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Abstract

Face alignment aims to estimate the locations of a set
of landmarks for a given image. This problem has received
much attention as evidenced by the recent advancement in
both the methodology and performance. However, most
of the existing works neither explicitly handle face images
with arbitrary poses, nor perform large-scale experiments
on non-frontal and profile face images. In order to address
these limitations, this paper proposes a novel face align-
ment algorithm that estimates both 2D and 3D landmarks
and their 2D visibilities for a face image with an arbitrary
pose. By integrating a 3D point distribution model, a cas-
caded coupled-regressor approach is designed to estimate
both the camera projection matrix and the 3D landmarks.
Furthermore, the 3D model also allows us to automatically
estimate the 2D landmark visibilities via surface normal.
We use a substantially larger collection of all-pose face im-
ages to evaluate our algorithm and demonstrate superior
performances than the state-of-the-art methods.

1. Introduction
This paper aims to advance face alignment in aligning

face images with arbitrary poses. Face alignment is a pro-
cess of applying a supervised learned model to a face image
and estimating the locations of a set of facial landmarks,
such as eye corners, mouth corners, etc [6]. Face alignment
is a key module in the pipeline of most facial analysis algo-
rithms, normally after face detection and before subsequent
feature extraction and classification. Therefore, it is an en-
abling capability with a multitude of applications, such as
face recognition [31], expression recognition [2], face de-
identification [13], etc.

Given the importance of this problem, face alignment
has been extensively studied since Dr. Cootes’ Active Shape
Model (ASM) in the 1990s [6]. Especially in recent years,
face alignment has become one of the most published sub-
jects in vision conferences [1, 21, 35, 36, 38, 43]. The ex-
isting approaches can be categorized into three types: Con-

Figure 1: Given a face image with an arbitrary pose, our pro-
posed algorithm automatically estimates the 2D locations and vis-
ibilities of facial landmarks, as well as 3D landmarks. The dis-
played 3D landmarks are estimated for the image in the center.
Green/red points indicate visible/invisible landmarks.

strained Local Model (CLM)-based approach (e.g., [6,26]),
Active Appearance Model (AAM)-based approach (e.g.,
[16, 17, 22]) and regression-based approach (e.g., [4, 30]),
and an excellent survey can be found in [33].

Despite the continuous improvement on the alignment
accuracy, face alignment is still a very challenging problem,
due to the non-frontal face pose, low image quality, occlu-
sion, etc. Among all the challenges, we identify the pose
invariant face alignment as the one deserving substantial re-
search efforts, for a number of reasons. First, face detection
has substantially advanced its capability in detecting faces
in all poses, including profiles [42], which calls for the sub-
sequent face alignment to handle faces with arbitrary poses.
Second, many facial analysis tasks would benefit from the
robust alignment of faces at all poses, such as expression
recognition and 3D face reconstruction [24]. Third, there
are very few existing approaches that can align a face with
any view angle, or have conducted extensive evaluations on
face images across ±90◦ yaw angles [40, 48], which is a
clear contrast with the vast face alignment literature [33].

Motivated by the needs to address the pose variation, and
the lack of prior work in handling poses, as shown in Fig. 1,



Table 1: The comparison of face alignment algorithms in pose handling (estimation errors may have different definitions).

Method 3D Visibility Pose-related database Pose Training Testing Landmark Estimation
landmark range face # face # # errors

RCPR [3] No Yes COFW frontal w. occlu. 1, 345 507 19 8.5
CoR [41] No Yes COFW; LFPW-O; Helen-O frontal w. occlu. 1, 345; 468; 402 507; 112; 290 19; 49; 49 8.5
TSPM [48] No No AFW all poses 2, 118 468 6 11.1
CDM [40] No No AFW all poses 1, 300 468 6 9.1
OSRD [35] No No MVFW < ±40◦ 2, 050 450 68 N/A
TCDCN [46] No No AFLW, AFW < ±60◦ 10, 000 3, 000;∼313 5 8.0; 8.2
PIFA Yes Yes AFLW, AFW all poses 3, 901 1, 299; 468 21, 6 6.5; 8.6

this paper proposes a novel regression-based approach for
pose-invariant face alignment, which aims to estimate the
2D and 3D locations of face landmarks, as well as their
visibilities in the 2D image, for a face with arbitrary pose
(e.g., ±90◦ yaw). By extending the popular cascaded re-
gressor for 2D landmark estimation, we learn two regres-
sors for each cascade layer, one for predicting the update
for the camera projection matrix, and the other for predict-
ing the update for the 3D shape parameter. The learning
of two regressors is conducted alternatively with the goal
of minimizing the difference between the ground truth up-
dates and the predicted updates. By using the 3D surface
normals of 3D landmarks, we can automatically estimate
the visibilities of their 2D projected landmarks by inspect-
ing whether the transformed surface normal has a positive
z coordinate, and these visibilities are dynamically incor-
porated into the regressor learning such that only the local
appearance of visible landmarks contribute to the learning.
Finally, extensive experiments are conducted on a large sub-
set of AFLW dataset [15] with a wide range of poses, and
the AFW dataset [48], with the comparison with a num-
ber of state-of-the-art methods. We demonstrate superior
2D alignment accuracy and quantitatively evaluate the 3D
alignment accuracy.

In summary, the main contributions of this work are:

• To the best of our knowledge, this is the first face align-
ment that can estimate 2D/3D landmarks and their vis-
ibilities for a face image with an arbitrary pose.

• By integrating with a 3D point distribution model, a
cascaded coupled-regressor approach is developed to
estimate both the camera projection matrix and the 3D
landmarks, where 3D model enables the automatically
computed landmark visibilities via surface normal.

• A substantially larger number of non-frontal view face
images are utilized in evaluation with demonstrated su-
perior performances than the state of the art.

2. Prior Work
We now review the prior work in generic face alignment,

pose-invariant face alignment, and 3D face alignment.

The first type of face alignment approach is based on
Constrained Local Model (CLM), where an early example
is ASM [6]. The basic idea is to learn a set of local ap-
pearance models, one for each landmark, and the decisions
from the local models are fused with a global shape model.
There are generative or discriminative [8] approaches in
learning the local model, and various approaches in utiliz-
ing the shape constraint [1]. While the local models are
favored for higher estimation precision, it also creates dif-
ficulty for alignment on low-resolution images due to lim-
ited local appearance. In contrast, the AAM method [5, 22]
and its extension [20, 25] learn a global appearance model,
whose similarity to the input image drives the landmark
estimation. While AAM is known to have difficulty with
unseen subjects [10], the recent development has substan-
tially improved its generalization capability [29]. Motivated
by the Shape Regression Machine [44, 47] in the medical
domain, cascaded regressor-based methods have been very
popular in recent years [4, 30]. On one hand, the series
of regressors progressively reduce the alignment error and
lead to a higher accuracy. On the other hand, advanced fea-
ture learning also renders ultra-efficient alignment proce-
dures [14, 23]. Other than the three major types of algo-
rithms, there are also works based on deep learning [46],
graph-model [48], and semi-supervised learning [28].

Despite the explosion of methodology and efforts on
face alignment, the literature on pose-invariant face align-
ment is rather limited, as shown in Tab. 1. There are four
approaches explicitly handling faces with a wide range of
poses. Zhu and Ranaman propose the TSPM approach
for simultaneous face detection, pose estimation and face
alignment [48]. An AFW dataset of in-the-wild faces with
all poses is labeled with 6 landmarks and used for experi-
ments. The cascaded deformable shape model (CDM) is a
regression-based approach and probably the first approach
claiming to be “pose-free” [40], therefore it is the most rel-
evant work to ours. However, most of the experimental
datasets contain near-frontal view faces, except the AFW
dataset with improved performance than [48]. Also, there
is no visibility estimation of the 2D landmarks. Zhang
et al. develop an effective deep learning based method to es-
timate 5 landmarks. While accurate results are obtained, all
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face shape is an instance of the 3DMM,

S = S0 +

NsX

i=1

piSi, (4)

where S0, S1, S2 and Si is the mean shape and ith shape ba-
sis of the 3DMM respectively, Ns is the total shape bases,
and pi is the ith shape coefficient. Given a dataset of 3D
scans with manual labels on N 3D landmarks per scan,
we first perform procrustes analysis on the 3D scans to re-
move the global transformation, and then conduct Principal
Component Analysis (PCA) to obtain the S0 and {Si} [3]
(Fig. ??).

The collection of all shape coefficients p =
(p1, p2, · · · , pNs

) is termed as the 3D shape parame-
ter of an image. At this point, the face alignment for a
testing image I has been converted from the estimation of
U to the estimation of P = {M,p}. The conversion is
motivated by a few factors. First, without the 3D modeling,
it is very difficulty to model the out-of-plane rotation,
which has a varying number of landmarks depending on
the rotation angle. Second, as pointed out by [29], by only
using 1

6 of the number of the shape bases, 3DMM can have
an equivalent representation power as its 2D counterpart.
Hence, using 3D model might lead to a more compact
representation of unknown parameters.

Ground truth P Estimating P for a testing image implies
that the existence of ground truth P for each training image.
However, while U can be manually labeled on a face im-
age, P is normally unavailable unless a 3D scan is captured
along with a face image. Therefore, in order to leverage the
vast amount of existing 2D face alignment datasets, such as
the AFLW dataset [14], it is desirable to estimate P for a
face image and use it as the ground truth for learning.

Given a face image I, we denote the manually labeled
2D landmarks as U and the landmark visibility as v, a N -
dim vector with binary elements indicating visible (1) or
invisible (0) landmarks. Note that for invisible landmarks,
it is not necessary to label their 2D location. We define the
following objective function to estimate M and p,

J(M,p) =

�����

�����

 
M

 
S0 +

NsX

i=1

piSi
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where V = (v|;v|) is a 2 ⇥ N visibility matrix, � de-
notes the element-wise multiplication, and || · ||2 is the
sum of the squares of all matrix elements. Basically
J() computes the difference between the visible 2D land-
marks and their 3D projections. An alternative estima-
tion scheme is utilized, i.e., by assuming p0 = 0, we
estimate Mk = arg minM J(M,pk�1), and then pk =
arg minp J(Mk,p) iteratively until the changes on M and

p are small enough. Both minimizations can be efficiently
solved in closed forms via least-square.

3.2. Cascaded Coupled-Regressor

For each training image Ii, we now have its ground truth
as Pi = {Mi,pi}, as well as their initilization, usually
M0

i = (1, 0, 0, 0; 0, 1, 0, 0) and p0
i = 0. Given a dataset of

Nd training images, the question is how to formulate an op-
timization problem to estimate Pi. We decide to extend the
successful cascaded regressors framework due to its accu-
racy and efficiency []. The general idea of cascaded regres-
sors is to learn a series of regressors, where the kth regres-
sor estimates the difference between the current parameter
Pk�1

i and the ground truth Pi, such that the estimated pa-
rameter gradually approximates the ground truth.

Motivated by this general idea, we adopt a cascaded
coupled-regressor scheme where two regressors are learned
at the kth cascade layer, for the estimation of Mi and pi

respectively. Specifically, the first learning task of the kth
regressor is,

⇥k
1 = arg min

⇥k
1

NdX

i=1

||�Mk
i � Rk

1(Ii,Ui,vi; ⇥
k
1)||2, (6)

where

Ui = Mk�1
i

 
S0 +

NsX

i=1

pk�1
i Si

!
, (7)

is the current estimated 2D landmarks, �Mk
i = Mi �

Mk�1
i , and Rk

1(·; ⇥k
1) is the desired regressor with the pa-

rameter of ⇥k
1 . After ⇥k

1 is estimated, we obtain �M̂i =
Rk

1(·; ⇥k
1) to all training images and update Mk

i = Mk�1
i +

�M̂i. Note that this liner updating may potentially break
the constraint of the projection matrix. Therefore, we esti-
mate the scale and yaw, pitch, row angles (s, ↵, �, �) from
Mk

i and composite a new Mk
i based on these four parame-

ters.
Similarly the second learning task of the kth regressor is,

⇥k
2 = arg min

⇥k
2

NdX

i=1

||�pk
i � Rk

2(Ii,Ui,vi; ⇥
k
2)||2, (8)

where Ui is computed via Eq 7 except Mk�1
i is replaced

with Mk
i . We also obtain �p̂i = Rk

2(·; ⇥k
2) to all train-

ing images and update pk
i = pk�1

i + �p̂i. This iterative
learning procedure continues for K cascade layers.

Learning Rk(·) Our cascaded coupled-regressor scheme
does not depend on the particular feature representation or
the type of the regressor. Therefore, we may define them
based on the existing work or any future development in
features and regressors. Specifically, in this work we adopt
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face shape is an instance of the 3DMM,

S = S0 +

NsX

i=1

piSi, (4)

where S0, S1, S2 and Si is the mean shape and ith shape ba-
sis of the 3DMM respectively, Ns is the total shape bases,
and pi is the ith shape coefficient. Given a dataset of 3D
scans with manual labels on N 3D landmarks per scan,
we first perform procrustes analysis on the 3D scans to re-
move the global transformation, and then conduct Principal
Component Analysis (PCA) to obtain the S0 and {Si} [3]
(Fig. ??).

The collection of all shape coefficients p =
(p1, p2, · · · , pNs

) is termed as the 3D shape parame-
ter of an image. At this point, the face alignment for a
testing image I has been converted from the estimation of
U to the estimation of P = {M,p}. The conversion is
motivated by a few factors. First, without the 3D modeling,
it is very difficulty to model the out-of-plane rotation,
which has a varying number of landmarks depending on
the rotation angle. Second, as pointed out by [29], by only
using 1

6 of the number of the shape bases, 3DMM can have
an equivalent representation power as its 2D counterpart.
Hence, using 3D model might lead to a more compact
representation of unknown parameters.

Ground truth P Estimating P for a testing image implies
that the existence of ground truth P for each training image.
However, while U can be manually labeled on a face im-
age, P is normally unavailable unless a 3D scan is captured
along with a face image. Therefore, in order to leverage the
vast amount of existing 2D face alignment datasets, such as
the AFLW dataset [14], it is desirable to estimate P for a
face image and use it as the ground truth for learning.

Given a face image I, we denote the manually labeled
2D landmarks as U and the landmark visibility as v, a N -
dim vector with binary elements indicating visible (1) or
invisible (0) landmarks. Note that for invisible landmarks,
it is not necessary to label their 2D location. We define the
following objective function to estimate M and p,

J(M,p) =

�����

�����

 
M

 
S0 +

NsX

i=1

piSi

!
� U

!
� V

�����

�����

2

, (5)

where V = (v|;v|) is a 2 ⇥ N visibility matrix, � de-
notes the element-wise multiplication, and || · ||2 is the
sum of the squares of all matrix elements. Basically
J() computes the difference between the visible 2D land-
marks and their 3D projections. An alternative estima-
tion scheme is utilized, i.e., by assuming p0 = 0, we
estimate Mk = arg minM J(M,pk�1), and then pk =
arg minp J(Mk,p) iteratively until the changes on M and

p are small enough. Both minimizations can be efficiently
solved in closed forms via least-square.
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Nd training images, the question is how to formulate an op-
timization problem to estimate Pi. We decide to extend the
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face shape is an instance of the 3DMM,

S = S0 +

NsX

i=1

piSi, (4)

where S0 and Si is the mean shape and ith shape basis of
the 3DMM respectively, Ns is the total shape bases, and
pi is the ith shape coefficient. Given a dataset of 3D scans
with manual labels on N 3D landmarks per scan, we first
perform procrustes analysis on the 3D scans to remove the
global transformation, and then conduct Principal Compo-
nent Analysis (PCA) to obtain the S0 and {Si} [3] (Fig. ??).

The collection of all shape coefficients p =
(p1, p2, · · · , pNs

) is termed as the 3D shape parame-
ter of an image. At this point, the face alignment for a
testing image I has been converted from the estimation of
U to the estimation of P = {M,p}. The conversion is
motivated by a few factors. First, without the 3D modeling,
it is very difficulty to model the out-of-plane rotation,
which has a varying number of landmarks depending on
the rotation angle. Second, as pointed out by [29], by only
using 1

6 of the number of the shape bases, 3DMM can have
an equivalent representation power as its 2D counterpart.
Hence, using 3D model might lead to a more compact
representation of unknown parameters.

Ground truth P Estimating P for a testing image implies
that the existence of ground truth P for each training image.
However, while U can be manually labeled on a face im-
age, P is normally unavailable unless a 3D scan is captured
along with a face image. Therefore, in order to leverage the
vast amount of existing 2D face alignment datasets, such as
the AFLW dataset [14], it is desirable to estimate P for a
face image and use it as the ground truth for learning.

Given a face image I, we denote the manually labeled
2D landmarks as U and the landmark visibility as v, a N -
dim vector with binary elements indicating visible (1) or
invisible (0) landmarks. Note that for invisible landmarks,
it is not necessary to label their 2D location. We define the
following objective function to estimate M and p,

J(M,p) =

�����

�����

 
M

 
S0 +

NsX

i=1

piSi

!
� U

!
� V

�����

�����

2

, (5)

where V = (v|;v|) is a 2 ⇥ N visibility matrix, � de-
notes the element-wise multiplication, and || · ||2 is the
sum of the squares of all matrix elements. Basically
J() computes the difference between the visible 2D land-
marks and their 3D projections. An alternative estima-
tion scheme is utilized, i.e., by assuming p0 = 0, we
estimate Mk = arg minM J(M,pk�1), and then pk =
arg minp J(Mk,p) iteratively until the changes on M and
p are small enough. Both minimizations can be efficiently
solved in closed forms via least-square.

3.2. Cascaded Coupled-Regressor

For each training image Ii, we now have its ground truth
as Pi = {Mi,pi}, as well as their initilization, usually
M0

i = (1, 0, 0, 0; 0, 1, 0, 0) and p0
i = 0. Given a dataset of

Nd training images, the question is how to formulate an op-
timization problem to estimate Pi. We decide to extend the
successful cascaded regressors framework due to its accu-
racy and efficiency []. The general idea of cascaded regres-
sors is to learn a series of regressors, where the kth regres-
sor estimates the difference between the current parameter
Pk�1

i and the ground truth Pi, such that the estimated pa-
rameter gradually approximates the ground truth.

Motivated by this general idea, we adopt a cascaded
coupled-regressor scheme where two regressors are learned
at the kth cascade layer, for the estimation of Mi and pi

respectively. Specifically, the first learning task of the kth
regressor is,

⇥k
1 = arg min

⇥k
1

NdX

i=1

||�Mk
i � Rk

1(Ii,Ui,vi; ⇥
k
1)||2, (6)

where

Ui = Mk�1
i

 
S0 +

NsX

i=1

pk�1
i Si

!
, (7)

is the current estimated 2D landmarks, �Mk
i = Mi �

Mk�1
i , and Rk

1(·; ⇥k
1) is the desired regressor with the pa-

rameter of ⇥k
1 . After ⇥k

1 is estimated, we obtain �M̂i =
Rk

1(·; ⇥k
1) to all training images and update Mk

i = Mk�1
i +

�M̂i. Note that this liner updating may potentially break
the constraint of the projection matrix. Therefore, we esti-
mate the scale and yaw, pitch, row angles (s, ↵, �, �) from
Mk

i and composite a new Mk
i based on these four parame-

ters.
Similarly the second learning task of the kth regressor is,

⇥k
2 = arg min

⇥k
2

NdX

i=1

||�pk
i � Rk

2(Ii,Ui,vi; ⇥
k
2)||2, (8)

where Ui is computed via Eq 7 except Mk�1
i is replaced

with Mk
i . We also obtain �p̂i = Rk

2(·; ⇥k
2) to all train-

ing images and update pk
i = pk�1

i + �p̂i. This iterative
learning procedure continues for K cascade layers.

Learning Rk(·) Our cascaded coupled-regressor scheme
does not depend on the particular feature representation or
the type of the regressor. Therefore, we may define them
based on the existing work or any future development in
features and regressors. Specifically, in this work we adopt
the HOG-based linear regressor [32] and the fern regres-
sor [4].

For the linear regressor, we denote an function f(I,U) to
extract HOG features around a small rectangular region of
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each one of N landmarks, which returns a 32N -dim feature
vector. Thus, we define the regressor function as

R(·) = ⇥| · Diag⇤(vi)f(Ii,Ui), (9)

where Diag⇤(v) is a function that duplicates each element
of v 32 times and converts into a diagonal matrix of size
32N . Note that we also add a constraint, �||⇥||2, to Eq 6 or
Eq 8 for a more robust least-square solution. By plugging
Eq 9 to Eq 6 or Eq 8, the regressor parameter ⇥ (e.g., a
Ns ⇥ 32N matrix for Rk

2 ) can be easily estimated in the
closed form.

For the fern regressor, we follow the training procedure
of [4]. That is, we divide the face region into a 3 ⇥ 3 grid.
For each one of the 9 zones, a depth 5 random fern re-
gressor is learned from the shape-index features selected by
correlation-based method [5] from that zone only. Finally
the learned R(·) is a weighted mean voting from the top 3
out of 9 fern regressors, where the weight is inversely pro-
portional to the average amount of occlusion in that zone.

3.3. 3D Surface-Enabled Visibility

Up to now the only thing that has not been explained
in the training procedure is the visibility of projected 2D
landmarks, vi. It is obvious that during the testing we have
to estimate v at each cascade layer for each testing image,
since there is no visibility information given. As a result,
during the training procedure, we also have to estimate v
per cascade layer for each training image, rather than using
the ground truth visibility labeled by human, which is used
for estimating ground truth P as shown in Eq 5.

Depending on the camera projection matrix M, the visi-
bility of each projected 2D landmarks may be dynamically
changing among different layers of the cascade. In order
to estimate v, we decide to use the 3D face surface infor-
mation. We start by assuming every individual has a sim-
ilar 3D surface normal vector at each of its 3D landmarks.
Then, by rotating the surface normal according to the rota-
tion angle indicated by the projection matrix, we can know
that whether the coordinate of the z-axis is pointing toward
the camera (i.e., visible) or away from the camera (i.e., in-
visible). In other words, the sign of the z-axis coordinates
indicates visibility.

By taking a set of 3D scans with manually labeled 3D
landmarks, we can compute the landmarks’ average 3D sur-
face normals, denoted as a 3 ⇥ N matrix ~N. Then we use
the following equation to compute the visibility vector,

v = ~N| ·
✓

m1

||m1||
⇥ m2

||m2||

◆
, (10)

where m1 and m2 are the left-most three elements at the
first and second row of M respectively, and || · || denotes
the L2 norm. For fern regressors, v is a soft visibility within

Algorithm 1: The training procedure of PIFA.

Data: 3D model {{S}Ns
i=0,

~N}, training samples and
labels {Ii,Ui}N

i=1.
Result: Cascaded coupled-regressor parameters

{⇥k
1 ,⇥k

2}K
k=1.

1 foreach i = 1, · · · , Nd do
2 Estimate Mi and pi via Eq. 5;
3 M0

i = (1, 0, 0, 0; 0, 1, 0, 0), p0
i = 0 and v0

i = 1 ;

4 foreach k = 1, · · · , K do
5 Compute Ui via Eq 7 for each image ;
6 Estimate ⇥k

1 via Eq 6 ;
7 Update Mk

i and Ui for each image ;
8 Compute vi via Eq 10 for each image ;
9 Estimate ⇥k

2 via Eq 8 ;
10 Update pk

i for each image ;

11 return {Rk
1(·; ⇥k

1), Rk
2(·; ⇥k

2)}K
k=1.

±1. For linear regressors, we further compute v = 1
2 (1 +

sign(v)), which results in a hard visibility of either 1 or 0.
In summary, we present the detailed training procedure

in Algorithm 1.

Model Fitting Given a testing image I and its initial pa-
rameter M0 and p0, we can apply the learned cascaded
coupled-regressor for face alignment. Basically we iter-
atively use Rk

1(·; ⇥k
1) to compute �M̂, update Mk, use

Rk
2(·; ⇥k

2) to compute �p̂, and update pk. Finally the es-
timated 3D landmarks are Ŝ = S0 +

P
i pK

i Si, and the
estimated 2D landmarks are Û = MK Ŝ. Note that Ŝ car-
ries the individual 3D shape information of the subject, but
not necessary in the same pose as the 2D testing image.

4. Experimental Results

Datasets The goal of this work is to advance the capabil-
ity of face alignment on in-the-wild faces with all possible
view angles, which is the type of images we desire when se-
lecting experimental datasets. However, very few publicly
available datasets satisfy this characteristic, or have been
extensively evaluated in prior work (see Tab. 1). Neverthe-
less, we identify three datasets for our experiments.

ALFW dataset [14] contains ⇠25k in-the-wild face im-
ages, each image annotated with the visible landmarks (up
to 21 landmarks), and a bounding box. Based on our es-
timated M for each image, we select a subset of 5, 300
images where the numbers of images whose absolute yaw
angle within [0�, 30�], [30�, 60�], [60�, 90�] are roughly 1

3
each. To have a more balanced distribution of the left
vs. right view faces, we take the odd indexed images among
5, 300 (i.e., 1st, 3rd,...), flip the images horizontally, and
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each one of N landmarks, which returns a 32N -dim feature
vector. Thus, we define the regressor function as

R(·) = ⇥| · Diag⇤(vi)f(Ii,Ui), (9)

where Diag⇤(v) is a function that duplicates each element
of v 32 times and converts into a diagonal matrix of size
32N . Note that we also add a constraint, �||⇥||2, to Eq 6 or
Eq 8 for a more robust least-square solution. By plugging
Eq 9 to Eq 6 or Eq 8, the regressor parameter ⇥ (e.g., a
Ns ⇥ 32N matrix for Rk

2 ) can be easily estimated in the
closed form.

For the fern regressor, we follow the training procedure
of [4]. That is, we divide the face region into a 3 ⇥ 3 grid.
For each one of the 9 zones, a depth 5 random fern re-
gressor is learned from the shape-index features selected by
correlation-based method [5] from that zone only. Finally
the learned R(·) is a weighted mean voting from the top 3
out of 9 fern regressors, where the weight is inversely pro-
portional to the average amount of occlusion in that zone.

R1
1, R1

2, RK
1 , RK
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3.3. 3D Surface-Enabled Visibility

Up to now the only thing that has not been explained
in the training procedure is the visibility of projected 2D
landmarks, vi. It is obvious that during the testing we have
to estimate v at each cascade layer for each testing image,
since there is no visibility information given. As a result,
during the training procedure, we also have to estimate v
per cascade layer for each training image, rather than using
the ground truth visibility labeled by human, which is used
for estimating ground truth P as shown in Eq 5.

Depending on the camera projection matrix M, the visi-
bility of each projected 2D landmarks may be dynamically
changing among different layers of the cascade. In order
to estimate v, we decide to use the 3D face surface infor-
mation. We start by assuming every individual has a sim-
ilar 3D surface normal vector at each of its 3D landmarks.
Then, by rotating the surface normal according to the rota-
tion angle indicated by the projection matrix, we can know
that whether the coordinate of the z-axis is pointing toward
the camera (i.e., visible) or away from the camera (i.e., in-
visible). In other words, the sign of the z-axis coordinates
indicates visibility.

By taking a set of 3D scans with manually labeled 3D
landmarks, we can compute the landmarks’ average 3D sur-
face normals, denoted as a 3 ⇥ N matrix ~N. Then we use
the following equation to compute the visibility vector,

v = ~N| ·
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, (10)

where m1 and m2 are the left-most three elements at the
first and second row of M respectively, and || · || denotes
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2 Estimate Mi and pi via Eq. 5;
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i = (1, 0, 0, 0; 0, 1, 0, 0), p0
i = 0 and v0

i = 1 ;

4 foreach k = 1, · · · , K do
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6 Estimate ⇥k

1 via Eq 6 ;
7 Update Mk

i and Ui for each image ;
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10 Update pk
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k=1.

the L2 norm. For fern regressors, v is a soft visibility within
±1. For linear regressors, we further compute v = 1

2 (1 +
sign(v)), which results in a hard visibility of either 1 or 0.

In summary, we present the detailed training procedure
in Algorithm 1.

Model Fitting Given a testing image I and its initial pa-
rameter M0 and p0, we can apply the learned cascaded
coupled-regressor for face alignment. Basically we iter-
atively use Rk

1(·; ⇥k
1) to compute �M̂, update Mk, use
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2) to compute �p̂, and update pk. Finally the es-
timated 3D landmarks are Ŝ = S0 +

P
i pK

i Si, and the
estimated 2D landmarks are Û = MK Ŝ. Note that Ŝ car-
ries the individual 3D shape information of the subject, but
not necessary in the same pose as the 2D testing image.

4. Experimental Results

Datasets The goal of this work is to advance the capabil-
ity of face alignment on in-the-wild faces with all possible
view angles, which is the type of images we desire when se-
lecting experimental datasets. However, very few publicly
available datasets satisfy this characteristic, or have been
extensively evaluated in prior work (see Tab. 1). Neverthe-
less, we identify three datasets for our experiments.

ALFW dataset [14] contains ⇠25k in-the-wild face im-
ages, each image annotated with the visible landmarks (up
to 21 landmarks), and a bounding box. Based on our es-
timated M for each image, we select a subset of 5, 300
images where the numbers of images whose absolute yaw
angle within [0�, 30�], [30�, 60�], [60�, 90�] are roughly 1
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each. To have a more balanced distribution of the left
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each one of N landmarks, which returns a 32N -dim feature
vector. Thus, we define the regressor function as

R(·) = ⇥| · Diag⇤(vi)f(Ii,Ui), (9)

where Diag⇤(v) is a function that duplicates each element
of v 32 times and converts into a diagonal matrix of size
32N . Note that we also add a constraint, �||⇥||2, to Eq 6 or
Eq 8 for a more robust least-square solution. By plugging
Eq 9 to Eq 6 or Eq 8, the regressor parameter ⇥ (e.g., a
Ns ⇥ 32N matrix for Rk

2 ) can be easily estimated in the
closed form.

For the fern regressor, we follow the training procedure
of [4]. That is, we divide the face region into a 3 ⇥ 3 grid.
For each one of the 9 zones, a depth 5 random fern re-
gressor is learned from the shape-index features selected by
correlation-based method [5] from that zone only. Finally
the learned R(·) is a weighted mean voting from the top 3
out of 9 fern regressors, where the weight is inversely pro-
portional to the average amount of occlusion in that zone.
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2, RK
1 , RK

2

3.3. 3D Surface-Enabled Visibility

Up to now the only thing that has not been explained
in the training procedure is the visibility of projected 2D
landmarks, vi. It is obvious that during the testing we have
to estimate v at each cascade layer for each testing image,
since there is no visibility information given. As a result,
during the training procedure, we also have to estimate v
per cascade layer for each training image, rather than using
the ground truth visibility labeled by human, which is used
for estimating ground truth P as shown in Eq 5.

Depending on the camera projection matrix M, the visi-
bility of each projected 2D landmarks may be dynamically
changing among different layers of the cascade. In order
to estimate v, we decide to use the 3D face surface infor-
mation. We start by assuming every individual has a sim-
ilar 3D surface normal vector at each of its 3D landmarks.
Then, by rotating the surface normal according to the rota-
tion angle indicated by the projection matrix, we can know
that whether the coordinate of the z-axis is pointing toward
the camera (i.e., visible) or away from the camera (i.e., in-
visible). In other words, the sign of the z-axis coordinates
indicates visibility.

By taking a set of 3D scans with manually labeled 3D
landmarks, we can compute the landmarks’ average 3D sur-
face normals, denoted as a 3 ⇥ N matrix ~N. Then we use
the following equation to compute the visibility vector,

v = ~N| ·
✓
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◆
, (10)

where m1 and m2 are the left-most three elements at the
first and second row of M respectively, and || · || denotes
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the L2 norm. For fern regressors, v is a soft visibility within
±1. For linear regressors, we further compute v = 1

2 (1 +
sign(v)), which results in a hard visibility of either 1 or 0.

In summary, we present the detailed training procedure
in Algorithm 1.
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rameter M0 and p0, we can apply the learned cascaded
coupled-regressor for face alignment. Basically we iter-
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1) to compute �M̂, update Mk, use
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2) to compute �p̂, and update pk. Finally the es-
timated 3D landmarks are Ŝ = S0 +
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i Si, and the
estimated 2D landmarks are Û = MK Ŝ. Note that Ŝ car-
ries the individual 3D shape information of the subject, but
not necessary in the same pose as the 2D testing image.

4. Experimental Results

Datasets The goal of this work is to advance the capabil-
ity of face alignment on in-the-wild faces with all possible
view angles, which is the type of images we desire when se-
lecting experimental datasets. However, very few publicly
available datasets satisfy this characteristic, or have been
extensively evaluated in prior work (see Tab. 1). Neverthe-
less, we identify three datasets for our experiments.

ALFW dataset [14] contains ⇠25k in-the-wild face im-
ages, each image annotated with the visible landmarks (up
to 21 landmarks), and a bounding box. Based on our es-
timated M for each image, we select a subset of 5, 300
images where the numbers of images whose absolute yaw
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each one of N landmarks, which returns a 32N -dim feature
vector. Thus, we define the regressor function as

R(·) = ⇥| · Diag⇤(vi)f(Ii,Ui), (9)

where Diag⇤(v) is a function that duplicates each element
of v 32 times and converts into a diagonal matrix of size
32N . Note that we also add a constraint, �||⇥||2, to Eq 6 or
Eq 8 for a more robust least-square solution. By plugging
Eq 9 to Eq 6 or Eq 8, the regressor parameter ⇥ (e.g., a
Ns ⇥ 32N matrix for Rk

2 ) can be easily estimated in the
closed form.

For the fern regressor, we follow the training procedure
of [4]. That is, we divide the face region into a 3 ⇥ 3 grid.
For each one of the 9 zones, a depth 5 random fern re-
gressor is learned from the shape-index features selected by
correlation-based method [5] from that zone only. Finally
the learned R(·) is a weighted mean voting from the top 3
out of 9 fern regressors, where the weight is inversely pro-
portional to the average amount of occlusion in that zone.
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3.3. 3D Surface-Enabled Visibility

Up to now the only thing that has not been explained
in the training procedure is the visibility of projected 2D
landmarks, vi. It is obvious that during the testing we have
to estimate v at each cascade layer for each testing image,
since there is no visibility information given. As a result,
during the training procedure, we also have to estimate v
per cascade layer for each training image, rather than using
the ground truth visibility labeled by human, which is used
for estimating ground truth P as shown in Eq 5.

Depending on the camera projection matrix M, the visi-
bility of each projected 2D landmarks may be dynamically
changing among different layers of the cascade. In order
to estimate v, we decide to use the 3D face surface infor-
mation. We start by assuming every individual has a sim-
ilar 3D surface normal vector at each of its 3D landmarks.
Then, by rotating the surface normal according to the rota-
tion angle indicated by the projection matrix, we can know
that whether the coordinate of the z-axis is pointing toward
the camera (i.e., visible) or away from the camera (i.e., in-
visible). In other words, the sign of the z-axis coordinates
indicates visibility.

By taking a set of 3D scans with manually labeled 3D
landmarks, we can compute the landmarks’ average 3D sur-
face normals, denoted as a 3 ⇥ N matrix ~N. Then we use
the following equation to compute the visibility vector,

v = ~N| ·
✓
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where m1 and m2 are the left-most three elements at the
first and second row of M respectively, and || · || denotes

Algorithm 1: The training procedure of PIFA.

Data: 3D model {{S}Ns
i=0,

~N}, training samples and
labels {Ii,Ui}N

i=1.
Result: Cascaded coupled-regressor parameters
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i = 0 and v0

i = 1 ;

4 foreach k = 1, · · · , K do
5 Compute Ui via Eq 7 for each image ;
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1 via Eq 6 ;
7 Update Mk

i and Ui for each image ;
8 Compute vi via Eq 10 for each image ;
9 Estimate ⇥k
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10 Update pk
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11 return {Rk
1(·; ⇥k
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the L2 norm. For fern regressors, v is a soft visibility within
±1. For linear regressors, we further compute v = 1

2 (1 +
sign(v)), which results in a hard visibility of either 1 or 0.

In summary, we present the detailed training procedure
in Algorithm 1.

Model Fitting Given a testing image I and its initial pa-
rameter M0 and p0, we can apply the learned cascaded
coupled-regressor for face alignment. Basically we iter-
atively use Rk

1(·; ⇥k
1) to compute �M̂, update Mk, use

Rk
2(·; ⇥k

2) to compute �p̂, and update pk. Finally the es-
timated 3D landmarks are Ŝ = S0 +

P
i pK

i Si, and the
estimated 2D landmarks are Û = MK Ŝ. Note that Ŝ car-
ries the individual 3D shape information of the subject, but
not necessary in the same pose as the 2D testing image.

4. Experimental Results

Datasets The goal of this work is to advance the capabil-
ity of face alignment on in-the-wild faces with all possible
view angles, which is the type of images we desire when se-
lecting experimental datasets. However, very few publicly
available datasets satisfy this characteristic, or have been
extensively evaluated in prior work (see Tab. 1). Neverthe-
less, we identify three datasets for our experiments.

ALFW dataset [14] contains ⇠25k in-the-wild face im-
ages, each image annotated with the visible landmarks (up
to 21 landmarks), and a bounding box. Based on our es-
timated M for each image, we select a subset of 5, 300
images where the numbers of images whose absolute yaw
angle within [0�, 30�], [30�, 60�], [60�, 90�] are roughly 1

3
each. To have a more balanced distribution of the left
vs. right view faces, we take the odd indexed images among
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Eq 8 for a more robust least-square solution. By plugging
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that whether the coordinate of the z-axis is pointing toward
the camera (i.e., visible) or away from the camera (i.e., in-
visible). In other words, the sign of the z-axis coordinates
indicates visibility.

By taking a set of 3D scans with manually labeled 3D
landmarks, we can compute the landmarks’ average 3D sur-
face normals, denoted as a 3 ⇥ N matrix ~N. Then we use
the following equation to compute the visibility vector,
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ity of face alignment on in-the-wild faces with all possible
view angles, which is the type of images we desire when se-
lecting experimental datasets. However, very few publicly
available datasets satisfy this characteristic, or have been
extensively evaluated in prior work (see Tab. 1). Neverthe-
less, we identify three datasets for our experiments.

ALFW dataset [14] contains ⇠25k in-the-wild face im-
ages, each image annotated with the visible landmarks (up
to 21 landmarks), and a bounding box. Based on our es-
timated M for each image, we select a subset of 5, 300
images where the numbers of images whose absolute yaw
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Figure 2: Overall architecture of our proposed PIFA method, with three main modules (3D modeling, cascaded coupled-regressor
learning, and 3D surface-enabled visibility estimation). Green/red arrows indicate surface normals pointing toward/away from the camera.

testing images appear to be within∼±60◦ so that all 5 land-
marks are visible and there is no visibility estimation. The
OSRD approach has the similar experimental constraint in
that all images are within ±40◦ [35]. Other than these four
works, the work on occlusion-invariant face alignment are
also relevant since non-frontal faces can be considered as
one type of occlusions, such as RCPR [3] and CoR [41].
Despite being able to estimate visibilities, neither method
has been evaluated on faces with large pose variations. Fi-
nally, all aforementioned methods in this paragraph do not
explicitly estimate the 3D locations of landmarks.

3D face alignment aims to recover the 3D locations
of facial landmarks given a 2D image [11, 32]. There
is also a very recently work on 3D face alignment from
videos [12]. However, almost all methods take near-frontal-
view face images as input, while our method can handle
faces at all poses. A relevant but different problem is 3D
face reconstruction, which recovers the detailed 3D surface
model from one image, multiple images, or an image col-
lection [9, 27]. Finally, 3D face model has been used in
assisting 2D face alignment [34]. However, it has not been
explicitly integrated into the powerful cascaded regressor
framework, which is one of the main technical novelties of
our approach.

3. Pose-Invariant 3D Face Alignment
This section presents the details of our proposed Pose-

Invariant 3D Face Alignment (PIFA) algorithm, with em-
phasis on the training procedure. As shown in Fig. 2, we
first learn a 3D Point Distribution Model (3DPDM) [7] from
a set of labeled 3D scans, where a set of 2D landmarks on
an image can be considered as a projection of a 3DPDM
instance (i.e., 3D landmarks). For each 2D training face
image, we assume that there exists the manual labeled 2D
landmarks and their visibilities, as well as the correspond-
ing 3D ground truth– 3D landmarks and the camera projec-

tion matrix. Given the training images and 2D/3D ground
truth, we train a cascaded coupled-regressor that is com-
posed of two regressors at each cascade layer, for the es-
timation of the update of the 3DPDM coefficient and the
projection matrix respectively. Finally, the visibilities of the
projected 3D landmarks are automatically computed via the
domain knowledge of the 3D surface normals, and incorpo-
rated into the regressor learning procedure.

3.1. 3D Face Modeling
Face alignment concerns the 2D face shape, represented

by the locations of N 2D landmarks, i.e.,

U =

(
u1 u2 · · · uN
v1 v2 · · · vN

)
. (1)

A 2D face shape U is a projection of a 3D face shape S,
similarly represented by the homogeneous coordinates of
N 3D landmarks, i.e.,

S =




x1 x2 · · · xN
y1 y2 · · · yN
z1 z2 · · · zN
1 1 · · · 1


 . (2)

Similar to the prior work [34], a weak perspective model is
assumed for the projection,

U = MS, (3)

where M is a 2× 4 projection matrix with seven degrees of
freedom (yaw, pitch, roll, two scales and 2D translations).

Following the basic idea of 3DPDM [7], we assume a 3D
face shape is an instance of the 3DPDM,

S = S0 +

Ns∑

i=1

piSi, (4)



where S0 and Si is the mean shape and ith shape basis of
the 3DPDM respectively, Ns is the total number of shape
bases, and pi is the ith shape coefficient. Given a dataset of
3D scans with manual labels on N 3D landmarks per scan,
we first perform procrustes analysis on the 3D scans to re-
move the global transformation, and then conduct Principal
Component Analysis (PCA) to obtain the S0 and {Si} (see
the top-left part of Fig. 2).

The set of all shape coefficients p = (p1, p2, · · · , pNs
)

is termed as the 3D shape parameter of an image. At this
point, the face alignment for a testing image I has been
converted from the estimation of U to the estimation of
P = {M,p}. The conversion is motivated by a few fac-
tors. First, without the 3D modeling, it is very difficult to
model the out-of-plane rotation, which has a varying num-
ber of landmarks depending on the rotation angle and the in-
dividual 3D face shape. Second, as pointed out by [34], by
only using 1

6 of the number of the shape bases, 3DPDM can
have an equivalent representation power as its 2D counter-
part. Hence, using 3D model might lead to a more compact
representation of unknown parameters.
Ground truth P Estimating P for a testing image implies
the existence of ground truth P for each training image.
However, while U can be manually labeled on a face im-
age, P is normally unavailable unless a 3D scan is captured
along with a face image. Therefore, in order to leverage the
vast amount of existing 2D face alignment datasets, such as
the AFLW dataset [15], it is desirable to estimate P for a
face image and use it as the ground truth for learning.

Given a face image I, we denote the manually labeled
2D landmarks as U and the landmark visibility as v, an
N -dim vector with binary elements indicating visible (1)
or invisible (0) landmarks. Note that it is not necessary to
label the 2D locations of invisible landmarks. We define the
following objective function to estimate M and p,

J(M,p) =

∣∣∣∣∣

∣∣∣∣∣

(
M

(
S0 +

Ns∑

i=1

piSi

)
−U

)
�V

∣∣∣∣∣

∣∣∣∣∣

2

, (5)

where V = (vᵀ; vᵀ) is a 2 × N visibility matrix, � de-
notes the element-wise multiplication, and || · ||2 is the
sum of the squares of all matrix elements. Basically
J(·, ·) computes the difference between the visible 2D land-
marks and their 3D projections. An alternative estima-
tion scheme is utilized, i.e., by assuming p0 = 0, we
estimate Mk = arg minM J(M,pk−1), and then pk =
arg minp J(Mk,p) iteratively until the changes of M and
p are small enough. Both minimizations can be efficiently
solved in closed forms via least-square error.

3.2. Cascaded Coupled-Regressor
For each training image Ii, we now have its ground

truth as Pi = {Mi,pi}, as well as their initialization, i.e.,
M0

i = g(M̄,bi), p0
i = 0, and v0

i = 1. Here M̄ is the

average of ground truth projection matrices in the training
set, bi is a 4-dim vector indicating the bounding box loca-
tion, and g(M,b) is a function that modifies the scale and
translation of M based on b. Given a dataset of Nd training
images, the question is how to formulate an optimization
problem to estimate Pi. We decide to extend the success-
ful cascaded regressors framework due to its accuracy and
efficiency [4]. The general idea of cascaded regressors is
to learn a series of regressors, where the kth regressor es-
timates the difference between the current parameter Pk−1

i

and the ground truth Pi, such that the estimated parameter
gradually approximates the ground truth.

Motivated by this general idea, we adopt a cascaded
coupled-regressor scheme where two regressors are learned
at the kth cascade layer, for the estimation of Mi and pi

respectively. Specifically, the first learning task of the kth
regressor is,

Θk
1 = arg min

Θk
1

Nd∑

i=1

||∆Mk
i −Rk

1(Ii,Ui,v
k−1
i ; Θk

1)||2, (6)

where

Ui = Mk−1
i

(
S0 +

Ns∑

i=1

pk−1
i Si

)
, (7)

is the current estimated 2D landmarks, ∆Mk
i = Mi −

Mk−1
i , and Rk

1(·; Θk
1) is the desired regressor with the

parameter of Θk
1 . After Θk

1 is estimated, we obtain
∆M̂i = Rk

1(·; Θk
1) for all training images and update

Mk
i = Mk−1

i + ∆M̂i. Note that this liner updating may
potentially break the constraint of the projection matrix.
Therefore, we estimate the scales and yaw, pitch, roll angles
(sx, sy, α, β, γ) from Mk

i and compose a new Mk
i based on

these five parameters.
Similarly the second learning task of the kth regressor is,

Θk
2 = arg min

Θk
2

Nd∑

i=1

||∆pk
i −Rk

2(Ii,Ui,v
k
i ; Θk

2)||2, (8)

where Ui is computed via Eq 7 except Mk−1
i is replaced

with Mk
i . We also obtain ∆p̂i = Rk

2(·; Θk
2) for all train-

ing images and update pk
i = pk−1

i + ∆p̂i. This iterative
learning procedure continues for K cascade layers.
Learning Rk(·) Our cascaded coupled-regressor scheme
does not depend on the particular feature representation or
the type of regressors. Therefore, we may define them based
on the prior work or any future development in features and
regressors. Specifically, in this work we adopt the HOG-
based linear regressor [37] and the fern regressor [3].

For the linear regressor, we denote a function f(I,U) to
extract HOG features around a small rectangular region of
each one ofN landmarks, which returns a 32N -dim feature
vector. Thus, we define the regressor function as

R(·) = Θᵀ · Diag∗(vi)f(Ii,Ui), (9)



where Diag∗(v) is a function that duplicates each element
of v 32 times and converts into a diagonal matrix of size
32N . Note that we also add a constraint, λ||Θ||2, to Eq 6 or
Eq 8 for a more robust least-square solution. By plugging
Eq 9 to Eq 6 or Eq 8, the regressor parameter Θ (e.g., a
Ns × 32N matrix for Rk

2 ) can be easily estimated in the
closed form.

For the fern regressor, we follow the training procedure
of [3]. That is, we divide the face region into a 3 × 3 grid.
At each cascade layer, we choose 3 out of 9 zones with the
least occlusion, computed based on the {vk

i }. For each
selected zone, a depth 5 random fern regressor is learned
from the interpolated shape-indexed features selected by the
correlation-based method [4] from that zone only. Finally
the learned R(·) is a weighted mean voting from the 3 fern
regressors, where the weight is inversely proportional to the
average amount of occlusion in that zone.

3.3. 3D Surface-Enabled Visibility
Up to now the only thing that has not been explained in

the training procedure is how to estimate the visibility of
the projected 2D landmarks, vi. It is obvious that during
the testing we have to estimate v at each cascade layer for a
testing image, since there is no visibility information given.
As a result, during the training procedure, we also have to
estimate v per cascade layer for each training image, rather
than using the manually labeled ground truth visibility that
is useful for estimating ground truth P as shown in Eq 5.

Depending on the camera projection matrix M, the vis-
ibility of each projected 2D landmark may dynamically
change along different layers of the cascade (see the top-
right part of Fig. 2). In order to estimate v, we decide to
use the 3D face surface information. We start by assum-
ing every individual has a similar 3D surface normal vector
at each of its 3D landmarks. Then, by rotating the surface
normal according to the rotation angle indicated by the pro-
jection matrix, we know that whether the rotated surface
normal is pointing toward the camera (i.e., visible) or away
from the camera (i.e., invisible). In other words, the sign of
the z-axis coordinates indicates visibility.

By taking a set of 3D scans with manually labeled 3D
landmarks, we can compute the landmarks’ average 3D sur-
face normals, denoted as a 3 × N matrix ~N. Then we use
the following equation to compute the visibility vector,

v = ~Nᵀ ·
(

m1

||m1||
× m2

||m2||

)
, (10)

where m1 and m2 are the left-most three elements at the
first and second row of M respectively, and || · || denotes
the L2 norm. For fern regressors, v is a soft visibility within
±1. For linear regressors, we further compute v = 1

2 (1 +
sign(v)), which results in a hard visibility of either 1 or 0.

In summary, we present the detailed training procedure
in Algorithm 1.

Algorithm 1: The training procedure of PIFA.

Data: 3D model {{S}Ns
i=0,

~N}, labeled data {Ii,Ui,bi}Nd
i=1

Result: Cascaded regressor parameters {Θk
1 ,Θ

k
2}Kk=1

/* 3D modeling */
1 foreach i = 1, · · · , Nd do
2 Estimate Mi and pi via Eq. 5;

/* Initialization */
3 foreach i = 1, · · · , Nd do
4 p0

i = 0 ; . Assuming the mean 3D shape
5 v0

i = 1 ; . Assuming all landmarks visible
6 M0

i = g(M̄,bi) and Ui = M0
i S0 ;

/* Regressor learning */
7 foreach k = 1, · · · ,K do
8 Estimate Θk

1 via Eq 6 ;
9 Update Mk

i and Ui for all images ;
10 Compute vk

i via Eq 10 for all images ;
11 Estimate Θk

2 via Eq 8 ;
12 Update pk

i and Ui for all images .

Model fitting Given a testing image I with bounding box
b and its initial parameter M0 = g(M̄,b) and p0 = 0,
we can apply the learned cascaded coupled-regressor for
face alignment. Basically we iteratively use Rk

1(·; Θk
1) to

compute ∆M̂, update Mk, compute vk, use Rk
2(·; Θk

2) to
compute ∆p̂, and update pk. Finally the estimated 3D land-
marks are Ŝ = S0 +

∑
i p

K
i Si, and the estimated 2D land-

marks are Û = MK Ŝ. Note that Ŝ carries the individual
3D shape information of the subject, but not necessary in
the same pose as the 2D testing image.

4. Experimental Results
Datasets The goal of this work is to advance the capabil-
ity of face alignment on in-the-wild faces with all possible
view angles, which is the type of images we desire when se-
lecting experimental datasets. However, very few publicly
available datasets satisfy this characteristic, or have been
extensively evaluated in prior work (see Tab. 1). Neverthe-
less, we identify three datasets for our experiments.

AFLW dataset [15] contains ∼25, 000 in-the-wild face
images, each image annotated with the visible landmarks
(up to 21 landmarks), and a bounding box. Based on our
estimated M for each image, we select a subset of 5, 200
images where the numbers of images whose absolute yaw
angles within [0◦, 30◦], [30◦, 60◦], [60◦, 90◦] are roughly
1
3 each. To have a more balanced distribution of the left
vs. right view faces, we take the odd indexed images among
5, 200 (i.e., 1st, 3rd), flip them horizontally, and use them
to replace the original images. Finally, a random partition
leads to 3, 901 and 1, 299 images for training and testing re-
spectively. As shown in Tab. 1, among the methods that test
on all poses, we have the largest number of testing images.



AFW dataset [48] contains 205 images and in total 468
faces with different poses within ±90◦. Each image is la-
beled with visible landmarks (up to 6), and a face bounding
box. We only use AFW for testing.

Since we are also estimating 3D landmarks, it is im-
portant to test on a dataset with ground truth, rather
than estimated, 3D landmark locations. We find BP4D-S
database [45] to be the best for this purpose, which con-
tains pairs of 2D images and 3D scans of spontaneous fa-
cial expressions from 41 subjects. Each pair has semi-
automatically generated 83 2D and 83 3D landmarks, and
the pose. We apply a random perturbation on 2D land-
marks (to mimic imprecise face detection) and generate
their enclosed bounding box. With the goal of selecting
as many non-frontal view faces as possible, we choose a
subset where the numbers of faces whose yaw angle within
[0◦, 10◦], [10◦, 20◦], [20◦, 30◦] are 100, 500, and 500 re-
spectively. We randomly select half of 1, 100 images for
training and the rest for testing, with disjoint subjects.
Experiment setup Our PIFA approach needs a 3D model
of {S}Ns

i=0 and ~N. Using the BU-4DFE database [39] that
contains 606 3D facial expression sequences from 101 sub-
jects, we evenly sample 72 scans from each sequence and
gather a total of 72 × 606 scans. Based on the method in
Sec. 3.1, the resultant model has Ns = 30 for AFLW and
AFW, and Ns = 200 for BP4D-S.

During the training and testing, for each image with a
bounding box, we place the mean 2D landmarks (learned
from the training set) on the image such that the landmarks
on the boundary are within the four edges of the box. For
training with linear regressors, we set K = 10, λ = 120,
while K = 75 for fern regressors.
Evaluation metric Given the ground truth 2D landmarks
Ui, their visibility vi, and estimated landmarks Ûi of
Nt testing images, we have two ways of computing the
landmark estimation errors: 1) Mean Average Pixel Error
(MAPE) [40], which is the average of the estimation errors
for visible landmarks, i.e.,

MAPE =
1

∑Nt

i |vi|1

Nt,N∑

i,j

vi(j)||Ûi(:, j)−Ui(:, j)||,

(11)
where |vi|1 is the number of visible landmarks of image
Ii, and Ui(:, j) is the jth column of Ui. 2) Normalized
Mean Error (NME), which is the average of the normalized
estimation error of visible landmarks, i.e.,

NME =
1

Nt

Nt∑

i

(
1

di|vi|1

N∑

j

vi(j)||Ûi(:, j)−Ui(:, j)||),

(12)
where di is the square root of the face bounding box size, as
used by [40]. Note that normally di is the inter-eye distance
in prior face alignment work dealing with near-frontal faces.

Table 2: The NME(%) of three methods on AFLW.

Nt PIFA CDM RCPR
1, 299 6.52 7.15

783 6.08 8.65

Given the ground truth 3D landmarks Si and estimated
landmarks Ŝi, we first estimate the global rotation, trans-
lation and scale transformation so that the transformed Si,
denoted as S′i, has the minimum distance to Ŝi. We then
compute the MAPE via Eq 11 except replacing U and Ûi

with S′i and Ŝi, and vi = 1. Thus the MAPE only measures
the error due to non-rigid shape deformation, rather than the
pose estimation.
Choice of baseline methods Given the explosion of face
alignment work in recent years, it is important to choose ap-
propriate baseline methods so as to make sure the proposed
method advances the state of the art. In this work, we se-
lect three recent works as baseline methods: 1) CDM [40]
is a CLM-type method and the first one claimed to per-
form pose-free face alignment, which has exactly the same
objective as ours. On AFW it also outperforms the other
well-known TSPM method [48] that can handle all pose
faces. 2) TCDCN [46] is a powerful deep learning-based
method published in the most recent ECCV. Although it
only estimates 5 landmarks for up to∼60◦ yaw, it represents
the recent development in face alignment. 3) RCPR [3]
is a regression-type method that represents the occlusion-
invariant face alignment. Although it is an earlier work than
CoR [41], we choose it due to its superior performance on
the large COFW dataset (see Tab. 1 of [41]). It can be seen
that these three baselines not only are most relevant to our
focus on pose-invariant face alignment, but also well rep-
resent the major categories of existing face alignment algo-
rithms based on [33].
Comparison on AFLW Since the source code of RCPR
is publicly available, we are able to perform the training
and testing of RCPR on our specific AFLW partition. We
use the available executable of CDM to compute its per-
formance on our test set. We strive to provide the same
setup to the baselines as ours, such as the initial bounding
box, regressor learning, etc. For our PIFA method, we use
the fern regressor. Because CDM integrates face detection
and pose-free face alignment, no bounding box was given
to CDM and it successfully detects and aligns 783 out of
1, 299 testing images. Therefore, to compare with CDM,
we evaluate the NME on the same 783 testing images. As
shown in Tab. 2, our PIFA shows superior performance to
both baselines. Although TCDCN also reports performance
on a subset of 3, 000 AFLW images within ±60◦ yaw, it
is evaluated with 5 landmarks, based on NME when di is
the inter-eye distance. Hence, without the source code of
TCDCN, it is difficult to have a fair comparison on our sub-
set of AFLW images (e.g., we can not define di as the inter-



Table 3: The comparison of four methods on AFW.

Nt N Metric PIFA CDM RCPR TCDCN
468 6 MAPE 8.61 9.13

313 5 NME 9.42 9.30 8.20
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Figure 3: The NME of five pose groups for two methods.

eye distance due to profile view faces). On the 1, 299 testing
images, we also test our method with linear regressors, and
achieve a NME of 7.50, which shows the strength of fern
regressors.
Comparison on AFW Unlike our specific subset of
AFLW, the AFW dataset has been evaluated by all three
baselines, but different metrics are used. Therefore, the re-
sults of the baselines in Tab. 3 are from the published pa-
pers, instead of executing the testing code. One note is that
from the TCDCN paper [46], it appears that all 5 landmarks
are visible on all displayed images and no visibility estima-
tion is shown, which might suggest that TCDCN was eval-
uated on a subset of AFW with up to ±60◦ yaw. Hence,
we select the total of 313 out of 468 faces within this pose
range and test our algorithm. Since it is likely that our sub-
set could differ to [46], please take this into consideration
while comparing with TCDCN. Overall, our PIFA method
still performs comparably among the four methods. This is
especially encouraging given the fact that TCDCN utilizes
a substantially larger training set of 10, 000 images - more
than two times of our training set. Note that in addition
to Tab. 2 and 3, our PIFA also has other benefits as shown
in Tab. 1. E.g., we have 3D and visibility estimation, while
RCPR has no 3D estimation and TCDCN does not have vis-
ibility estimation.
Estimation error across poses Just like pose-invariant
face recognition studies the recognition rate across
poses [18,19], we also like to study the performance of face
alignment across poses. As shown in Fig. 3, based on the
estimated projection matrix M and its yaw angles, we parti-
tion all testing images of AFLW into five bins, each around
a specific yaw angle. Then we compute the NME of testing
images within each bin, for our method and RCPR. We can
observe that the profile view images have in general larger
NME than near-frontal images, which shows the challenge
of pose-invariant face alignment. Further, the improvement
of PIFA over RCPR is consistent across most of the poses.
Estimation error across landmarks We are also inter-

Figure 4: The NME of each landmark for PIFA.

Figure 5: 2D and 3D alignment results of the BP4D-S dataset.

Table 4: Efficiency of four methods in FPS.

PIFA CDM RCPR TCDCN
3.0 0.2 3.0 58.8

ested in the estimation error across various landmarks, un-
der a wide range of poses. Hence, for the AFLW test set,
we compute the NME of each landmark for our method. As
shown in Fig. 4, the two eye regions have the least amount
of error. The two landmarks under the ears have the most
error, which is consistent with the intuition. These obser-
vations also align well with prior face alignment study on
near-frontal faces.
3D landmark estimation By performing the training and
testing on the BP4D-S dataset, we can evaluate the MAPE
of 3D landmark estimation, with exemplar results shown
in Fig. 5. Since there are limited 3D alignment work and
many of which do not perform quantitative evaluation, such
as [11], we are not able to find another method as the base-
line. Instead, we use the 3D mean shape, S0, as a baseline
and compute its MAPE with respect to the ground truth 3D
landmarks Si (after global transformation). We find that
the MAPE of S0 baseline is 5.02, while our method has
4.75. Although our method offers a better estimation than
the mean shape, this shows that 3D face alignment is still a
very challenging problem. We hope the effort to quantita-
tively measure the 3D estimation error, which is more diffi-
cult than its 2D counterpart, will encourage more research
activities to address this challenge.
Computational efficiency Based on the efficiency reported
in the publications of baseline methods, we compare the



Figure 6: Testing results of AFLW (top) and AFW (bottom). As shown in the top row, we initialize face alignment by placing a 2D mean
shape in the given bounding box of each image. Note the disparity between the initial landmarks and the final estimated ones, as well as
the diversity in pose, illumination and resolution among the images. Green/red points indicate visible/invisible estimated landmarks.

computational efficiency of four methods in Tab. 4. Only
TCDCN is measured based on the C implementation while
other three are all based on Matlab implementation. It can
be observed that TCDCN is the most efficient one. Con-
sider that we estimate both 2D and 3D landmarks, at 3 FPS
our unoptimized implementation is reasonably efficient. In
our algorithm, the most computational demanding part is
feature extraction, while estimating the updates for the pro-
jection matrix and 3D shape parameter has closed-form so-
lutions and is very efficient.
Qualitative results We now show the qualitative face
alignment results for images in two datasets. As shown
in Fig. 6, despite the large pose range of ±90◦ yaw, our
algorithm does a good job of aligning the landmarks, and
correctly predict the landmark visibilities. These results are
especially impressive if you consider the same mean shape
(2D landmarks) is used as the initialization of all testing
images, which has very large deformations with respect to
their final landmark estimation.

5. Conclusions

Motivated by the fast progress of face alignment tech-
nologies and the need to align faces at all poses, this paper
draws attention to a relatively less explored problem of face
alignment robust to poses variation. To this end, we propose
a novel approach to tightly integrate the powerful cascaded
regressor scheme and the 3D face model. The 3D model not
only serves as a compact constraint, but also offers an auto-
matic and convenient way to estimate the visibilities of 2D
landmarks - a key for successful pose-invariant face align-
ment. As a result, for a 2D image, our approach estimates
the locations of 2D and 3D landmarks, as well as their 2D
visibilities. We conduct an extensive experiment on a large
collection of all-pose face images and compare with three
state-of-the-art methods. While superior 2D landmark esti-
mation has been shown, the performance on 3D landmark
estimation indicates the future direction to improve this line
of research.
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