and is optimized for the KITTI dataset. We run the de-
tector on the full resolution images and convert the bound-
ing boxes to distance measurements by projecting the cen-
tral point of the lower edge to the ground plane (zero height)
using the calibrated camera model. The projection is very
accurate given that the ground plane is flat, which holds for
most KITTI images. DPM can detect multiple cars in the
image, and we select the closest ones (one on the host car’s
left, one on its right, and one directly in front of it) to com-
pute the estimation error. Since the images are taken while
the host car is driving, many images contain closest cars
that only partially appear in the left lower corner or right
lower corner. DPM cannot detect these partial cars, while
the ConvNet can better handle such situations. To make the
comparison fair, we only count errors when the closest cars
fully appear in the image. The error is computed when the
traffic cars show up within 50 meters ahead (in the y coor-
dinate). When there is no car present, the ground truth is set
as 50 meters. Thus, if either model has a false positive, it
will be penalized. The Mean Absolute Error (MAE) for the
y and x coordinate, and the Euclidian distance d between
the estimation and the ground truth of the car position are
shown in Table 3. A screenshot of the system is shown in
Figure 11b.



Figure 12: Activation patterns of neurons. The neurons’
activation patterns display strong correlations with the host
car’s heading, the location of lane markings, and traffic cars.

Parameter y x d y\FP x\FP d\FP
ConvNet 5.832 1.565 6.299 4.332 1.097 4.669
DPM + Proj. 5.824 1.502 6.271 5.000 1.214 5.331

Table 3: Mean Absolute Error (in meters) on the KITTI
testing set. Errors are computed by both penalizing (column
1∼3) and not penalizing false positives (column 4∼6).

From Table 3, we observe that our direct perception Con-
vNet has similar performance to the state-of-the-art medi-
ated perception baseline. Due to the cluttered driving scene
of the KITTI dataset, and the limited number of training
samples, our ConvNet has slightly more false positives than
the DPM baseline on some testing samples. If we do not
penalize false positives, the ConvNet has much lower error
than the DPM baseline, which means its direct distance esti-
mations of true cars are more accurate than the DPM-based
approach. From our experience, the false positive problem
can be reduced by simply including more training samples.
Note that the DPM baseline requires a flat ground plane
for projection. If the host car is driving on some uneven
road (e.g. hills), the projection will introduce a consider-
able amount of error. We also try building SVR regression
models mapping the DPM bounding box output to the dis-
tance measurements. But the regressors turn out to be far
less accurate than the projection.

6. Visualization

To understand how the ConvNet neurons respond to the
input images, we can visualize the activation patterns. On
an image dataset of 21,100 samples, for each of the 4,096
neurons in the first fully connected layer, we pick the top
100 images from the dataset that activate the neuron the
most and average them to get an activation pattern for this
neuron. In this way, we gain an idea of what this neuron
learned from training. Figure 12 shows several randomly
selected averaged images. We observe that the neurons’ ac-
tivation patterns have strong correlation with the host car’s
heading, the location of the lane markings and the traffic

Figure 13: Response map of our KITTI-based (Row 1-3)
and TORCS-based (Row 4-5) ConvNets. The ConvNets
have strong responses over nearby cars and lane markings.

cars. Thus we believe the ConvNet has developed task-
specific features for driving.

For a particular convolutional layer of the ConvNet, a
response map can be generated by displaying the highest
value among all the filter responses at each pixel. Because
location information of objects in the original input image
is preserved in the response map, we can learn where the
salient regions of the image are for the ConvNet when mak-
ing estimations for the affordance indicators. We show the
response maps of the 4th convolutional layer of the close
range ConvNet on a sample of KITTI testing images in Fig-
ure 13. We observe that the ConvNet has strong responses
over the locations of nearby cars, which indicates that it
learns to “look” at these cars when estimating the distances.
We also show some response maps of our TORCS-based
ConvNet in the same figure. This ConvNet has very strong
responses over the locations of lane markings.

7. Conclusions

In this paper, we propose a novel autonomous driving
paradigm based on direct perception. Our representation
leverages a deep ConvNet architecture to estimate the af-
fordance for driving actions instead of parsing entire scenes
(mediated perception approaches), or blindly mapping an
image directly to driving commands (behavior reflex ap-
proaches). Experiments show that our approach can per-
form well in both virtual and real environments.
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