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Abstract

Matrix factorization (or low-rank matrix completion)
with missing data is a key computation in many computer
vision and machine learning tasks, and is also related to a
broader class of nonlinear optimization problems such as
bundle adjustment. The problem has received much atten-
tion recently, with renewed interest in variable-projection
approaches, yielding dramatic improvements in reliability
and speed. However, on a wide class of problems, no one
approach dominates, and because the various approaches
have been derived in a multitude of different ways, it has
been difficult to unify them. This paper provides a uni-
fied derivation of a number of recent approaches, so that
similarities and differences are easily observed. We also
present a simple meta-algorithm which wraps any existing
algorithm, yielding 100% success rate on many standard
datasets. Given 100% success, the focus of evaluation must
turn to speed, as 100% success is trivially achieved if we do
not care about speed. Again our unification allows a num-
ber of generic improvements applicable to all members of
the family to be isolated, yielding a unified algorithm that
outperforms our re-implementation of existing algorithms,
which in some cases already outperform the original au-
thors’ publicly available codes.

1. Introduction
Many problems in computer vision and machine learning

involve finding low-rank factors of a given m× n matrix M,
where some of the values are unobserved or, more generally,
are weighted by another m × n matrix W. This involves
minimization of the error function

f(U, V) = ‖W� (UV> − M)‖2F + µ(‖U‖2F + ‖V‖2F ) (1)

over unknown matrices U, V each with rank r. The opera-
tor � is Hadamard or elementwise product, and the norms
are Frobenius. For this paper, we will focus on the L2 prob-
lem as stated above which includes the nuclear norm formu-
lation [24, 17, 6]. Investigations on the L1-norm and other

variants are for future work. We further note that although
the question of choice of hyperparameters r, µ is of great
interest, our focus here is on finding the global optimum
of (1), assuming the hyperparameters have been chosen.

When the number of nonzero entries of W is small, and
particularly when entries are not missing uniformly, this is
a hard problem. In recent years, the revival of algorithms
based on variable projection (VarPro) and the Wiberg algo-
rithm has yielded great advances in success rates (that is,
percentage of runs from random starting points that reach
the global optimum), so that many once-difficult bench-
marks are now solved by almost all current algorithms.

For many other benchmarks, however, even the best cur-
rent algorithms succeed only occasionally, with only a small
fraction of runs successful. However, success rates for any
algorithm X are easily improved through the use of a meta-
algorithm, which we call “RUSSO-X”, which simply runs
algorithm X from different random starting points until the
same best-so-far optimum value is seen twice. (RUSSO-
X stands for “Restart X Until Seen Same Optimum”.)
We show that this procedure dramatically increases success
rate. On five of 13 benchmarks, it yields the best known
optimum nearly 100% of the time. On other benchmarks,
where there are other local optima with large basins of con-
vergence, one might nevertheless hope to choose the best
from several runs of RUSSO, and indeed simply repeating
it five times brings the number of successes up to 11. The
final two benchmarks are not solved by any algorithm we
tested.

The natural question then is how to select algorithm X .
This must depend on both its success rate and its runtime.
For example if X has a 5% success rate and runs in one
second, RUSSO-X has an expected runtime of about 44
seconds. If Y has a 95% success rate, and takes an hour,
RUSSO-Y will take two hours, so algorithm X is clearly
preferable. Thus, the criterion for comparison of candidates
must ultimately be mean runtime, and must be wall-clock
time. Any proxy, such as iteration counts, may not reflect
real-world practice. Even floating point operation counts
(FLOPs) may not reflect real-world performance due to
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(a) Best known minimum (0.3228)
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(b) Second best solution (0.3230)
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(c) Second best, zoomed to image

Figure 1: Illustration that a solution with function value just .06% above the optimum can have significantly worse extrapola-
tion properties. This is a reconstruction of point trajectories in the standard “Giraffe” (GIR in Table 4) sequence. Even when
zooming in to eliminate gross outliers (not possible for many reconstruction problems where points pass behind the camera),
it is clear that numerous tracks have been incorrectly reconstructed.

cache and memory effects, CPU pipelining, etc. Of course,
having decided to measure time, we need to know that the
algorithms are implemented as efficiently as possible, and
that each is taking advantage of all the speedup tricks used
by the others. In order to achieve this, we develop a uni-
fied derivation of several recent algorithms. The unification
process has the epistemological benefit that their similari-
ties and differences are clarified, but also the practical ben-
efit that each algorithm is assembled from common compo-
nents, for each of which the best performing implementa-
tion can be chosen. By doing so, we present new implemen-
tations of algorithms which are generally faster and more
reliable than the publicly available codes. We also propose
some hybrid algorithms which are better again.

The paper’s contributions therefore are:

+ A unified theoretical derivation and analysis of sev-
eral existing algorithms.

+ New re-implementations of those algorithms which
are faster and more reliable.

+ New implementations of standard variable projec-
tion (VarPro) algorithms which offer an order of mag-
nitude performance improvement over the best previ-
ously available algorithms.

+ Assessment of the meta-algorithm RUSSO which im-
proves success rates over all existing algorithms.

+ Some new datasets, including more challenging in-
stances of existing datasets, and new problem classes.

Conversely, there are limitations of the current work: We
focus on medium-scale problems, under a million visible
entries and tens of thousands of unknowns. While larger
scale data have been used (e.g. the Venice dataset [9]), they
have been subject only to synthetic missing-data patterns,
which correlate poorly with real-life performance. Some
of our conclusions will change for larger problems, but it
is hoped that our unified derivations will accelerate future
research in the large-scale domain.

We do not unify all existing algorithms (although we do
run experiments on e.g. augmented Lagrangian methods [9,
6]). Also, our experiments are run on just one architecture.

Generalizations of the Wiberg algorithm [25, 26] are not
explicitly treated, although again we hope this analysis will
enhance our understanding of those algorithms.

1.1. Do we know the global optimum?

None of the algorithms considered attempt to find global
optima, yet it is of interest to determine the extent to which
they do in fact do so. We observe that of all the experi-
ments run in the factorization literature on the same stan-
dard datasets, the best known optima have been reached
many times independently on perhaps hundreds of millions
of runs. Furthermore, in our experiments, these best-known
optima are the among only a small few that are reached mul-
tiple times.

Of course, even though no lower value is known, these
might still not be global optima for these standard datasets.
The global optimum for a given problem might have a tiny
basin of convergence which no random initialization can
ever hope to hit. But conversely, if some of the generally-
agreed optima are just local optima with a very large basin
of convergence, then we cannot hope to do better with any
currently known methods, so it remains valuable to know
how to find such optima reliably and efficiently. Figure 1
shows that it is certainly worth finding the best optimum; it
is an example where a local optimum 0.06% above the best
known value provides a qualitatively worse solution.

Some datasets in our test do have more than one strong
local optimum, and for some applications it may be valu-
able to find more than one, on which there is considerable
research [16], beyond our scope here. In these experiments,
a non-100% success rate for RUSSO gives a measure of the
volume of the basins of convergence of secondary optima.
In these benchmarks, this was no larger than 70%, so 3-5
runs of RUSSO does yield the best known optimum.



1.2. Background

It is nearly forty years since Wiberg addressed the prob-
lem of principal components analysis in the presence of
missing data [30], and twenty since Tomasi and Kanade
demonstrated the effectiveness of matrix factorization in
3D reconstruction from images [27]. Then followed nu-
merous approaches to the optimization of (1) based on first
order algorithms such as alternating least squares (ALS),
an instance of block coordinate descent. While Buchanan
and Fitzgibbon [5] showed that damped second-order al-
gorithms could provide significantly improved convergence
rates, they also incorrectly classified Wiberg’s algorithm as
an instance of coordinate descent. Okatani and Deguchi re-
considered Wiberg’s algorithm [19] and showed that it too
offered second-order convergence rates, and that a damped
update further cemented its advantage, leading to dramatic
performance improvements over the then state of the art.

Two concepts are key here. First is the Gauss-Newton
(GN) algorithm, which make use of the objective’s being a
sum of squared residuals. Writing (1) as the squared norm
of a vector function ε yields

f(U, V) = ‖ε(U, V)‖22, (2)

and then the GN algorithm approximates the Hessian of f
(as used in [5]) by the square of the Jacobian of ε. Fur-
ther adding a damping term [5, 20] yields the Levenberg-
Marquardt algorithm.

The second concept in these recent algorithms [7, 20, 12]
is variable projection (VarPro): the problem is solved by
eliminating one matrix of larger dimension from the origi-
nal objective function. Although the derivations of individ-
ual algorithms may have been inspired by different sources,
they are all related to the approach dubbed variable projec-
tion by Golub and Pereyra [11]: in cases where the objec-
tive function is bivariate and the cost vector is linear in one
block of variables (say V), then perform second-order opti-
mization on a new objective function which eliminates that
block:

f∗(U) := min
V
f(U, V). (3)

In (1), the objective is linear in both blocks, so we can
choose which to eliminate. We will assume “landscape”
matrices where m < n, as “portrait” problems can simply
be solved transposed, inverting the roles of U and V, so it is
always appropriate to eliminate V.

Ruhe and Wedin [23] considered VarPro in the Gauss-
Newton scenario, defining a new vector function

ε∗(U) = ‖ε(U, V∗(U))‖22 (4)

defined in terms of V∗(U) = arg minV ‖ε(U, V)‖22. They
present three numbered algorithms we call RW1, RW2,

RW3. RW1 is the Gauss-Newton solver on the new ob-
jective function, using the analytic Jacobian ∂ε

∂ vec U . RW2,
like Wiberg, approximates this Jacobian by eliminating a
term. RW3 is alternation (ALS). Whether using the full
Gauss-Newton matrix or its approximation is better is still
debated [21], and has been explored previously in the con-
text of matrix factorization [12]. Our work extends these
comparisons.

2. Synthesis of current approaches
This section derives several existing approaches in a uni-

fied way, including analytic forms of derivatives and other
relevant quantities useful for optimization. Some nota-
tions that will be used: the space of symmetric n × n ma-
trices is denoted Sn. The total number of unknowns is
N = mr + nr. This section depends on several vec and
Kronecker product (⊗) identities from [18, 14], which are
repeated in [13]. Given the plethora of naming conven-
tions in the literature, we felt it did not reduce complexity to
choose one of them, and instead we use mnemonic names: M
is the Measurements; W is Weights; and U and V are a pair of
unknowns. Finally, some quantities that are used through-
out are the r× r identity matrix Ir, and the constant matrix
Kmr which is such that

Kmr vec(U) = vec(U>), (5)

and the residue matrix R and its transformation Z which are

R(U, V) := W� (UV> − M) (6)
Z(U, V) := (W� R)⊗ Ir. (7)

When the above occur “starred”, e.g. R∗, they are a func-
tion of U only i.e. R∗(U) := R(U, V∗(U)), and when applied
to vector arguments, e.g. R∗(u), they reshape the arguments.
A tilde over a variable, such as Ũ, W̃ is mnemonic: the vari-
able’s definition is a sparse matrix whose nonzero entries
are (weighted) copies of the entries of the tilde’d matrix.

2.1. Vectorization of the cost function

We begin by vectorizing the cost function as in (2). Not-
ing that ‖X‖2F = trace(X>X) = ‖ vec(X)‖22, minimizing (1)
is equivalent to minimizing

‖ε(U, V)‖22 :=

∥∥∥∥∥∥
ε1(U, V)
ε2(U)
ε3(V)

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
Π vec(W� (UV> − M))√

µ vec(U)√
µ vec(V>)

∥∥∥∥∥∥
2

2

where Π is a fixed p×mn projector matrix, where p is the
number of visible elements, which eliminates known-zero
entries from ε1. Using some linear algebra basics from [18]
and [14], we define

ε1(U, V) = Π diag(vec W) vec(UV> − M) (8)

:= W̃ vec(UV>)− W̃m (9)



where W̃ is Π diag(vec(W)) and m is vec(M). Defining
u := vec(U), v := vec(V>) and m̃ := W̃m yields

ε1(U, V) = W̃(In ⊗ U) vec(V>)− m̃ (10)

= Ũv − m̃. // Ũ := W̃(I⊗ U) (11)

( = Ṽu− m̃.) // Ṽ := W̃(V⊗ I) (12)

Again, recall that Ũ is a rearrangement of the entries of U,
and hence of u. The resulting vectorized cost function is∥∥∥∥∥∥

ε1(u,v)
ε2(u)
ε3(v)

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
Ũv − m̃√

µu√
µv

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
Ṽu− m̃√

µu√
µv

∥∥∥∥∥∥
2

2

. (13)

2.2. Block coordinate descent

We first review coordinate descent (a.k.a. alternation),
partly in support of the VarPro derivation in §2.5. Since
the cost function is bilinear, we can eliminate either u or v,
by taking the partial derivative with respect to U and V and
setting them to 0. i.e.

v∗(u) = arg min
v

∥∥∥∥Ũv − m̃√
µv

∥∥∥∥2
2

(14)

= (Ũ>Ũ + µI)−1Ũ>m̃ (15)

= Ũ−µm̃, (16)

where X−µ := (X>X + µI)−1X>. A similar calculation
produces u∗(v) = (Ṽ>Ṽ+µI)−1Ṽ>m̃. Alternation updates
one matrix at a time, so iteration k is:

vk+1 = Ũ
−µ
k m̃ (17)

uk+1 = Ṽ
−µ
k+1m̃. (18)

As previously reported in the literature [5], this approach is
known to be vulnerable to flatlining.

2.3. Joint optimization

Joint optimization updates all (m + n)r parameters si-
multaneously by stacking into the vector x = [u;v] and
using second-order optimization. The iteration k update is

xk+1 = xk − (Hk)−1g (19)

where the matrix H ∈ SN is some function of or approxi-
mation to the Hessian ∇∇>f at xk, and g is the gradient
∇f(xk). Different choices lead to different, but closely re-
lated, algorithms.

2.4. “Plug and play” notation

We present a “plug and play” summary of these op-
tions in Table 2, where text colouring and bracketing is
used to indicate which components are active in each of

several variants. For example, an unregularized Gauss-
Newton algorithm is given by including only the terms in
black. Levenberg-Marquardt (LM) is obtained by adding
black and 〈angle-bracketed pink〉 terms. Damped New-
ton [5] combines black with [bracketed orange]FN and
〈angle-bracketed pink〉. While this may appear unnecessar-
ily garish, it allows us quickly to observe that LM is not just
the same as adjusting the regularizer µ, because the latter
has additional terms in the gradient. It also shows clearly
the differences between Gauss-Newton and full Newton.

2.5. Variable projection (VarPro), unregularized

The key derivation in applying VarPro is to compute the
derivative of v∗(u), from (16). From [13], this is

dv∗

du
= −(Ũ>Ũ + µInr)

−1(Ũ>Ṽ∗ + Z∗
>
Kmr) (20)

where Z∗ is from (7). Henceforth, to simplify the analysis
we will treat only the unregularized (µ = 0) case. Except-
ing the RTRMC algorithm of Boumal and Absil [3], which
applies regularized VarPro using the exact Hessian matrix,
the rest of the considered algorithms use no regularization
and still obtain good optima with sound extrapolation. Then
expanding (20), and colorizing yields

dv∗

du
= −[Ũ†Ṽ∗]RW2 − [(Ũ>Ũ)−1Z∗>Kmr]RW1 (21)

where the [green]RW2 term is the approximation used
in RW2 and Damped Wiberg, while [blue]RW1 is added
for RW1 or Chen’s LM-SGN . This adds corresponding
switches to the Hessian approximation as shown in Table 1.
Note that for our modification of Chen’s algorithms we
have replaced orth with retraction using the q-factor (i.e.
U = qorth(U) is [U,∼] = qr(U, 0) in MATLAB).

2.6. Manifold optimization

It is clear that the objective function for variable projec-
tion has gauge freedom [3, 7] which means that f∗(U) =
f∗(UA) for any orthonormal r × r matrix A. If µ = 0 then
this is true for any invertible A. This is equivalent to solu-
tions lying on the Grassmann manifold [3, 7]. It is natural
to ask if poor convergence on the matrix factorization prob-
lem could be caused by this gauge freedom, so methods to
address it have been proposed. The book on Riemannian
manifold optimization by Absil et al. [1] suggests that in-
stead of a standard second-order VarPro update

∆u = −H∗−1g∗ = arg min
δ

g∗>δ +
1

2
δ>H∗δ, (22)

the update should be the solution to a projected subproblem
with projected gradient g∗p and Hessian H∗p

∆u = arg min
δ⊥u

g∗>p δ +
1

2
δ>H∗pδ (23)



Algorithm Framework Manifold retraction
ALS [4] RW3 (ALS) None
PowerFactorization [4, 29] RW3 (ALS) q-factor (U = qorth(U))
LM-S [7] Newton + 〈Damping〉 orth (replaced by q-factor )
LM-SGN [8, 12] RW1 (GN) + 〈Damping〉 (DRW1 equiv.) orth (replaced by q-factor )
LM-M [7] Reducedr Newton + 〈Damping〉 orth (replaced by q-factor )
LM-MGN [7] Reducedr RW1 (GN) + 〈Damping〉 orth (replaced by q-factor )
Wiberg [19] RW2 (Approx. GN) None
Damped Wiberg [20] RW2 (Approx. GN) + 〈Projection const.〉P + 〈Damping〉 None
CSF [12] RW2 (Approx. GN) + 〈Damping〉 (DRW2 equiv.) q-factor (U = qorth(U))
RTRMC [3] Projectedp Newton + {Regularization} + 〈Trust Region〉 q-factor (U = qorth(U))
LM-SRW2 RW2 (Approx. GN) + 〈Damping〉 (DRW2 equiv.) q-factor (U = qorth(U))
LM-MRW2 Reducedr RW2 (Approx. GN) + 〈Damping〉 q-factor (U = qorth(U))
DRW1 RW1 (GN) + 〈Damping〉 q-factor (U = qorth(U))
DRW1P RW1 (GN) + 〈Projection const.〉P + 〈Damping〉 q-factor (U = qorth(U))
DRW2 RW2 (Approx. GN) + 〈Damping〉 q-factor (U = qorth(U))
DRW2P RW2 (Approx. GN) + 〈Projection const.〉P + 〈Damping〉 q-factor (U = qorth(U))
1
2H
∗ = Pr

>(Ṽ∗>(Ip − [ŨŨ†]RW2)Ṽ∗ + [K>mrZ
∗(Ũ>Ũ)−1Z∗>Kmr]RW1 × [−1]FN

+[K>mrZ
∗Ũ†Ṽ∗Pp + PpṼ

∗>Ũ†>Z∗>Kmr]FN + 〈αIr ⊗ UU>〉P + 〈λImr〉
)
Pr

Table 1: Unified analysis of algorithms in the literature (with citations) and our proposals. The bottom row is the Hessian
approximation whose terms are switched by the choice of algorithm. More details can be found in the supplementary material.

Gauss-Newton + [Full Newton]FN

w/o {Regularization} w/o 〈Damping〉

J =

 Ṽ Ũ{√
µImr

} {√
µInr

}


1
2
g =

[
Ṽ>ε1 + {µu}
Ũ>ε1 + {µv}

]

1
2
H =

[
Ṽ>Ṽ+ {µImr}+ 〈λImr〉 Ṽ>Ũ+ [K>mrZ]FN

Ũ>Ṽ+ [Z>Kmr]FN Ũ>Ũ+ {µInr}+ 〈λInr〉

]

Table 2: Computations for joint optimization. Best viewed
in colour, but bracketing is equivalent.

Algorithm Framework
CE LM GN + 〈Damping〉
CE LMI GN + 〈Damping〉 with inner iterations
CE ALM 10 ALS→ CE LM
CE ALMI 10 ALS→ CE LMI
CE ARULM 10 Reg. ALS→ Reg. CE LM→ CE LM
CE ARULMI 10 Reg. ALS→ Reg. CE LMI→ CE LMI

Table 3: Our proposals of joint optimization algorithms
based on the unified analysis. Above algorithms are all im-
plemented using Ceres-solver [2]. The Ceres documenta-
tion describes inner iterations as the non-linear generaliza-
tion of Ruhe & Wedins Algorithm II (RW2).

where δ⊥u is the linear constraint U> unvec(δ) = 0. This
constrains the update to be made on the subspace tangential
to the current U. It turns out [13] that the projected gradient
and the Gauss-Newton matrix are the same as the originals.
When ∆u is applied, there is also retraction onto the mani-
fold, so U = qorth(unvec(u + ∆u)).

Chen [7] introduced the algorithm LM M along with
LM S, which introduces Grassmann manifold projection
using the approach of Manton et al. [15]. This involves
solving a reduced subproblem, in which the dimension of
the update is reduced from Rmr to R(m−r)r which is or-
thogonal to current U, minimizing

∆u = Pr
>
(

arg min
δ

g∗>r δ + δ>H∗rδ

)
(24)

where Pr ∈ R(m−r)r×mr and H∗r ∈ S(m−r)r are defined in
the supplementary material [13]. A similar connection was
also recently made in the field of control theory [28].

The hard constraint U> unvec(δ) = 0 may also be re-
laxed by adding a penalty term as follows:

g∗>p δ + δ>H∗pδ + 〈α‖U> unvec(δ)‖22〉P . (25)

This in fact introduces the same term as the one introduced
by Okatani et al. [20] when α is 1.

2.7. Summary

Table 1 summarizes several existing algorithms in terms
of the above components, showing how each comprises



ID Dataset Dimension r Filled (%) Unique W columns (%)
Best known
optimum

DIN Dinosaur [12] 72× 4, 983 4 32,684 9.2 275 / 4,983 (5.5 %) 1.134558
Din Dinosaur trimmed [5] 72× 319 4 5,302 23.1 106 / 319 (33.2 %) 1.084673
GIR Giraffe [5] 166× 240 6 27,794 69.8 95 / 240 (39.6 %) 0.322795
FAC Face [5] 20× 2, 944 4 34,318 58.3 679 / 2,944 (23.1 %) 0.022259
Fac Face trimmed [20] 20× 2, 596 4 33,702 64.9 627 / 2,596 (24.2 %) 0.022461
Scu Sculpture trimmed [6] 46× 16, 301 3 498,422 66.5 5,395 / 16,301 (33.1 %) 0.089680
UB4 UM boy [22] 110× 1, 760 4 27,902 14.4 418 / 1,760 (23.8 %) 1.266484
UB5 UM boy [22] 110× 1, 760 5 27,902 14.4 418 / 1,760 (23.8 %) 0.795494
UGf UM gir. fg. [22] 380× 4, 885 6 168,286 9.1 2,381 / 4,885 (48.7 %) 0.774258
UGb UM gir. bg. [22] 380× 6, 310 4 164,650 6.9 380 / 6,310 (38.0 %) 0.603904*

JE1 Jester 1 [10] 100× 24, 983 7 1,810,455 72.5 13,718 / 24,983 (54.9 %) 3.678013
JE2 Jester 2 [10] 100× 23, 500 7 1,708,993 72.7 12,788 / 23,500 (54.4 %) 3.703549
NET Netflix 2k 2, 000× 50, 000 4 2,606,298 2.7 N/A 0.806635

Table 4: Datasets used for the experiments. *For UGb, this minimum has not been found by any other run.

Algorithm Successes / 20 Time (ms / iter)
Orig. Mod. Orig. Mod.

LM-S 4 4 380 140
LM-M 1 6 369 143
LM-MGN 15 19 205 109

Table 5: Comparison on one available codebase [7] be-
fore and after profile-guided optimization on the trimmed
dinosaur (Din) dataset.

Extension Algorithm Code
DW Damped Wiberg [20] New
PG CSF CSF [12] Original
TO DW Damped Wiberg [20] Original
NB RTRMC RTRMC [3] Original
CH LM S LM-S [7] Modified
CH LM S GN LM-SGN [8, 12] Modified
CH LM S RW2 LM-SRW2 Modified
CH LM M LM-M [7] Modified
CH LM M GN LM-MGN Modified
CH LM M RW2 LM-MRW2 Modified
DB BALM BALM [9] New
RC ALM ALM [6] New
RC RCALM Rank-continuation [6] New

Table 6: Algorithm tags referred to the original authors’
naming. “Code” is “New” for our re-implementations of ex-
isting algorithms. DW uses new implementation of VarPro.

some subset. It also includes some “new” algorithms such
as DRW2, which is just Ruhe and Wedin’s original Algo-
rithm II, but with damping, which has not previously been
proposed for matrix factorization.

3. Implementation issues

Having isolated key components of the algorithm, it is
now straightforward to re-implement existing methods, and
to explore issues of numerical stability and speed. In do-
ing so, we have uncovered some “secrets”: three sources of
speed improvement, and one important numerical stability
enhancement. Of course we don’t mean these have been
kept deliberately secret, but that they are apparently small
elements which can have a large impact on performance.

Numerical issues emerge in the implementation of
these algorithms. Foremost is in the inversion of the Hes-
sian approximation, and in the projection onto the manifold.
We have found that the use of QR factorization as proposed
by Okatani et al. [20] in both of these (rather than Matlab’s
chol or orth respectively) significantly improves accuracy
and performance. Note that speed improvements might also
adversely affect numerical stability, but in fact in all cases
we have investigated, it improves it.

Profile-guided optimization amounts to exploiting
standard Matlab tricks for code speedup, including MEX
file implementations of some Kronecker products. This of-
fered a factor of 2-3 improvement on the set of Chen’s al-
gorithms as shown in Table 5.

Removal of redundant computations Not all exist-
ing implementations took advantage of the symmetry in the
Hessian, and in fact there is another internal symmetry [13]
which yields a 4-fold speedup.

UW-block coalescing A more subtle speedup is ob-
tained in the QR decomposition of Ũ. For the un-regularized
case, v∗ = Ũ†m̃. We note that the use of QR decomposition
by Okatani et al. [20] is very useful since the decomposed
outputs can be re-used for the computation of the Gauss-
Newton matrix. Given that Ũ = ŨQŨR, the above equation
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Figure 2: (a) Success rates in reaching the best known optimum. Grey cells crashed or timed out. (b) Success rates of the
RUSSO versions. Gray cells now also include timeouts where the optimum was not seen twice (e.g. a success rate of 1%
would require thousands of runs, so timeout is more likely). The “Face” and “Unwrap BG” datasets have large secondary
minima so 30-50% of runs terminate at those. The RUSSO-DRW family succeed on the largest number of benchmarks.

becomes

v∗ = Ũ−1R Ũ>Qm̃. (26)

Since Ũ = W̃(In ⊗ U) where W̃ is the truncated version of
diag vec(W), we can observe that Ũ is block-diagonal with
the i-th block being W̃iU where W̃i is the truncated version of
diag vec(Wi) and Wi is the i-th column of the weight matrix
W. Noting that Ũ>QŨQ = I by definition, ŨQ is also going to
have the same block-diagonal structure with the i-th block
being the q-factor of the i-th block of Ũ. In other words,
if there exists a set of same columns in the weight matrix,
we only have to compute the q-factor of the corresponding
blocks once. Since all the real datasets we have consist of
indicator-type weight matrix which has values either 0 or
1, such repetition is more likely to occur. The speedups
obtained from this approach were a factor of 2.3 on average,
ranging from 1 (no speedup, on random-like data) to 5 (full
dino sequence).

4. Experimental results
All experiments were carried out on a Macbook Pro

(Late 2013) with 2.3 GHz Intel Core i7 Haswell processor
and 16 GB 1600 MHz DDR3 memory. We used Ceres [2]
for joint optimization. All other algorithms used MATLAB
R2014b. All experiments were run in single-threaded mode
to compare the speed of the algorithms. All algorithms are
essentially equally parallelizable.

4.1. Datasets

For the experiments, we have used all the datasets
listed in Table 4. The problem classes are: rigid SfM

(dinosaur [5]), non-rigid SfM (giraffe [5], UM boy and
UM giraffe foreground and background [22]), photometric
stereo (face [5] and sculpture [6]) and recommender sys-
tems (Jester and Netflix). In previous evaluations, some
datasets were trimmed, so we also include the original sets
in the evaluation, indicated by the use of all caps for the
originals, and mixed case for the trimmed sets.

4.2. Experimental conditions

On each dataset, we ran each algorithm multiple times,
usually between 20 and 100, from random starting points.
This was done by drawing initial entries of U from multi-
variate Normal distribution N (0, I). i.e. U = randn(m, r).

In order to set up a fair competing environment on each
dataset, all algorithms at the same run number were initial-
ized with the same starting points. For those algorithms re-
quiring initial V as well (e.g. CE LM and DB BALM) were
given V∗(U) computed from (16) so that they would start at
the same random points as other VarPro-based algorithms,
which require only initial U.

Each run was continued until either when the maximum
number of iterations (set to be 300) was reached or the cost
function improvement dropped below pre-defined tolerance
10−10. Runtime and success rates were measured as de-
scribed in the supplementary material [13].

5. Discussions and conclusions

In this paper, we have addressed the important problem
of matrix factorization with missing data. We have argued
that evaluation of competing algorithms must be based on
real-world runtime. In order to be able to discuss runtime,



(a) Mean time for RUSSO-X 

Scu GIR Din DIN Fac FAC UB4 UB5 UGf UGb JE1 JE2 NET

ALS

DW

DRW1

DRW1P

DRW2

DRW2P

PG_CSF

TO_DW

CH_LM_S

CH_LM_S_GN

CH_LM_S_RW2

CH_LM_M

CH_LM_M_GN

CH_LM_M_RW2

CE_LM

CE_LMI

CE_ALM

CE_ALMI

CE_ARULM

CE_ARULMI

NB_RTRMC

RC_ALM

RC_RCALM

DB_BALM
N/A

1sec

5sec

10sec

20sec

30sec

1min

2min

5min

10min

1hr

T/O
(b) Standard deviation / mean

Scu GIR Din DIN Fac FAC UB4 UB5 UGf UGb JE1 JE2 NET

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Runtime on all algorithms, all datasets. (a) Mean runtime of RUSSO-X . (b) Standard deviation divided by mean.
Where σ = T/O, too few runs converged to estimate RUSSO’s performance. On the UGb dataset, no algorithm converged
to the same solution twice.

we developed a generalized theoretical framework for sev-
eral known approaches. We have also shown how a meta-
algorithm, RUSSO-X greatly increases performance, when
used with standard VarPro.

By discussing runtime, other algorithm parameters may
be more sensibly set. For example, the maximum number
of iterations taken is an algorithm parameter which affects
runtime and accuracy. Figure 4 shows how, while accuracy
always increases with MaxIter, the safety net of RUSSO
allows smaller values to be chosen, improving overall per-
formance.

By re-implementing standard variable projection algo-
rithms (our “DRW” set), we have increased performance on
the small and medium-scale problems over the state of the
art by an order of magnitude (factors range from 5 to 15).
We have introduced new datasets which seem more tricky
to optimise than those previously in use, and open-source
implementations of all code, data and evaluations are avail-
able [13]. However, we do not propose that these datasets
should become a new benchmark for this problem—as in-
dividual practitioners find problems where existing algo-
rithms fail, we want these to be incorporated into this frame-
work.

It remains the case that alternation wrapped in RUSSO
(RUSSO-ALS) is still competitive for some specialized
datasets, for example the “easy” sets with high fill rates
(Scu, Gir), but also the large-scale datasets (JE1, JE2).
However, even then, it is beaten by RUSSO-DRW2P. How-
ever, out-of-core implementation of the latter does not have
an easy off-the-shelf implementation to date.

In order to quantify the speedup, we also hand-optimized
several existing publicly available codes, and showed that
the speedup obtained by optimization, while potentially sig-
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Figure 4: Performance as a function of MaxIter (algorithm
DRW2P). While the success rate metric increases monoton-
ically with MaxIter, it is better in practice to fail early and
try another starting point. Runtime to second success allows
selection of a value that improves real-world performance
for a given class of problem.

nificant, is not the main reason for our new performance.
Conversely, our re-implementation of Damped Wiberg al-
gorithm [20] is comparable to the state of the art, but the
new contribution is to cast it as a variable projection algo-
rithm without manifold projection.

A tantalizing note for the future is recent work in robust
estimation where VarPro performs significantly worse than
joint optimization [31].
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