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Abstract

This paper presents a novel method to predict future hu-
man activities from partially observed RGB-D videos. Hu-
man activity prediction is generally difficult due to its non-
Markovian property and the rich context between human
and environments. We use a stochastic grammar model to
capture the compositional structure of events, integrating
human actions, objects, and their affordances. We represent
the event by a spatial-temporal And-Or graph (ST-AOG).
The ST-AOG is composed of a temporal stochastic grammar
defined on sub-activities, and spatial graphs representing
sub-activities that consist of human actions, objects, and
their affordances. Future sub-activities are predicted us-
ing the temporal grammar and Earley parsing algorithm.
The corresponding action, object, and affordance labels are
then inferred accordingly. Extensive experiments are con-
ducted to show the effectiveness of our model on both se-
mantic event parsing and future activity prediction.

1. Introduction
Consider the image from a video shown in Figure 1(a).

A modern computer vision algorithm might reliably detect
a human pose and some key objects in the scene: a chair, a
monitor, a cup, a microwave and a water cooler. However,
we as observers are able to reason beyond the current situ-
ation. We can predict what the possible future states are to
some extent, and we can even evaluate how strong that be-
lief is – a human can easily predict which state is the most
likely future state from Figure 1(c).

The underlying reasoning of the future is more compli-
cated than appearance analysis. The observer needs to un-
derstand (i) what happened and what is happening, (ii) what
the goal of the agent is, (iii) which object(s) the agent needs
to achieve the goal, and (iv) how the agent will perform the
task. Based on this rationality, we address the problem of
event understanding and human activity prediction from the
following two perspectives: (i) a learning algorithm should
discover the hierarchical/compositional structure of events,

Figure 1: What is he going to do? (a)(b) Input RGB-D video
frames. (c) Activity prediction: human action with inter-
acting objects, and object affordances (how the agent will
perform the task). The red skeleton is the current observa-
tion. The magenta, green and blue skeletons and interacting
objects are possible future states.

and (ii) an inference algorithm should recover the hierar-
chical structure given the past observations, and be able to
predict the future based on the understanding.

We believe the task of human activity prediction is im-
portant for two main reasons. First, the ability to make pre-
dictions is key for intelligent systems and robots to perform
assistive activities. Second, predicting the future human
activities requires deep understanding of human activities.
Activity prediction enables the robot to do better task plan-
ning. There are attempts that have been made to address
this task in both the computer vision [9, 32, 1, 8, 20, 16, 23]
and the robotics community [11, 7, 39, 12, 33].

In this paper, we aim to design a model that can (i) learn
the hierarchical structure of human activities from videos,
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(ii) online infer the current state of the agent and objects
while watching a video, and (iii) predict the next states of
the agent and objects. Specifically, the state is defined by
the action of the agent, the objects that he/she is interacting
with and their affordances [5], i.e. how the objects are being
used.

The challenge is three-fold: (i) we need to model the
hierarchical structure where the Markov property does not
hold. Consider two scenarios: an agent is cleaning the mi-
crowave or microwaving food. Whether or not the agent
will open the microwave again does not depend on the
fact that the agent closed the microwave, but depends on
whether or not there is food inside. (ii) Human activities
are jointly defined by the human action, the interacting ob-
jects, and their affordances. The model needs to capture the
spatial-temporal context for event parsing. (iii) We need to
predict the human activity from a large future state space.

Inspired by computational linguistics and some recent
work in computer vision, we propose a graphical model
to represent human activities in a spatial-temporal And-Or
graph (ST-AOG), which is composed of a spatial And-Or
graph (S-AOG) and a temporal And-Or graph (T-AOG).
The T-AOG is a stochastic grammar, whose terminal nodes
are the root nodes of the spatial graph representing sub-
activities. It models the hierarchical structure of human ac-
tivities and takes the advantage of existing computational
linguistic algorithms for symbolic prediction. The S-AOG
has child nodes representing a human action, objects, and
object affordances. The S-AOG together with T-AOG cap-
tures the rich context. For future activity prediction, we first
symbolically predict the next sub-activity using the T-AOG,
and then predict the human actions and object affordances
based on current parsing and sampled future states.

1.1. Related Work

Activity recognition receives significant attention in re-
cent years, and efforts have been made to detect long-
term, complicated activities from videos. A number of
methods have been proposed to model the high-level tem-
poral structure of low-level features extracted from video
[27, 13, 18, 4, 15]. Some other approaches represent com-
plex activities as collections of attributes [17, 24, 22, 3]. As
a recent progress, another stream of work incorporates ob-
ject affordances into activity recognition: Koppula, Gupta
and Saxena [10] proposed a model incorporating object af-
fordances that detects and predicts human activities; Wei et
al. [34] proposed a 4D human-object interaction model for
event recognition. We seek to extend this to predict the fu-
ture activities.

Future activity prediction is a relatively new do-
main in computer vision. [37, 23, 9, 7, 1, 39, 12, 33,
20, 29, 16, 35] predict human trajectories/actions in vari-
ous settings including complex indoor/outdoor scenes and

crowded spaces. Walker et al. [32] predicted not only the
future motions in the scene but also the visual appearances.
In some recent work, Koppula et al. [11] used an anticipa-
tory temporal conditional random field to model the spatial-
temporal relations through object affordances. Jain et al. [8]
proposed structural-RNN as a generic method to combine
high-level spatial-temporal graphs and recurrent neural net-
works, which is a typical example that takes advantage of
both graphical models and deep learning.

Grammar models have been adopted in computer vi-
sion and robotics for various tasks. Pei et al. [20] unsu-
pervisedly learned a temporal grammar for video parsing.
Holtzen et al. [7] addressed human intent inference by em-
ploying a hierarchical task model. Xiong et al. [36] incor-
porated a spatial, temporal and causal model for robot learn-
ing. Gupta et al. [6] learned a visually grounded storyline
from videos. Grammar-based methods show effectiveness
on tasks that have inherent compositional structures.

1.2. Contributions

In comparison with the above methods, we make the fol-
lowing contributions:

• We propose a spatial-temporal And-Or graph for hu-
man activity understanding to incorporate the hierar-
chical temporal structure and the rich context captured
by actions, objects, and affordances.

• We propose an algorithm for jointly segmenting and
parsing the past observations in an online fashion by
dynamic programming.

• We propose a novel algorithm to predict the future hu-
man activities. Extensive experiments are conducted to
show the effectiveness of our approach by evaluating
the classification accuracy of actions and affordances.

2. Representation
In this section, we introduce the model we propose to

represent an activity and define the variables that will be
used in the following sections.

An And-Or graph (AOG) is a stochastic context free
grammar (SCSG) which represents the hierarchical decom-
positions from events (top level) to human actions, affor-
dances and objects (bottom level) by a set of terminal and
non-terminal nodes. The terminal nodes represent our ob-
servation (e.g. human and objects in a image). The non-
terminal nodes VNT = V And ∪ V Or encode the gram-
mar rules. An And-node V And represents a decomposi-
tion of a large entity (e.g. a microwaving-food event) into its
constituents (e.g. sub-activities such as opening microwave,
putting in food). An Or-node V Or represents the possi-
bilities of alternative choices (e.g. we can either put a cup
or put a sandwich into the microwave). For an And-node



Figure 2: Illustration of the ST-AOG. The sky-blue area in-
dicates the T-AOG, and the coral area indicates the S-AOG.
The T-AOG is a temporal grammar in which the root node
is the activity and the terminal nodes are sub-activities. The
S-AOG represents the state of a scene, including the human
action, the interacting objects and their affordances.

v ∈ V And, an And rule is defined as a deterministic decom-
position v → u1 · u2 · · ·un(v). For an Or-node v ∈ V And,
an Or rule is defined as a switch: v → u1|u2| · · · |un(v),
with p1|p2| · · · |pn(v). A parse graph pg is an instantiation
of the AOG by selecting child nodes for the Or-nodes.

Particularly, we represent the task structure as stochas-
tic context free grammar using a spatio-temporal And-Or
graph (ST-AOG) as shown in Fig. 2. The ST-AOG can
be decomposed into two parts: the spatial AOG (S-AOG)
and the temporal AOG (T-AOG). The S-AOG is composed
of one And-node expanded into a human action, interact-
ing objects and their affordances, representing the human-
object interaction for a video segment. The root And-node
of an S-AOG is a sub-activity label. The T-AOG is a tem-
poral grammar, in which the root node is the event and the
terminal nodes are sub-activities.

Formally, the ST-AOG of an event e ∈ E is denoted by
Ge =< S,VNT

⋃
VT,R,P >, where S is root node. VNT is

the set of non-terminal nodes including the sub-activity la-
bels {Se}. VT =< {Ae}, {Oe}, {Ue} > is the set of termi-
nal nodes consist of the human action labels {Ae}, the ob-
ject labels {Oe}, and the affordance labels {Ue}. R stands

for the production rules, P represents the probability model
defined on the ST-AOG.

For an event in time [1, T ], we extract the skeleton
features ΓH , object features ΓX and the interaction fea-
tures between the human and the object ΓR from the video
I . We construct a sequence of parse graphs on Γ =<
ΓH ,ΓX ,ΓR >, which is defined as PG = {pgt}t=1,··· ,T .
PG gives us the label e of the event, and a label sequence
S = {st}t=1,··· ,T representing the sub-activity labels of
all the frames. We obtain the label sequence H = {ht},
O = {ot} and U = {ut} for action, affordance and object
labels as well. By merging the consecutive frames with the
same sub-activity labels, we obtain the temporal parsing of
the video, i.e. T = {γk}k=1,··· ,K where γk = [t1k, t

2
k] rep-

resents a time interval in which the sub-activity remains the
same. We use aγk , oγk , and uγk to denote the action label,
object label and affordance label respectively for video seg-
ment Iγk . Both a and o are vectors, of which lengths are
the number of detected objects.

3. Probabilistic Formulation
In this section, we introduce the probabilistic model de-

fined on the ST-AOG. Given the extracted action, affor-
dance and object features, the posterior probability of a
parse graph sequence PG is defined as:

p(PG|Γ,Ge) ∝ p(Γ|PG)p(PG|Ge)
= p(ΓH ,ΓX ,ΓR|PG)p(PG|Ge)
= p(ΓH |PG)︸ ︷︷ ︸

action

p(ΓX |PG)︸ ︷︷ ︸
object

p(ΓR|PG)︸ ︷︷ ︸
affordance

p(PG|Ge)︸ ︷︷ ︸
grammar prior

(1)
The first three terms are likelihood terms for actions, ob-
jects, and affordances given a parse graph PG. The last
term is a prior probability of the parse graph given the gram-
mar G of event e.

3.1. Likelihood of Parse Graphs

3.1.1 Action likelihood

We extract the human skeletons from the Kinect sensor as
action features. Assuming that the prior probability for dif-
ferent actions P (A) is uniformly distributed, the prior prob-
ability for human skeleton P (ΓH) is normally distributed,
the likelihood of action features ΓH given a parse graph PG
is defined as:

p(ΓH |PG) = p(ΓH |A) =
p(A|ΓH)P (ΓH)

P (A)

∝ p(A|ΓH)P (ΓH)

=
K∏

k=1

p(Aγk |ΓγkH )P (ΓγkH )

(2)

where p(Aγk |ΓγkH ) is the detection probability of an action.



3.1.2 Object likelihood

We use the images in the object bounding boxes as object
features. The likelihood of object features ΓX given a parse
graph PG is given by:

p(ΓX |PG) = p(ΓX |O) =
p(O|ΓX)P (ΓX)

P (O)

∝ p(O|ΓX) =
K∏

k=1

p(Oγk |ΓγkX )

(3)

where we assume that both the prior probability for the im-
age P (ΓX) and P (O) for the object class are uniformly
distributed. p(Oγk |ΓγkX ) is the detection probability of an
object.

3.1.3 Affordance likelihood

Given a bounding box of an object in a RGB image, we
can extract the point cloud from the corresponding depth
image. Based on the detected human skeleton and the object
point cloud, we can extract the features for human-object
interactions, i.e. the distance between the objects and each
skeleton joint. The likelihood of human-object interaction
features ΓR given a parse graph PG is given by:

p(ΓR|PG) = p(ΓR|U) =
p(U |ΓR)P (ΓR)

P (U)
(4)

3.2. Grammar Prior of Parse Graphs

After combining the consecutive frames with the same
sub-activity labels into segments T = {γk}k=1,··· ,K , the
prior probability of a parse graph PG can be computed by:

p(PG|Ge) = P (A,O,U |e)

= [

K∏

k=1

p(aγk , oγk , uγk |sγk , γk)p(γk|sγk)]p(S|e)

= [
K∏

k=1

p(aγk |sγk)p(oγk |sγk)p(uγk |sγk)p(|γk| |sγk)]p(S|e)

(5)
where e is the root node of Ge, p(aγk |sγk), p(oγk |sγk), and
p(uγk |sγk) are probabilities of observing an action a, an
object o, and an affordance u given the sub-activity s re-
spectively. p(|γk| |sγk) is the probability of the duration of
the segment |γk| in frames given the sub-activity s, modeled
by a log-normal distribution. The Viterbi parsing likelihood
p(S|e) is the probability of the best parse of the data [28],
which is obtained after constructing an AOG based on the
temporal parsing results of all videos.

4. Learning
The learning of the ST-AOG can be decomposed into

two main parts: i) learn the symbolic grammar structure
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Figure 3: An example of a temporal grammar. The green
and yellow nodes are And-nodes and Or-nodes respectively.
The numbers on branching edges of Or-nodes represent the
branching probability. The circled numbers on edges of
And-nodes indicates the temporal order of expansion.

(T-AOG) of each event/task, and ii) learn the parameters
Θ of the ST-AOG, including the branching probabilities of
the Or-nodes, the prior distributions of human skeletons and
duration of segments.

Grammar Induction We used a modified version of the
ADIOS (automatic distillation of structure) [26] grammar
induction algorithm to learn the event grammar from raw
sequential data of symbolic sub-activities and generate the
T-AOG whose terminal nodes are sub-activities. The algo-
rithm learns the And-node and Or-nodes by generating sig-
nificant patterns and equivalent classes. The significant pat-
terns are selected according to a context sensitive criterion
defined in terms of local flow quantities in the graph: two
probabilities are defined over a search path. One is the right-
moving ratio of fan-through (through-going flux of path) to
fan-in (incoming flux of paths). The other one, similarly, is
the left-going ratio of fan-through to fan-in. The criterion is
described in detail in [26].

The algorithm starts by loading the corpus of an activity
onto a graph whose vertices are sub-activities, augmented
by two special symbols, begin and end. Each event sample
is represented by a separate path over the graph. Then it
generates candidate patterns by traversing a different search
path. In each iteration, it tests the statistical significance
of each subpath according to the context sensitive criterion.
The significant patterns are recognized as And-nodes. The
algorithm then finds the equivalent classes by looking for
units that are interchangeable in the given context. The
equivalent classes are recognized as Or-nodes. At the end
of the iteration, the significant pattern is added to the graph
as a new node, replacing the subpaths it subsumes. In our



implementation, we favor the shorter significant patterns so
that basic grammar units can be captured.

Parameter learning The maximum likelihood estimation
(MLE) of the branching probabilities of Or-nodes is simply
given by the frequency of each alternative choice [38]:

ρi =
#(v → ui)

n(v)∑
j=1

#(v → uj)
(6)

We fit a log-normal distribution for the duration of different
sub-activity video segments. A Gaussian distribution is fit-
ted for the human skeletons after aligning the skeletons to a
mean pose according to three anchor points, two shoulders
and the spine.

5. Inference
Given a video as input, our goal is to online predict the

human’s action, the object he/she is going to interact with,
and its affordance, i.e. how the object will be used. To ac-
complish this goal, we first need to parse the past observa-
tion, i.e. segment the video we have seen and label the hu-
man action, objects and affordances for each segment. Then
we predict the future states based on our current belief.

5.1. Video Parsing

For a single video, we find the parse graph PG for each
event e that best explains the extracted features Γ by maxi-
mizing the posterior probability (1) described in Sec.3:

PG = argmax
PG

p(PG|Γ,Ge)

= argmax
PG

p(ΓH |A)p(ΓX |O)p(ΓR|U)p(A,O,U |e)
(7)

Since it is intractable to directly compute the optimal PG,
we infer the approximately optimal PG by two steps: i)
We use a dynamic programming approach to segment the
video so that for each segment the action, object and affor-
dance labels remain the same, while maximizing the poste-
rior probability of the labels. ii) After obtaining the video
segmentation, we refine the labels according to Eq.7 by
Gibbs sampling. Details are described in the following sec-
tions.

5.1.1 Segmentation by dynamic programming

To find the video segmentation together with a sequence of
labels S,A,O,U , we compute the best label s, a, o, u for
each video segment with an arbitrary starting frame and
end frame and its corresponding probability. Then the seg-
mentation can be obtained by a dynamic programming ap-
proach.

For a video segment Iγ where γ = [b, f ] and a given
event grammar Ge, we compute the optimal action a, object
o ,affordance label u, and sub-activity label s by maximiz-
ing the posterior probability:

a, o, u, s = argmax
a,o,u,s

p(a, o, u, s|Γ, γ)

= argmax
a,o,u,s

p(s|a, o, u, γ)p(a, o, u|Γγ)
(8)

We approximate Equation 8 by first computing a, o, and u:

a, o, u = argmax
a,o,u

p(a, o, u|Γγ)

= argmax
a,o,u

p(a|ΓγH)p(o|ΓγO)p(u|ΓγX)
(9)

which is simply the product of detection probabilities of ac-
tion, objects and affordances. We find out s by:

s = argmax
s

p(s|a, o, u, γ)

∝ argmax
s

p(a, o, u, γ|s)p(s)

= argmax
s

p(a|s)p(o|s)p(u|s)p(|γ| |s)p(s)
(10)

Then the probability of a video until frame f explained by
our model is computed by dynamic programming:

p(f) = max
b<f
a,o,u,s

p(b)p(a, o, u, s|Γ, γ = [b, f ]) (11)

5.1.2 Refine labels by Gibbs Sampling
After obtaining the labels in a bottom-up dynamic program-
ming approach, we refine the labels according to the learned
event grammars by Gibbs sampling. For a hypothesized
event e, we assign the action, affordance and sub-activity
labels according to the following probabilities at each itera-
tion:

aγk ∼ p(ΓγkH |aγk)p(aγk |sγk) (12)

uγk ∼ p(ΓγkR |uγk)p(uγk |sγk) (13)

sγk ∼ p(aγk , oγk , uγk |sγk)p(sγ1:γk |e) (14)

where sγ1:γk are the labels for the video segments from 1
to k. For faster convergence, we use simulated annealing
during the Gibbs sampling process.

5.2. Human Activity Prediction

Given the current parsing result PG of the observed
video sequence, we use the ST-AOG to predict the next sub-
activity, action, which object the subject is going to interact
with, and how the subject will interact with the object.

Based on the current observation, we predict the fu-
ture in two stages: i) we symbolically predict the next



Figure 4: A simplified example illustrating the parsing and symbolic prediction process. In the first two figures, the red edges
and blue edges indicates two different parse graphs for the past observations. The purple edges indicate the overlap of the
two possible explanations. The red parse graph is eliminated from the third figure. For the terminal nodes, yellow indicates
the current observation and green indicates the next possible state(s).

sub-activities based on the event grammar using an Earley
parser [2]. For the current unfinished sub-activity and fu-
ture sub-activities, we sample the duration in frames based
on the learned prior distribution. ii) We predict the human
action and affordance labels according to the parse graph
and the predicted sub-activity. Assuming that the objects in
the scene do not change, we predict the future affordance
labels for the existing objects. If we predict that the subject
will not interact with an object, the affordance label will be
“stationary”.

5.2.1 Earley parser for sub-activity prediction
We employ an online symbolic prediction algorithm based
on the Earley parser to predict the next possible sub-
activities in the T-AOG constructed on the sub-activities.
Earley parser reads terminal symbols sequentially, creat-
ing a set of all pending derivations (states) that are consis-
tent with the input up to the current input terminal sym-
bol. Given the next input symbol, the parser iteratively per-
forms one of three basic operations (prediction, scanning
and completion) for each state in the current state set. In
our algorithm, we use the current sentence of sub-activities
as input into the Earley parser, and scan through all the
pending states to find the next possible terminal nodes (sub-
activities). Figure 4 shows an illustrative example of the
parsing and symbolic prediction process. We then compute
the corresponding parsing likelihood for the predicted ter-
minals and sample the sub-activity accordingly.

5.2.2 Predict the action and affordance labels
Besides the future sub-activities, we are interested in pre-
dicting the future action and affordance labels in a similar
manner of event parsing. The difficulty is that we only have
the current observation, and we cannot compute the likeli-
hood of the predicted parse graphs of the future. Therefore,
to predict the future labels, we propose to sample the future

observations (actions and object positions) based on the cur-
rent observation, and find the best interpretation of the en-
tire observation sequence. Suppose we have the observation
of the past t frames and represent the past in a sequence of
parse graphs PGt. For a future duration of d frames, we
predict the labels by maximizing the posterior probability
of PGt+d based on the current observation Γt:

p(PGt+d|Γt) =

∫

Γt:t+d

p(PGt+d,Γt:t+d|Γt)

=

∫

Γt:t+d

p(PGt+d|Γt:t+d,Γt)p(Γt:t+d|Γt)

=

∫

Γt:t+d

p(PGt+d|Γt+d)p(Γt:t+d|Γt)
(15)

The intuition is we compute a joint distribution of the future
observation and future parse graphs, and take the marginal
distribution as our prediction of the future parse graphs. We
use Monte Carlo integration to approximate this probability:

p(PGt+d|Γt) ≈ V

N

N∑

i=1

p(PGt+d|Γt:t+di ,Γt)p(Γt:t+di |Γt)

(16)
From the current observation, we sample the future human
skeleton joint positions and object positions based on the
current moving velocities with a Gaussian noise. Then the
prediction is obtained by:

PG∗ = argmax
PGt+d

p(PGt+d|Γt)

= argmax
PGt+d

V

N

N∑

i=1

p(PGt+d|Γt:t+di ,Γt)p(Γt:t+di |Γt)

= argmax
PGt+d

N∑

i=1

p(PGt+d|Γt:t+di ,Γt)p(Γt:t+di |Γt)

(17)
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Figure 5: Confusion matrices of detection results

Action Affordance
Micro Macro Micro Macro
P/R Prec. Recall F1-score P/R Prec. Recall F1-score

chance 10.0 10.0 10.0 10.0 8.3 8.3 8.3 8.3
SVM 28.3 23.4 20.3 21.7 33.4 28.8 22.4 25.2
LSTM 36.4 30.2 27.7 28.9 42.3 36.5 33.4 34.9
VGG-16 [25] 46.6 54.0 31.7 40.0 — — — —
KGS [10] 68.2 71.1 62.2 66.4 83.9 75.9 64.2 69.6
ATCRF [11] 70.3 74.8 66.2 70.2 85.4 77.0 67.4 71.9
ours 76.5 77.0 75.2 76.1 82.4 72.1 66.8 69.3

Table 1: Detection results on the CAD-120 dataset

Action Affordance
Micro Macro Micro Macro
P/R Prec. Recall F1-score P/R Prec. Recall F1-score

chance 10.0 10.0 10.0 10.0 8.3 8.3 8.3 8.3
LSTM 24.1 22.6 19.5 19.0 31.2 28.5 23.4 25.7
KGS [10] 28.6 – – 11.1 55.9 – – 11.6
ATCRF [11] 49.6 – – 40.6 67.2 – – 41.4
ours 55.2 56.5 56.6 56.6 73.5 58.9 53.8 56.2

Table 2: Prediction results on the CAD-120 dataset

6. Experiments and Evaluations
In this section we describe the evaluation of our proposed

approach on online parsing and prediction. We perform our
experiments on CAD-120 dataset [10]. It has 120 RGB-D
videos of four different subjects performing 10 activities,
each of which is a sequence of sub-activities involving 10
actions (e.g. reaching, opening), and 12 object affordance
(e.g. reachable, openable) in total. We compare our method
with recently proposed methods [11, 10] and several other
baselines. 1

6.1. Parsing Results

We parsed the videos frame by frame in an online fash-
ion and evaluate the detection results for the current frame.
The model is trained on three subjects and tested on a new
subject. Results are obtained by four-fold cross validation
by averaging across the folds. We trained the action and af-
fordance detectors using a simple two-layer fully connected

1In this paper, we use the term “sub-activities” in a complete sense that
involves actions, objects, and affordances (e.g. reaching a plate). In CAD-
120 vocabulary, the “sub-activity” labels are reaching, moving, etc, which
we consider being “actions”.

neural network based on features similar to [11]. We fine-
tuned Faster R-CNN [21] for object detection. We com-
pared our detection results with the following methods: 1)
Chance. The labels are chosen randomly. 2) SVM: An
SVM trained on our features. 3) LSTM: A two-layer LSTM
trained on our features. 4) VGG-16 [25]: Using the im-
age as input, we fine-tuned a VGG-16 network on the ac-
tion labels. Since the object affordances are evaluated on
each object instead of an image (an image can have mul-
tiple objects thus can have multiple affordance labels), we
only evaluate the performance of action detection. 5) KGS
[10]: A Markov random field model where the nodes repre-
sent objects and sub-activities, and the edges represent the
spatial-temporal relationships. 6) ATCRF [11]: An antic-
ipatory temporal conditional random field that models the
spatial-temporal relations through object affordances.

Figure 5 shows the confusion matrix for classifying ac-
tions and affordances, and we report the overall micro ac-
curacy, macro precision and macro recall of the detected
actions and affordances in Table 1. Our approach outper-
forms the other methods on action detection, and achieves
a comparable performance with ATCRF [11] on affordance
detection.

In the experiments, we found that the algorithm is gen-
erally capable of improving the low-level detections using
joint high-level reasoning. For example, one “stacking ob-
jects” video has an input action detection accuracy of 50.9%
and affordance detection accuracy of 84.5%. After joint rea-
soning, the output action detection accuracy raised to 86.7%
and affordance detection accuracy raised to 87.3%.

6.2. Prediction Results

We report the frame-wise accuracy of prediction on ac-
tions and affordances over 3 seconds in the future (using
frame rate of 14Hz as reported in [11]). Table 2 shows
the comparisons between our approach and other methods.
We achieved a better performance for all predictions even
though the detection result is not the best.

One major difficulty in the prediction process is that the
parsed sub-activities are often grammatically incorrect due
to the wrong detections. In the cases where the temporal
structure (segmentation) is roughly correct, the Gibbs sam-
pling described in Section 5.1.2 can correct the wrong la-
bels. However, there are cases when noisy low-level detec-
tion results bring challenge to our predictions. There exist
work in computational linguistics [19, 30, 31] that address
the problem of parsing grammatically incorrect sentences.
In our implementation, we sampled a corpus of different
activities and find the nearest sentence to the current obser-
vation from the corpus by computing the longest common
subsequence between sentences. Predictions are then made
based on the parsing result of the nearest sentence.



Figure 6: Qualitative results of affordance prediction. Top to bottom: making cereal, stacking objects, taking food, and
microwaving food. The first column shows the start frame of the video.

(a) Sub-activity map in 3D scan (b) Voxelized 3D scene (c) Random prediction (d) Plan for microwaving food (e) Plan for microwaving food

Figure 7: Qualitative results of planning. (a) shows the heat map for human activities. (b) shows the voxelized 3D scene and
example trajectories from the human position to sampled target positions. (c)(d)(e) shows the trajectory heat map for random
prediction and plans for microwaving food.

6.3. Qualitative results

Prediction Based on the predicted affordance labels, we
can predict which object human is going to interact with.
Figure 6 shows the predicted right hand trajectory heat maps
within the next one second.

Task planning Besides online parsing and prediction of
activities, our proposed method can help task planning us-
ing the learned T-AOG. Given a 3D scene and a task, we
can generate different possible task plans according to the
learned grammar. As shown in Figure 7(a), after obtaining
a 3D scanned scene, we can compute the human activity
heat maps with respect to different labeled objects. The heat
maps are computed using the voxelized 3D scene and aver-
age poses of actions associated with the objects. Based on
the heat map, we can sample target positions for interactions
with the objects, and then plan trajectories from the human
position to the objects. Figure 7(b) illustrates the possible
paths from the human position to the targets in a voxelized
scene. Figure 7(c) shows the heat map of trajectories as-
suming the human randomly select a target object. The tra-

jectories are planned using rapidly-exploring random tree
(RRT) [14]. Based on the event grammar, we can also sym-
bolically sample different plans for learned tasks, and plan
multiple trajectories. Figure 7(d)(e) show examples of dif-
ferent trajectory heat maps for “microwaving food”.

7. Conclusion
This paper presents a method for online human activity

prediction from RGB-D videos. We modeled the activities
using a spatial-temporal And-Or graph (ST-AOG). The re-
sults show the effectiveness of our model on both detection
and anticipation, as well as how the learned model can be
used for robot planning. In the future, we could explore
object-part based affordances to learn more fine-grained ac-
tivities.
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Supplementary Materials

1. Temporal Grammar
1.1. Grammar Induction

There are several parameters in our implementation of
the ADIOS algorithm:

• η: threshold of detecting divergence in the ADIOS
graph for the right-moving ratio PR and the left-going
ratio PL. In our experiment, this is set to 0.9.

• α: significance test threshold for the decrease of PR

and PL.
our experiment, this is set to 0.1.

• context size: size of the context window used for
search for equivalence classes. In our experiment, this
is set to 4.

• coverage: minimum overlap for bootstrapping Equiv-
alence classes. Higher values will result in less boot-
strapping. In our experiment, this is set to 0.5.

1.2. Earley Parser

This section gives an introduction to the Earley parser
and how we use the Earley’s algorithm to predict the next
symbol. In the following descriptions, α, β, and γ represent
any string of terminals/nonterminals (including the empty
string), X and Y represent single nonterminals, and a rep-
resents a terminal symbol. We use Earley’s dot notation:
given a production X → αβ, the notation X → α · β rep-
resents a condition in which α has already been parsed and
β is expected.

Input position 0 is the position prior to input. Input po-
sition n is the position after accepting the nth token. (In-
formally, input positions can be thought of as locations at
token boundaries.)

For every input position, the parser generates a state set.
Each state is a tuple (X → α · β, i), consisting of

• The production currently being matched (X → αβ).

• The current position in that production (represented by
the dot)

• The position i in the input at which the matching of
this production began: the origin position

The state set at input position k is called S(k). The
parser is seeded with S(0) consisting of only the top-level
rule. The parser then repeatedly executes three operations:
prediction, scanning, and completion.

• Prediction: for every state in S(k) of the form (X →
α · Y β, j), where j is the origin position as above, add
(Y → ·γ, k) to S(k) for every production in the gram-
mar with Y on the left-hand side(Y → γ).

• Scanning: if a is the next symbol in the input stream,
for every state in S(k) of the form (X → α · aβ, j),
add (X → αa · β, j) to S(k + 1).

• Completion: for every state in S(k) of the form (X →
γ·, j), find states in S(j) of the form (Y → α ·Xβ, i)
and add (Y → αX · β, i) to S(k).

In our prediction for the next possible symbol at current
position t, we search through the states S(t) of the form
(X → α · aβ, j), where the first symbol after the current
position is a terminal node. The predictions Σ are then given
by the set of all possible a:

Σ = {a : ∃s ∈ S(t), s = (X → α · aβ, j)} (1)

The probability of each production is then given by the
parsing likelihood of the sentence constructed by appending
the predicted state to the current sentence.

1.3. Parsing Likelihood

For a grammatically complete sentence s, the parsing
likelihood is simply the Viterbi likelihood. For a incom-
plete sentence e of length k, the parsing likelihood is given
by the sum of all the grammatically possible sentences:

p(e) =
∑

s[1:k]=e

p(s) (2)

where s1:k denotes the first k words of a complete sen-
tence s, and p(s) is the Viterbi likelihood of s.

2. Experiments
2.1. Feature Design

In our method, we extracted different features for action
and affordance detection/prediction.

1



The action feature is composed of the positions of eleven
key joints from the upper body of human skeleton and the
relative distances and orientations between each two joints.
The affordance feature is concatenated by the action feature,
the main position of object point clouds, and the relative
distances and orientations between the center of the object
and several key skeleton joints such as hand and head.

We extracted both features for each frame of the videos
to employ our algorithm.

2.2. Compared Methods

We compared with some baseline methods in experi-
ments part.

• Chance. We randomly choose the label for detection
and prediction.

• SVM. We treated the task as classification problem
and used SVM to detect and predict. We employed
multi-class SVM to train detection classifier with ac-
tion/affordance feature and action/affordance label of
current frame. We evaluated the detection performance
with the classifier.

• LSTM. We split each video to several segments of
length ten. We treated each segment as a sequential in-
put for LSTM with our features and utilized the label
of ten frames to train the LSTM. We built a two-layer
LSTM with softmax layer on top of it to process the se-
quential feature and got a sequential output label. We
used labels of current ten frames to detect and labels
of the next ten corresponding frames in 3 seconds to
predict.

• VGG-16. We extracted the human images with the
skeleton positions and the camera parameters. Simi-
larly, we fine-tuned VGG-16 network to train the ac-
tion classifier for detection. Since the object affor-
dances are evaluated on each object instead of an im-
age (an image can have multiple objects thus can have
multiple affordance labels), we only evaluate the per-
formance of action detection.

• KGS and ATCRF are introduced in [1] and [2] respec-
tively.
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