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Abstract

In this paper, we propose a novel geometric model fit-
ting method, called Mode-Seeking on Hypergraphs (MSH),
to deal with multi-structure data even in the presence of se-
vere outliers. The proposed method formulates geometric
model fitting as a mode seeking problem on a hypergraph in
which vertices represent model hypotheses and hyperedges
denote data points. MSH intuitively detects model instances
by a simple and effective mode seeking algorithm. In addi-
tion to the mode seeking algorithm, MSH includes a sim-
ilarity measure between vertices on the hypergraph and a
“weight-aware sampling” technique. The proposed method
not only alleviates sensitivity to the data distribution, but
also is scalable to large scale problems. Experimental re-
sults further demonstrate that the proposed method has sig-
nificant superiority over the state-of-the-art fitting methods
on both synthetic data and real images.

1. Introduction

Geometric model fitting is a challenging research prob-
lem for a variety of applications in computer vision, such as
optical flow calculation, motion segmentation and homog-
raphy/fundamental matrix estimation. Given that data may
contain outliers, the task of geometric model fitting is to
robustly estimate the number and the parameters of model
instances in the data.

A number of robust geometric model fitting methods
(e.g., [2, 5, 6, 10, 16, 19]) have been proposed to work on
the task. One of the most popular robust fitting methods is
RANSAC [5] due to its efficiency and simplicity. However,
RANSAC is sensitive to the inlier scale and is originally
designed to fit single-structure data. During the past few
decades, many fitting methods have been proposed to deal
with multi-structure data, such as KF [2], PEARL [6], AK-
SWH [19], J-linkage [16] and T-linkage [10].

Recently, some hypergraph based methods, e.g., [7, 9,
12, 13, 20], have been proposed for model fitting. Com-
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Figure 1. Overview of the proposed algorithm: (a) and (b) An im-
age pair with SIFT features. (c) Hypergraph modelling in which
each vertex represents a model hypothesis and each hyperedge de-
notes a data point. (d) Weighted vertices (plotted using the first
two parameters of the corresponding model hypotheses). (e) Mode
seeking by searching for “authority peaks” on the hypergraph. (f)
Data points segmented according to the detected modes.

pared with a simple graph, a hypergraph involves high
order similarities instead of pairwise similarities used on
the graph and it can describe more complex relationships
among modes of interest. For example, Liu and Yan [9]
proposed to use a random consensus graph (RCG) to fit
structures in data. Purkait et al. [13] proposed to use large
hyperedges for face clustering and motion segmentation.

However, current fitting methods are still far from being
practical to deal with real-world problems. Data cluster-
ing based fitting methods (e.g., J-linkage and KF), are often
sensitive to unbalanced data (i.e., the numbers of inliers be-
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longing to different model instances in data are significantly
different), which is quite common in practical applications.
In addition, these methods have difficulties in dealing with
data points near the intersection of two model instances.
Hypergraph based fitting methods (e.g., [9, 12]) often need
to project from a hypergraph to an induced graph, which
may cause information-loss and thus impact the accuracy
of the methods. Other robust fitting methods (e.g., AK-
SWH [19], T-linkage [10], HS [20], etc.) also have some
specific problems, such as: some model hypotheses corre-
sponding to model instances in data may be removed during
the selection of significant hypotheses in AKSWH, and the
computational cost of T-linkage is typically high due to the
agglomerative clustering procedure, and HS also has a com-
plexity problem due to the expansion and dropping strategy.

In this paper, we propose a simple and effective mode-
seeking fitting algorithm on hypergraphs to fit and seg-
ment multi-structure data in the parameter space. The pro-
posed method (MSH), starts from hypergraph modelling, in
which a hypergraph is constructed based on inlier scale es-
timation for each dataset. Compared with the hypergraph
constructed in the previous methods [7, 9, 12, 13], where
a hyperedge is constrained to connect with a fixed num-
ber of vertices, the hyperedges constructed in this paper
can connect with varying number of vertices. We measure
the weight of each vertex by using the non-parametric ker-
nel density estimate technique [18]. Based on the hyper-
graph, a novel mode seeking algorithm is proposed to in-
tuitively detect modes by searching for “authority peaks”,
and we also sample vertices by using a “weight-aware sam-
pling” technique to improve the effectiveness of the pro-
posed method. Finally, we estimate the number and the
parameters of model instances in data according to the de-
tected modes. The main steps are shown in Fig. 1.

The proposed method (MSH) has three main advantages
over previous model fitting methods. First, the constructed
hypergraphs can effectively represent the complex relation-
ships among model hypotheses and data points, and it can
be directly used for geometric model fitting. Second, MSH
deals with geometric model fitting in the parameter space to
alleviate sensitivity to the data distribution, even in the pres-
ence of seriously unbalanced data. Third, MSH implements
mode seeking by analyzing the similarity between vertices
on the hypergraphs, which is scalable to large scale prob-
lems. We demonstrate that MSH is a highly robust method
for geometric model fitting by conducting extensive experi-
mental evaluations and comparisons in Sec. 5.

2. Hypergraphs and Weighting Score
In this study, the geometric model fitting problem is for-

mulated as a mode-seeking problem on a hypergraph. In
Sec. 2.1, we express the relationships among model hy-
potheses and data points with the hypergraph, in which a

vertex represents a model hypothesis and a hyperedge de-
notes a data point. We also assign each vertex a weighting
score based on the non-parametric kernel density estimate
technique [18] in Sec. 2.2.

2.1. Hypergraphs

A hypergraph G = (V, E ,W) consists of vertices V , hy-
peredges E , and weightsW . Each vertex v is weighted by
a weighting score w(v). When v ∈ e, a hyperedge e is inci-
dent with a vertex v. Then an incident matrix H, satisfying
h(v, e) = 1 if v ∈ e and 0 otherwise, is used to repre-
sent the relationships between vertices and hyperedges in
the hypergraph G. For a vertex v ∈ V , its degree is defined
by δ(v) =

∑
e∈E h(v, e).

Now we describe the detailed procedure of hypergraph
construction as follows: Given a set of data points X =
{xi}ni=1, we first sample a set of minimal subsets from X.
A minimal subset contains the minimum number of data
points which is necessary to estimate a model hypothesis
(e.g., 2 for line fitting and 4 for homography fitting). Then
we generate a set of model hypotheses using the minimal
subsets and estimate their inlier scales. In this paper, we
use IKOSE [19] as the inlier scale estimator due to its effi-
ciency. After that, we connect each vertex (i.e., a model hy-
pothesis) to the corresponding hyperedges (i.e., the inliers
of the model hypothesis). Therefore, the complex relation-
ships among model hypotheses and data points can be effec-
tively characterized on by the hypergraph. In this manner,
we can directly perform mode-seeking on the hypergraph
for model fitting.

2.2. Weighting Score

We weight a model hypothesis (i.e., a vertex v) and as-
sign a weighting score for the model hypothesis using the
density estimate technique through the following equation
which is similar to [19]

π(v) =
1

n

∑
e∈E

Ψ(re(v)/b(v))

ŝ(v)b(v)
, (1)

where Ψ(·) is a kernel function (such as the Epanechnikov
kernel); re(v) is a residual measured with the Sampon Dis-
tance [17] from the model hypothesis (v) to a data point
(i.e., a hyperedge e); n and ŝ(v) are the number of data
points and the inlier scale of the model hypothesis, respec-
tively; b(v) is a bandwidth.

Since the “good” model hypotheses corresponding to the
model instances in data have significantly more data points
with small residuals than the other “bad” model hypotheses,
the weighting scores of the vertices corresponding to the
“good” model hypotheses should be higher than those of
the other vertices [19]. However, weighting a vertex based
on residuals may be not robust to outliers, especially for
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extreme outliers. To weaken the impacts of outliers, we
only consider the residuals of the corresponding inlier data
points belonging to the model hypotheses. Thus, based on
a hypergraph G, Eq. (1) can be rewritten as

w(v) =
1

δ(v)

∑
e∈E

h(v, e)Ψ(re(v)/b(v))

ŝ(v)b(v)
, (2)

where δ(v) is the degree of vertex v and h(v, e) is an entry
of the incident matrix H belonging to the hypergraph G.

Based on the weighting score, authority peaks on a hy-
pergraph can be defined as follows:

Definition 1 Authority peaks are the vertices that have
the local maximum values of weighting scores on the hyper-
graph.

The vertices that have the local maximum values of
weighting scores correspond to the modes on a hypergraph,
i.e., the model instances in data. This definition is consistent
with the conventional concept of modes, which are defined
as the significant peaks of the density distribution in the pa-
rameter space [3, 4, 22].

3. Mode-Seeking on Hypergraphs
In this section, we perform mode seeking by analyzing

the similarity between vertices on a hypergraph. We de-
velop an effective similarity measure between vertices in
Sec. 3.1 and propose a mode seeking algorithm in Sec. 3.2.
In addition, we further propose a weight-aware sampling
(WAS) technique in Sec. 3.3 to improve the effectiveness of
the proposed algorithm.

3.1. Similarity Measure

An effective similarity measure is proposed to describe
the relationships between any two vertices in a hypergraph
based on the Tanimoto distance [15] (referred to as T-
distance), which measures the degree of overlap between
two hyperedge sets connected by two vertices.

Similar to [10], we first define the preference function of
a vertex vp as

Cvp
=

{
exp{− re(vp)

ŝ(vp) }, if re(vp) ≤ Eŝ(vp),

0, otherwise,
(3)

where E is a threshold (E is usually set to 2.5 to include
98% inliers of a Gaussian distribution). Note that the pref-
erence function of each vertex can be effectively expressed
by Eq. (3), which takes advantages of the information of
residuals of data points.

Considering a hypergraph, we can rewrite Eq. (3) as

Cvp = h(vp, e) exp{−re(vp)

ŝ(vp)
},∀e ∈ E . (4)

Then the T-distance between two vertices vp and vq
based on the corresponding preference functions is given
by [15]

T (Cvp
, Cvq ) = 1−

〈Cvp , Cvq 〉
‖Cvp‖2 + ‖Cvq‖2 − 〈Cvp , Cvq 〉

, (5)

where 〈·, ·〉 and ‖ · ‖ indicate the standard inner product and
the corresponding induced norm, respectively.

Although [10] also employs the T-distance as a similarity
measure, our use of T-distance has significant differences:
1) We define the preference function of a hyperedge set (i.e.,
the inlier data points) with respect to a vertex (i.e., a model
hypothesis), while the authors in [10] define the preference
function of model hypotheses with respect to a data point.
We analyze the preference of a model hypothesis instead
of a data point to alleviates sensitivity to the data distribu-
tion. 2) The T-distance in the proposed method is calculated
without using iterative processes. In contrast, the T-distance
in [10] is iteratively calculated until an agglomerative clus-
tering algorithm segments all data points. Therefore, the
T-distance is used much more efficiently in this study than
that in [10].

3.2. The Mode Seeking Algorithm

Given the vertices of a hypergraph G, we aim to seek
modes by searching for authority peaks which correspond to
model instances in data. Inspired by [14], where each clus-
ter center is characterized by two attributes (i.e., a higher
local density than their neighbors and a relatively large dis-
tance from any point that has higher densities to itself),
we search for authority peaks, which are the vertices that
are not only surrounded by their neighbors with lower lo-
cal weighting scores, but also significantly dissimilar to any
other vertices that have higher local weighting scores.

More specifically, based on the similarity measure and
weighting scores, we compute the Minimum T-Distance
(MTD) ηvmin of a vertex v in G as follows:

ηvmin = min
vi∈Ω(v)

{T (Cv, Cvi)}, (6)

where Ω(v) = {vi|vi ∈ V, w(vi) > w(v)}. That is, Ω(v)
contains all vertices with higher weighing scores than w(v)
inG. For the vertex vmaxwith the highest weighting score,
we set ηvmax

min = max{T (Cvmax, Cvi)}vi∈V .
Note that a vertex with the local maximum value of

weighting score, has a larger MTD value than the other ver-
tices in G. Therefore, we propose to seek modes by search-
ing for the authority peaks, i.e., the vertices with signifi-
cantly large MTD values.

We further illustrate the proposed mode seeking algo-
rithm by using a simple example on the “Star5” dataset.
Fig. 2(a) shows the top 10 largest MTD values belonging to
the corresponding vertices (sorted in the descending order).
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Figure 2. Line fitting on the “Star5” dataset. (a) The top 10 largest
MTD values of the corresponding vertices. (b) The five lines cor-
responding to the vertices with the top 5 largest MTD values.

We can see that the top 5 largest MTD values are signifi-
cantly larger than those of the other vertices, and the lines
corresponding to the vertices with the top 5 largest MTD
values are shown in Fig. 2(b).

The proposed mode seeking algorithm works well for
line fitting. This is because the distribution of model hy-
potheses generated for line fitting is dense in the parameter
space. However, the distribution of model hypotheses gen-
erated for higher order model fitting applications, such as
homography based segmentation or two-view based motion
segmentation, is often sparse, in which a few bad model
hypotheses (with low weighting score values) may show
anomalously large MTD values as good model hypotheses
(with high weighting score values). This problem will cause
the proposed algorithm to seek modes ineffectively.

3.3. The Weight-Aware Sampling Technique

To solve the above problem, we further propose a simple
technique called the weight-aware sampling (WAS) tech-
nique, which samples vertices according to the weighting
scores on a hypergraph G. In WAS, the probability of sam-
pling a vertex v is computed as w(v)/

∑
v∈V w(v). As

mentioned before, vertices corresponding to good model
hypotheses often have significantly higher weighting score
values than the other vertices. Thus WAS tends to sample
good model hypotheses while rejecting bad model hypothe-
ses. Therefore, for a few bad model hypotheses that may
also show anomalously large MTD values, the probability
of the vertices corresponding to these bad model hypothe-
ses are sampled is quite low due to their low weighting score
values.

To improve the effectiveness of the proposed mode seek-
ing algorithm (as analyzed above), we use WAS to sample
vertices ofG to approximateG, obtaining a new hypergraph
G∗. Then we directly perform mode seeking by searching
for authority peaks on G∗ instead of G. In this manner,
we can find that a vertex, which is regarded as an author-
ity peak, not only has a high weighting score but also has a
large MTD value.

To show the influence of WAS on the performance of
the proposed mode seeking algorithm, we evaluate the al-
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Figure 3. Homography based segmentation on the “Neem” [21].
(a) and (b) The top 10 largest MTD values of the corresponding
vertices obtained by the proposed mode seeking algorithm based
on G and G∗, respectively. (c) and (d) The segmentation results
obtained by the proposed MSH method based on G and G∗, re-
spectively.

gorithm for fitting multiple homographies based on the two
hypergraphs, i.e., G and G∗, as shown in Fig. 3. We show
the top 10 largest MTD values (sorted in descending order)
in Fig. 3(a) and Fig. 3(b) which correspond to G and G∗,
respectively. We can see that the proposed mode seeking
algorithm based on G has difficulty to distinguish the three
significant model hypotheses from the MTD values. In con-
trast, the proposed mode seeking algorithm based on G∗

can effectively find the three significant model hypotheses
by seeking the largest drop in the MTD values. As shown in
Fig. 3(c) and 3(d), the segmentation results further show the
influence of WAS on the proposed MHS method–leading to
more accurate results.

4. The Complete Method
Based on the ingredients described in the previous sec-

tions, we present the complete fitting method in this section.
We summarize the proposed Mode Seeking on Hypergraphs
(MSH) method for geometric model fitting in Algorithm 1.

The proposed MSH seeks modes by directly search-
ing hypergraphs for authority peaks in the parameter space
without requiring iterative processes. The computational
complexity of MSH is mainly governed by Step 3 for com-
puting the T-distance between pairs of vertices. Therefore,
the total complexity approximately amounts to O(M2),
where M is the number of sampling vertices in G∗ and M
is empirically about 10% ∼ 20% of vertices in G.

5. Experiments
In this section, we compare the proposed MSH with

several state-of-the-art model fitting methods, including
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Figure 4. Examples for line fitting in the 3D space. 1st to 4th rows respectively fit three, four, five and six lines. The corresponding outlier
percentages are respectively 86%, 88%, 89% and 90%. The inlier scale is set to 1.0. (a) The original data with 400 outliers. Each line
includes 100 inliers. (b) to (f) The results obtained by KF, RCG, AKSWH, T-linkage and MSH, respectively.

Table 1. The fitting errors (in percentage) for line fitting on four datasets (the best results are boldfaced)

3 lines 4 lines 5 lines 6 lines
Std. Avg. Min. Std. Avg. Min. Std. Avg. Min. Std. Avg. Min.

KF 0.00 1.76 1.71 0.03 18.25 13.25 0.03 15.27 11.42 0.03 33.71 27.10
RCG 0.00 0.33 0.29 0.02 4.13 1.63 0.07 18.00 2.44 0.05 15.69 5.00

AKSWH 0.00 0.34 0.29 0.02 3.00 2.88 0.05 3.78 2.67 0.03 4.57 2.70
T-linkage 0.00 1.87 1.71 0.05 31.40 23.75 0.05 17.29 11.89 0.03 16.26 11.70

MSH 0.00 0.16 0.14 0.01 1.29 0.88 0.00 1.76 1.44 0.01 3.34 2.30

KF [2], RCG [9], AKSWH [19], and T-linkage [10], on both
synthetic data and real images. We choose these representa-
tive methods because KF is a data clustering based method,
RCG is a hypergraph based method, and AKSWH is a pa-
rameter space based method. These fitting methods are re-
lated to the proposed method (recall that MSH seeks modes
on hypergraphs and fits multi-structure data in the parame-
ter space). In addition, we also choose T-linkage due to its
good performance.

To be fair, we first generate a set of model hypotheses
by using the proximity sampling [8, 16] for all the com-
peting algorithms in each experiment. Then the compet-
ing methods perform model fitting based on the same set
of model hypotheses. We generate a number of model hy-
potheses as [19], i.e., there are 5, 000 model hypotheses
generated for line fitting (Sec. 5.1 and Sec. 5.2.1) and circle
fitting (Sec. 5.2.2), 10, 000 model hypotheses generated for
homography based segmentation (Sec. 5.2.3), and 20, 000
model hypotheses generated for two-view based motion

segmentation (Sec. 5.2.4). We have optimized the param-
eters of all the competing fitting methods on each dataset
for the best performance. The fitting error is computed
as [10, 11].

5.1. Synthetic Data

We evaluate the performance of the five fitting methods
on line fitting using four challenging synthetic data in the
3D space (see Fig. 4). We repeat the experiment 50 times
and report the standard, the average and the best results of
the fitting errors obtained by the competing methods, re-
spectively, in Table 1. We also show the corresponding av-
erage fitting results obtained by all the competing methods
in Fig. 4(b) to Fig. 4(f).

From Fig. 4 and Table 1, we can see that: (1) For the
“three lines” data, the three lines are completely separa-
ble in the 3D space, and the five fitting methods succeed
in fitting all the three lines. However, MSH achieves the
best performance among the five fitting methods. (2) For
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(a) Datasets (b) KF (c) RCG (d) AKSWH (e) T-linkage (f) MSH

Figure 5. Examples for line fitting. First (“tracks”) and second (“pyramid”) rows respectively fit seven and four lines. (a) The original data.
(b) to (f) The results obtained by KF, RCG, AKSWH, T-linkage and MSH, respectively.

(a) Datasets (b) KF (c) RCG (d) AKSWH (e) T-linkage (f) MSH

Figure 6. Examples for circle fitting. First (“coins”) and second (“bowls”) rows respectively fit five and four circles. (a) The original data.
(b) to (f) The results obtained by KF, RCG, AKSWH, T-linkage and MSH, respectively.

Algorithm 1 The mode seeking on hypergraphs method for
geometric model fitting
Input: Data points X , the K value for IKOSE

1: Construct a hypergraph G and compute the weighting
score for each vertex (described in Sec. 2).

2: Sample the vertices in G by WAS to generate a new
hypergraph G∗ (described in Sec. 3.3).

3: Compute the minimum T-distance ηvmin for each sam-
pled vertex v by Eq. (6).

4: Sort the vertices in G∗ according to their MTD values
satisfying ηv1min ≥ η

v2
min ≥ · · · .

5: Find the vertex vi whose MTD value (ηvimin) has the
largest drop from ηvimin to ηvi+1

min . Then reject the ver-
tices whose values of ηvmin are smaller than ηvimin.

6: Derive the inliers/outliers dichotomy from the hyper-
graph G∗ and the remaining vertices (modes).

Output: The modes (model instances) and the hyperedges
(inliers) connected by the modes.

the “four lines” data, the four lines intersect at one point.
The five fitting methods succeed in estimating the number
of the lines in data, but the data clustering based methods
(i.e., KF and T-linkage), can not effectively deal with the
data points near the intersection. In contrast, RCG, AK-
SWH and MSH correctly fit the four lines with lower fit-
ting errors, while MSH achieves the lowest fitting error. (3)

For the “five lines” data, there exist two intersections. As
mentioned before, the data points near the intersections are
not correctly segmented by both KF and T-linkage, which
causes these two methods to obtain high fitting errors. RCG
correctly fits four lines but wrongly fits one. This is be-
cause the dense subgraph representing a potential structure
in data is not effectively detected by RCG. In contrast, the
parameter space based methods (i.e., AKSWH and MSH)
are not very sensitive to data distribution. Both AKSWH
and MSH correctly fit all the five lines with low fitting er-
rors. (4) For the “six lines” data, RCG correctly fits five
of the six lines, and T-linkage wrongly estimates the num-
ber of lines in data. KF achieves the worst performance
among the five fitting methods. In contrast, both AKSWH
and MSH correctly fit the six lines. This challenging dataset
further shows the superiority of the parameter space based
methods over the other types of fitting methods.

5.2. Real Images

5.2.1 Line Fitting

We evaluate the performance of all the competing fitting
methods using real images for line fitting (see Fig. 5). For
the “tracks” image, which includes seven lines, there are
6, 704 edge points detected by the Canny operator [1]. As
shown in Fig. 5, AKSWH, T-linkage and MSH correctly
fit all the seven lines. RCG correctly estimates the num-
ber of the lines but some lines are overlapped and two lines
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(a) Elderhalla (b) Elderhallb (c) Hartley (d) Library (e) Sene (f) Neem (g) Johnsona (h) Johnsonb

Figure 7. Homography based segmentation on eight image pairs. The first and second rows are the original images with the ground truth
results and the segmentation results obtained by MSH, respectively. We do not show the results obtained by the other competing methods
due to the space limit.

Table 2. The fitting errors (in percentage) for homography based segmentation on eight dataset (the best results are boldfaced)

KF RCG AKSWH T-linkage MSH
Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min.

Elderhalla 12.15 7.22 10.37 9.81 0.98 0.93 1.17 0.93 0.93 0.93
Elderhallb 34.51 34.51 10.12 7.45 13.06 11.34 12.63 11.76 3.37 1.96

Hartley 15.31 11.24 4.88 2.81 4.06 1.87 2.50 1.87 2.81 1.56
Library 13.19 10.84 9.77 9.77 5.79 1.40 4.65 1.29 2.79 1.40

Sene 12.08 8.01 10.00 6.10 2.00 0.00 0.44 0.00 0.24 0.00
Neem 10.25 8.37 11.17 9.50 5.56 1.66 3.82 1.24 2.90 1.24

Johnsona 25.74 12.43 23.06 10.22 8.55 2.41 4.03 2.68 3.73 1.88
Johnsonb 48.32 42.84 41.45 22.93 26.49 22.65 18.39 12.40 16.75 9.86

are missed because the potential structures in data are not
correctly estimated during detecting the dense subgraphs.
KF only correctly fits three out of the seven lines because
many inliers belonging to the other four lines are wrongly
removed.

For the “pyramid” image, which includes four lines with
a large number of outliers, and there are 5, 576 edge points
detected by the Canny operator. KF, T-linkage and MSH
succeed in fitting all the four lines, but KF wrongly esti-
mates the number of lines. In contrast, both RCG and AK-
SWH only correctly fit three out of the four lines although
RCG successfully estimates the number of lines in data.
AKSWH can detect four lines after clustering hypotheses,
but two lines are wrongly fused during the fusion step in
AKSWH.

5.2.2 Circle Fitting

We evaluate the performance of the five fitting methods us-
ing real images for circle fitting (see Fig. 6). For the “coins”
image, which includes five circles with similar number of
inliers, there are 4, 595 edge points detected by the Canny
operator. As shown in Fig. 6, AKSWH, T-linkage and MSH
correctly fit all the five circles. In contrast, two model hy-
potheses estimated by KF overlap to one circle, and RCG
correctly fits only four out of the five circles.

For the “bowls” image, which includes four circles with

obviously unbalanced numbers of inliers, 1, 689 edge points
are detected by the Canny operator. We can see that two es-
timated circles by both KF and RCG overlap in the image.
AKSWH correctly fits three circles but misses one circle
because most of model hypotheses generated for the circle
with a small number of inlier data points are removed when
AKSWH selects significant model hypotheses. In contrast,
both T-linkage and MSH succeed in fitting all the four cir-
cles in this challenging case.

5.2.3 Homography Based Segmentation

We also evaluate the performance of the five fitting meth-
ods using the eight real image pairs from the AdelaideRMF
dataset [21] for homography based segmentation. We re-
peat each experiment 50 times, and show the average and
the minimum fitting errors in Table 2. The fitting results
obtained by MSH are also shown in Fig. 7.

From Fig. 7 and Table 2, we can see that MSH obtains
accurate results, achieving the lowest average fitting errors
in 7 out of 8 data and the lowest minimum fitting errors in
all the eight data. Both AKSWH and T-linkage succeed in
fitting 7 out of 8 data with low fitting errors. In contrast,
KF and RCG achieve worse results. We note that many out-
liers are clustered with inliers when KF uses the proximity

http://cs.adelaide.edu.au/˜hwong/doku.php?id=
data

4327

http://cs.adelaide.edu.au/~hwong/doku.php?id=data
http://cs.adelaide.edu.au/~hwong/doku.php?id=data


(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8. Two-view based motion segmentation on eight image pairs, namely (a) Cubechips, (b) Cubetoy, (c) Breadcube, (d) Gamebiscuit,
(e) Breadtoycar, (f) Biscuitbookbox, (g) Breadcubechips and (h) Cubebreadtoychips. The first and second rows are the original images
with the ground truth results and the segmentation results obtained by MSH, respectively.

Table 3. The fitting errors (in percentage) for two-view based motion segmentation on eight dataset (the best results are boldfaced)

KF RCG AKSWH T-linkage MSH
Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min.

Cubechips 8.42 4.23 13.43 9.52 4.72 2.11 5.63 2.46 3.80 2.11
Cubetoy 12.53 2.81 13.35 10.92 7.23 4.02 5.62 4.82 3.21 1.61

Breadcube 14.83 4.13 12.60 8.07 5.45 1.42 4.96 1.32 2.69 0.83
Gamebiscuit 13.78 5.10 9.94 3.96 7.01 5.18 7.32 3.54 3.72 1.22
Breadtoycar 16.87 14.55 26.51 19.54 9.04 8.43 4.42 4.00 6.63 4.55

Biscuitbookbox 16.06 14.29 16.87 14.36 8.54 4.99 1.93 1.16 1.54 1.16
Breadcubechips 33.43 21.30 26.39 20.43 7.39 3.41 1.06 0.86 1.74 0.43

Cubebreadtoychips 31.07 22.94 37.95 20.80 14.95 13.15 3.11 3.00 4.28 3.57

sampling and RCG is very sensitive to its parameters when
there exists many bad model hypotheses.

5.2.4 Two-view Based Motion Segmentation

For the two-view based motion segmentation problem, we
use the eight real image pairs from the AdelaideRMF
dataset [21] to quantitatively compare the performance of
MSH with the other four competing fitting methods. We
also report the average and the minimum fitting errors in
Table 3 by repeating each experiment 50 times. The fitting
results obtained by MSH are also shown in Fig. 8.

From Fig. 8 and Table 3, we can see that both KF and
RCG achieve bad results and fail in most cases. This is be-
cause when a large number of model hypotheses are gen-
erated for two-view based motion segmentation to cover
all the model instances in data, a large proportion of bad
model hypotheses may lead to inaccurate similarity mea-
sure between data points, which results in a wrong estimate
of the parameters and of the number of model instances by
KF and RCG. AKSWH achieves better results than both
KF and RCG on average fitting errors. However, AKSWH
may remove some good model hypotheses that correspond
to model instances when it selects significant hypotheses
especially for the unbalanced data, which results in a high
fitting error. T-linkage and MSH succeed in fitting all the
eight data with low fitting errors, while MSH obtains rel-

atively better results (as shown in Fig. 8) and achieves the
lowest average fitting errors in 5 out of 8 data, and the low-
est minimum fitting errors in 6 out of 8 data.

6. Conclusions

This paper formulates geometric model fitting as a
mode-seeking problem on a hypergraph in which each ver-
tex represents a model hypothesis and each hyperedge de-
notes a data point. Based on the hypergraph, we propose
a novel mode-seeking algorithm (MSH), which searches
for authority peaks by analyzing the similarity between
vertices. MSH simultaneously estimates the number and
the parameters of model instances in the parameter space,
which can alleviate sensitivity to unbalanced data effec-
tively. MSH is scalable to large scale problems. Results
on both synthetic data and real images have demonstrated
that the proposed method significantly outperforms several
other start-of-the-art fitting methods.
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