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Abstract

Language models based on recurrent neural networks
have dominated recent image caption generation tasks. In
this paper, we introduce a language CNN model which is
suitable for statistical language modeling tasks and shows
competitive performance in image captioning. In contrast
to previous models which predict next word based on one
previous word and hidden state, our language CNN is fed
with all the previous words and can model the long-range
dependencies in history words, which are critical for im-
age captioning. The effectiveness of our approach is vali-
dated on two datasets: Flickr30K and MS COCO. Our ex-
tensive experimental results show that our method outper-
forms the vanilla recurrent neural network based language
models and is competitive with the state-of-the-art methods.

1. Introduction

Image caption generation is a fundamental problem that
involves Computer Vision, Natural Language Processing
(NLP), and Machine Learning. It can be analogous to
“translating” an image to proper sentences. While this task
seems to be easy for human beings, it is quite challenging
for machines because it requires the model to understand
the image content and express their relationships in a natural
language. Also, the image captioning model should be ca-
pable of capturing implicit semantic information of an im-
age and generating humanlike sentences. As a result, gen-
erating accurate captions for an image is not an easy task.

The recent surge of research interest in image cap-
tion generation task is due to the advances in Neural Ma-
chine Translation (NMT) [44] and large datasets [39| 29].
Most image captioning models follow the encoder-decoder
pipeline [4} 24} 35} [19, |41]. The encoder-decoder frame-
work is recently introduced for sequence-to-sequence learn-
ing based on Recurrent Neural Networks (RNNs) or Long-
Short Term Memory (LSTM) networks. Both RNNs and

LSTM networks can be sequence learners. However, due
to the vanishing gradient problem, RNNs can only remem-
ber the previous status for a few time steps. LSTM network
is a special type of RNN architecture designed to solve the
vanishing gradient problem in RNNs [46] [15] |6]. It intro-
duces a new component called memory cell. Each memory
cell is composed of three gates and a neuron with the self-
recurrent connection. These gates allow the memory cells
to keep and access information over a long period of time
and make LSTM network capable of learning long-term de-
pendencies.

Although models like LSTM networks have memory
cells which aim to memorize history information for long-
term, they are still limited to several time steps because
long-term information is gradually diluted at every time
step [49]]. Besides, vanilla RNNs-based image captioning
models recursively accumulate history information without
explicitly modeling the hierarchical structure of word se-
quences, which clearly have a bottom-up structure [28].

To better model the hierarchical structure and long-term
dependencies in word sequences, in this paper, we adopt a
language CNN which applies temporal convolution to ex-
tract features from sequences. Such a method is inspired by
works in NLP which have shown CNN is very powerful for
text representation [[18} 48]]. Unlike the vanilla CNN archi-
tecture, we drop the pooling operation to keep the relevant
information for words representation and investigate the op-
timum convolutional filters by experiments. However, only
using language CNN fails to model the dynamic temporal
behavior. Hence, we still need to combine language CNN
with recurrent networks (e.g., RNN or LSTM). Our exten-
sive studies show that adding language CNN to a recurrent
network helps model sequences consistently and more ef-
fectively, and leads to improved results.

To summarize, our primary contribution lies in incor-
porating a language CNN, which is capable of capturing
long-range dependencies in sequences, with RNNs for im-
age captioning. Our model yields comparable performance
with the state-of-the-art approaches on Flickr30k [39] and



MS COCO [29].

2. Related Works

The problem of generating natural language descriptions
for images has become a hot topic in computer vision com-
munity. Prior to using neural networks for generating de-
scriptions, the classical approach is to pose the problem
as a retrieval and ranking problem [12, |9, 37]. The main
weakness of those retrieval-based approaches is that they
cannot generate proper captions for a new combination of
objects. Inspired by the success of deep neural networks in
machine translation [44} |4, [17], researchers have proposed
to use the encoder-decoder framework for image caption
generation [21} 35} 19} 46l 6} 3, 26]. Instead of translating
sentences between two languages, the goal of image cap-
tioning is to “translate” a query image into a sentence that
describes the image. The earliest approach using neural net-
work for image captioning is proposed by Vinyals et al. [46]
which is an encoder-decoder system trained to maximize
the log-likelihood of the target image descriptions. Simi-
larly, Mao et al. [35]] and Donahue et al. [6] use the mul-
timodal fusion layer to fuse the image features and word
representation at each time step. In both cases, i.e., the
models in [35] and [6]], the captions are generated from
the full images, while the image captioning model proposed
by Karpathy et al. [19] generates descriptions based on re-
gions. This work is later followed by Johnson et al. [16]
whose method is designed to jointly localize regions and
describe each with captions.

Rather than representing an image as a single feature
vector from the top-layer of CNNs, some researchers have
explored the structure of networks to explicitly or implic-
itly model the correlation between images and descrip-
tions [51, 34, 30]. Xu et al. [51] incorporate the spatial
attention on convolutional features of an image into the
encoder-decoder framework through the “hard” and “soft”
attention mechanisms. Their work is followed by Yang et
al. [52]] whose method introduces a review network to im-
prove the attention mechanism and Liu et al. [30] whose
approach is designed to improve the correctness of visual
attention. Moreover, a variational autoencoder for image
captioning is developed by Pu et al. [40]]. They use a CNN
as the image encoder and use a deep generative deconvolu-
tional network as the decoder together with a Gated Recur-
rent Unit (GRU) [4] to generate image descriptions.

More recently, high-level attributes have been shown to
obtain clear improvements on the image captioning task
when injected into existing encoder-decoder based mod-
els [50L 153} 18]]. Specifically, Jia et al. [15] use the semantic
information as the extra input to guide the model in gen-
erating captions. In addition, Fang et al. [7]] learn a visual
attributes detector based on multi-instance learning (MIL)
first and then learn a statistical language model for caption

generation. Likewise, Wu et al. [50] train several visual at-
tribute classifiers and take the outputs of those classifiers as
inputs for the LSTM network to predict words.

In general, current recurrent neural network based ap-
proaches have shown their powerful capability on mod-
eling word sequences [46l [19]. However, the history-
summarizing hidden states of RNNs are updated at each
time, which render the long-term memory rather diffi-
cult [25) 136]. Besides, we argue that current recurrent net-
works like LSTM are not efficient on modeling the hierar-
chical structure in word sequences. All of these prompt us
to explore a new language model to extract better sentence
representation. Considering ConvNets can be stacked to ex-
tract hierarchical features over long-range contexts and have
received a lot of attention in many tasks [[10], in this paper,
we design a language CNN to model words with long-term
dependencies through multilayer ConvNets and to model
the hierarchical representation through the bottom-up and
convolutional architecture.

3. Model Architecture
3.1. Overall Framework

We study the effect of language CNN by combining
it with Recurrent Networks. Figure |1| shows a recursive
framework. It consists of one deep CNN for image encod-
ing, one CNN for sentence modeling, and a recurrent net-
work for sequence prediction. In order to distinguish these
two CNN networks, we name the first CNN for image fea-
ture extraction as CNNz, and the second CNN for language
modeling as CNN .

Given an image I, we take the widely-used CNN ar-
chitecture VGGNet (16-layer) [42] pre-trained on Ima-
geNet [22] to extract the image features V. € RX. The
CNN_ is designed to represent words and their hierarchi-
cal structure in word sequences. It takes a sequence of ¢
generated words (each word is encoded as a one-hot repre-
sentation) as inputs and generates a bottom-up representa-
tion of these words. The outputs of CNNz and CNN/ will
be fed into a multimodal fusion layer, and use the recurrent
network frecurrent(+) to predict the next word. The following
equations show the main working flow of our model:

V= CNNz(I) (1)
vy = CNNg (S, st ... slt=1) )
m” = fruimda (v, V) (3)
ol = frecumm(r[t*ﬂ, X[tfl]’ m[t]) 4)
S~ arg max Softmax(W,rl!l + b,) 3)

where t € [0, N —1] is the time step, y*! is the output vector
of CNN, [l is the activation output of recurrent network,
S!* is the ¢-th word drawn from the dictionary S according



<START> a young

girl skiing through a snow covered  hill

Sl ~ Softmax(W,rl + b,)

young

skiing through a snow covered hill <END>

Figure 1. An overview of our framework. The input of our model is a query image. Our model estimates the probability distribution
of the next word given previous words and image. It consists of four parts: a CNNz for image feature extraction, a deep CNN. for
language modeling, a multimodal layer (M) that connects the CNNz and CNN,, and a Recurrent Network (e.g., RNN, LSTM, etc.) for

word prediction. The weights are shared among all time frames.

to the maximum Softmax probability controlled by rl*}, W,
and b, are weights and biases used for calculating the dis-
tribution over words. Equation 2] [ @] and [5) are recursively
applied, the design of each function is discussed below.

3.2. CNN, Layer

Models based on RNNs have dominated recent sequence
modeling tasks [23| 31} 132, |44]], and most of the recent im-
age captioning models are based on LSTM networks [6} 19}
34]. However, LSTM networks cannot explicitly model the
hierarchical representation of words. Even with multi-layer
LSTM networks, such hierarchical structure is still hard to
be captured due to the more complex model and higher risk
of over-fitting.

Inspired by the recent success of CNNs in computer vi-
sion [10, [14], we adopt a language CNN with a hierarchi-
cal structure to capture the long-range dependencies be-
tween the input words, called CNN,. The first layer of
CNN, is a word embedding layer. It embeds the one-hot
word encoding from the dictionary into word representa-
tion through a lookup table. Suppose we have ¢ input words
S = {Sl0 sl ... Slt=11} and Sl is the one-of-V (one-
hot) encoding, with V" as the size of the vocabulary. We first
map each word S[*l in the sentence into a K-dimensional
vector xI!! = WS, where W, € RE*V is a word em-
bedding matrix (to be learned). Next, those embeddings are
concatenated to produce a matrix as follows:

x = [x0 0. 7X[t—1]]T’X€Rth ©

The concatenated matrix x is fed to the convolutional layer.
Just like the normal CNN, CNN, has a fixed architecture
with predefined maximum number of input words (denoted
as Lr). Unlike the toy example in Figure 2] in practice we
use a larger and deeper CNN - with L, = 16.

We use the temporal convolution [21] to model the sen-
tence. Given an input feature map y(¢~1) € RMe-1xK of
Layer-¢ — 1, the output feature map y©) € RMexK of the

temporal convolution layer-¢ will be:

v x) = o(wy D +pY) %)

©

here y,’ (x) gives the output of feature map for location 4

in Layer-/, W(Ll) denotes the parameters on Layer-/, o(-) is
the activation function, e.g., Sigmoid, or ReLU. The input
feature map y,gl_l) is the segment of Layer-¢ — 1 for the
convolution at location ¢, while y(o) is the concatenation of
t word embeddings from the sequence input S[%*~1] The

definition of y(©) is as follows:

(0) def [X[t*LLh... ,X[tfl]}T, ift> L,
Yoo (<O =1 5L g7 otherwise
3

Specially, when ¢t > L., the input sentence will be trun-
cated, we only use L, words before the current time step ¢.
When ¢ < L, the input sentence will be padded with %l
Note that if ¢t = 0, %1 are the image features V, otherwise
%1 are the zero vectors that have the same dimension as x!.

Previous CNNs, including those adopted for NLP
tasks [[13} (18], take the classic convolution-pooling strategy,
which uses max-pooling to pick the highest response fea-
ture across time. This strategy works well for tasks like text
classification [18]] and matching [13], but is undesirable for
modeling the composition functionality, because it ignores
the temporal information in sequence. In our network, we
discard the pooling operations. We consider words as the
smallest linguistic unit and apply a straightforward stack of
convolution layers on top of each other. In practice, we
find that deeper CNN works better than shallow CNN,
which is consistent with the tradition of CNNs in computer
vision [10]], where using very deep CNNss is key to having
better feature representation.

The output features of the final convolution layer are fed
into a fully connected layer that projects the extracted words
features into a low-dimensional representation. Next, the
projected features will be fed to a highway connection [43]]
which controls flows of information in the layer and im-



proves the gradient flow. The final output of the highway
connection is a K -dimensional vector y!t).
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Figure 2. The architecture of language CNN for sentence model-
ing. Here *“/” stands for a zero padding. The CNN, builds a hier-
archical representation of history words which contains the useful
information for next word prediction.

3.3. Multimodal Fusion Layer

Next, we add a multimodal fusion layer after CNN,
which fuses words representation and image features. This
layer has two inputs: the bottom-up words representation
y!*] extracted from CNN/ and the image representation V
extracted from CNNz. We map these two inputs to the same
multimodal feature space and combine them together to ob-
tain the activation of multimodal features:

m = Jmultimodal (y[t]7V) )
= o (£, Wy by) + 9. (Vi Wy, by) ) (10)

where “+” denotes element-wise addition, fy(-) and g, (-)
are linear mapping functions, m!*! is the multimodal layer
output feature vector. o(-) is the activation function, here
we use the scaled tanh function [27]] which leads to a faster
training process than the basic tanh function.

3.4. Recurrent Networks

Our CNN/ may miss the important temporal informa-
tion because it extracts the holistic features from the whole
sequence of words. To overcome this limitation, we com-
bine it with recurrent networks. In our model, the transition
equations of the recurrent network can be formulated as:

r[t] = frecurrent(r[t_l]y X[t_l]a m[t]) (11)

S ~ arg max Softmax(W,rl!l +b,) (12)

where r[t! denotes the recurrent state, x[t~1 = W_Slt=1I jg
the previous word embedding, m[*! is the multimodal fusion
output, and frecurrent(+) is the transition function of recurrent
network. Softmax(r!*!) is the probability of word Sl given
by the Softmax layer, and S is the ¢-th decoded word.
In our study, we combine our language CNN with four

types of recurrent networks: Simple RNN, LSTM network,
GRU [4], and Recurrent Highway Network (RHN) [54]].

Traditionally, the simple RNN updates the recurrent state
1" of Equation 11|as follows:

ot = tanh(Wrr[t_l] + sz[t] +b) (13)

where z*! is the input. However, this type of simple RNN is
hard to deal with long-term dependencies [2]. As the van-
ishing gradient will make gradients in directions that short-
term dependencies are large, while the gradients in direc-
tions that correspond to long-term dependencies are small.

LSTM network extents the simple RNN with the gating
mechanism (input gate, forget gate, and output gate) to con-
trol information flow and a memory cell to store the history
information, thus it can better model the long-term depen-
dencies than simple RNN.

GRU is an architecture similar to the LSTM, but it has
a simplified structure. GRU does not has a separate mem-
ory cell and exposes its hidden state r!*) without any control.
Thus, it is computationally more efficient and outperforms
the LSTM network on many tasks due to its simple struc-
ture.

Besides, we also consider a fourth type of recurrent net-
work: RHN, which introduces the highway connection to
simple RNN. RHN has directly gated connections between
previous state =1 and current input z[} to modulate the
flow of information. The transition equations of RHN can
be formulated as follows:

tlt] o

r[t_l]
Z
hltl tanh
= il ol £l @l (15)

where ¢!l is the carry gate, t/¥ is the rransform gate, hl!l
denotes the modulated input, M : R2K+4 — R3? i5 an
affine transformation. z[/ € R2KX denotes the concatenation
of two vectors: m!*l and x!*~1. According to Equation
and 2] can be expressed as follows:

Z[t] = [fmultimodal(CNNll(X[()’.”7t_1])7v);x[t_1]] (16)

Like GRU, RHN does not have output gate to control the
exposure of the recurrent state ¥}, but exposes the whole
state each time. The RHN, however, does not have reset
gate to drop information that is irrelevant in the future. As
our CNN, can extract the relevant information from the se-
quence of history words at each time step, to some extent,
the CNN allows the model to add information that is use-
ful in making a prediction.

3.5. Training

During training, given the ground truth words S and cor-
responding image I, the loss function for a single training



instance (S, I) is defined as a sum of the negative log like-
lihood of the words. The loss can be written as:

N—-1
L(S,I) = — Z log P(S1[SL . ..

t=0

ST A

where N is the sequence length, and S[!! denotes a word in
the sentence S.

The training objective is to minimize the cost func-
tion, which is equivalent to maximizing the probability of
the ground truth context words given the image by using:
argmaxy Y 1o log P(S1[SI%1) 1), where 6 are the pa-
rameters of our model, and P(S[|SI%*~1 T) corresponds
to the activation of Softmax layer.

3.6. Implementation Details

In the following experiments, we use the 16-layer VG-
GNet [42] model to compute CNN features and map the
last fully-connected layer’s output features to an embedding
space via a linear transformation.

As for preprocessing of captions, we transform all let-
ters in the captions to lowercase and remove all the non-
alphabetic characters. Words occur less than five times are
replaced with an unknown token <UNK>. We truncate all
the captions longer than 16 tokens and set the maximum
number of input words for CNN, to be 16.

3.6.1 Training Details

In the training process, each image I has five correspond-
ing annotations. We first extract the image features V
with CNNz. The image features V are used in each time
step. We map each word representation S[ with: x[] =
W.SH ¢t € [0, N — 1]. After that, our network is trained
to predict the words after it has seen the image and pre-
ceding words. Please note that we denote by S a special
<START> token and by SIN—1 a special <END> token
which designate the start and end of the sentence.

For Flickr30K [39] and MS COCO [29] we set the di-
mensionality of the image features and word embeddings
as 512. All the models are trained with Adam [20]], which
is a stochastic gradient descent method that computes adap-
tive learning rate for each parameter. The learning rate is
initialized with 2e-4 for Flickr30K and 4e-4 for MS COCO,
and the restart technique mentioned in [33] is adopted to im-
prove the convergence of training. Dropout and early stop-
ping are used to avoid overfitting. All weights are randomly
initialized except for the CNN weights. More specifically,
we fine-tune the VGGNet when the validation loss stops
decreasing. The termination of training is determined by
evaluating the CIDEr [45] score for the validation split after
each training epoch.

3.6.2 Testing

During testing, the previous output S[~% is used as input
in lieu of SI). The sentence generation process is straight-
forward. Our model starts from the <START> token and
calculates the probability distribution of the next word :
P(SMS[%¢=1] 1), Here we use Beam Search technology
proposed in [15], which is a fast and efficient decoding
method for recurrent network models. We set a fixed beam
search size (k=2) for all models (with RNNs) in our tests.

4. Experiments
4.1. Datasets and Evaluation Metrics

We perform experiments on two popular datasets that
are used for image caption generation: MS COCO and
Flickr30k. These two datasets contain 123,000 and 31,000
images respectively, and each image has five reference cap-
tions. For MS COCO, we reserve 5,000 images for vali-
dation and 5,000 images for testing. For Flickr30k, we use
29,000 images for training, 1,000 images for validation, and
1,000 images for testing.

We choose four metrics for evaluating the quality of the
generated sentences: BLEU-n [38] is a precision-based
metric. It measures how many words are shared by the gen-
erated captions and ground truth captions. METEOR [3] is
based on the explicit word to word matches between gen-
erated captions and ground-truth captions. CIDEr [45] is a
metric developed specifically for evaluating image captions.
It measures consensus in image caption by performing a
Term Frequency-Inverse Document Frequency weighting
for each n-gram. SPICE [1] is a more recent metric which
has been shown to correlate better with the human judgment
of semantic quality than previous metrics.

4.2. Models

To gain insight into the effectiveness of CNN ., we com-
pare CNN -based models with methods using the recurrent
network only. For a fair comparison, the output dimensions
of all gates are fixed to 512.

Recurrent Network-based Models. We implement Re-
current Network-based Models based on the framework
proposed by Vinyals et al. [46], it takes an image as in-
put and predicts words with one-layer Recurrent Network.
Here we use the publicly available implementation Neu-
raltalk2[[] We evaluate four baseline models: Simple RNN,
RHN, LSTM, and GRU.

CNN_-based Models. As can be seen in Figure[I] The
CNN-based models employ a CNN - to obtain the bottom-
up representation from the sequence of words and cooperate
with the Recurrent Network to predict the next word. Image
features and words representation learned from CNN7z and

'https://github.com/karpathy/neuraltalk?2
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CNN/ respectively are fused with the multimodal function.
We implement four CNN-based models: CNN,+Simple
RNN, CNN.+RHN, CNN/+LSTM, and CNN.+GRU.

4.3. Quantitative Results

We first evaluate the importance of language CNN for
image captioning, then evaluate the effects of CNN . on two
datasets (Flickr30K and MS COCO), and also compare with
the state-of-the-art methods.

4.3.1 Analysis of CNN,

It is known that CNN-based models have larger capac-
ity than RNNs. To verify that the improved performance
is from the developed CNN/ rather than due to more lay-
ers/parameters, we set the hidden and output sizes of RNNs
to 512 and 9568 (vocabulary size), and list the parameters
of each model as well as their results in Table[Tl

Approach Params|B@4| C |Approach|Params|B@4| C

Simple RNN | 5.4M| 27.0 |87.0|LSTM 7.0M|29.2 92.6

CNN. 6.3M| 18.4 |56.8|LSTM, | 9.1M|29.7(93.2

CNN,+RNN| 11.7M| 29.5 |95.2| LSTM3 11.2M|29.3 192.9
Table 1. Results on MS COCO, where B@n are short for BLEU-
n, C is short for CIDEr. All values are reported as percentage
(Bold numbers are the best results). CNN 2 contains five temporal
convolutional layers, the kernel size of the first two convolutional
layers is 5, and the rest kernel size of convolutional layers is 3.

As seen in Table [I] the parameter size of the 3-layer
LSTM (LSTM3) is close to that of the CNN+RNN.
Adding the 2™ LSTM layer (LSTM,) improves the per-
formance of LSTM, but it is still lower than CNN +RNN.
Meanwhile, LSTM3 does not show improvements as the
model experiences overfitting. This issue is even worse
on Flickr30K which has relatively small number of training
data. Note that CNN (without RNNs) achieves lower per-
formance than CNN+RNN. We find that those predicted
captions of CNN (without RNNs) only are short, but con-
tain primary attributes, e.g., CNN model generates: “a
person on a wave”, while CNN~+RNN provides: “a young
man surfing a wave”. This finding shows that the temporal
recurrence of RNNGs is still crucial for modeling the short-
term contextual information across words in the sentence.
We further compare language CNNs with different in-

put words and with max-pooling operations, where those
language CNNs are combined with RHN instead of RNN.
Table 2] shows that larger context windows achieve better
performance. This is likely because CNN, with larger
window size can better utilize contextual information and
learn better word embedding representation. In addi-
tion, the performance of CNN.- ~ +RHN is inferior to
CNN_+RHN, which experimentally supports our opinion
that max-pooling operations lose information about the lo-
cal order of words.

Approach B@4| C |Approach B@4| C
AVE)ory*RAN [ 30.1 [95.8[CNNL, ., +RHN|29.2938
CNNg:  +RHN|28.9 |91.9|CNNg,,,, +RHN| 29.5 |95.8
CNN_.+RHN 30.6 |98.9| CNN, .., +RHN| 30.0 [95.9
Table 2. Results of different history information encoding ap-
proaches on MS COCO. CNN¢ ... takes N previous words as
inputs, where we set IV to 2, 4, and 8. Avg, .. computes an av-

erage over history word embeddings. CNNx replaces the ond

word:
and 4" convolutional layers in CNN .~ with the max-pooling layer.

4.3.2 Results Using CNN, on MS COCO
Table [3] shows the generation performance on MS COCO.

By combine CNN,, our methods clearly outperforms the
recurrent network counterpart in all metrics.

Approach B@l B@2 B@3 B@e4 M C S
Simple RNN | 70.1 52.1 37.6 27.0 23.2 87.0 16.0
CNN:+RNN [ 722 55.0 40.7 29.5 24.5 95.2 17.6

RHN 70.5 5277 37.8 27.0 24.0 90.6 17.2
CNN+RHN | 723 553 41.3 30.6 25.2 98.9 18.3
LSTM 70.8 53.6 39.5 29.2 245 92.6 17.1
CNN.+LSTM| 72.1 54.6 409 30.4 25.1 99.1 18.0
GRU 71.6 54.1 39.7 289 243 933 17.2

CNN.+GRU |72.6 554 41.1 30.3 24.6 96.1 17.6
Table 3. Performance comparison on MS COCO, where M is short
for METEOR, and S is short for SPICE.

Approach B@l B@2 B@3 B@4 M C S
Simple RNN | 60.5 41.3 28.0 19.1 17.1 32.5 10.5
CNN.+RNN |71.3 538 39.6 28.7 22.6 65.4 15.6

RHN 62.1 43.1 294 20.0 17.7 384 11.4
CNN:+RHN |73.8 56.3 41.9 30.7 21.6 61.8 15.0
LST™M 609 41.8 283 19.3 17.6 35.0 11.1
CNN+LSTM| 64.5 458 32.2 224 19.0 45.0 12.5
GRU 61.4 425 29.1 20.0 18.1 39.5 11.4

CNN.+GRU | 714 54.0 39.5 28.2 21.1 579 145
Table 4. Performance comparison on Flickr30k.

Among these models, CNN/+RHN achieves the best
performances in terms of B@(3,4), METEOR, and SPICE
metrics, CNN+LSTM achieves the best performance in
CIDEr metric (99.1), and CNN+GRU achieves the best
performance in B@(1,2) metrics. Although the absolute
gains across different B@n metrics are similar, the percent-
age of the relative performance improvement is increas-
ing from B@1 to B@4. It does show the advantage of
our method in terms of better capturing long-term depen-
dency. Note that the CNN-+RNN model achieves bet-
ter performance than simple RNN model and outperforms
LSTM model. As mentioned in Section [3.4) LSTM net-
works model the word dependencies with multi-gates and
the internal memory cell. However, our CNN+RNN with-
out memory cell works better than LSTM model. We think
the reason is that our language CNN takes all history words
as input and explicitly model the long-term dependencies in
history words, this could be regarded as an external “mem-
ory cell”. Thus, the CNN/’s ability to model long-term de-



Flickr30k MS COCO
Approach BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR |BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr
BRNN [19] 57.3 36.9 24.0 15.7 — 62.5 45.0 32.1 23.0 19.5 66.0
Google NIC [46] — — — — — — — — 27.7 23.7 85.5
LRCN [6] 58.8 39.1 25.1 16.5 — 66.9 48.9 349 249 — —
MSR [7] — — — — — — — — 25.7 23.6 —
m-RNN [35] 60.0 41.0 28.0 19.0 — 67.0 49.0 35.0 25.0 — —
Hard-Attention [51] 66.9 439 29.6 19.9 18.5 70.7 49.2 344 243 23.9 —
Soft-Attention [51] 66.7 434 28.8 19.1 18.5 71.8 50.4 35.7 25.0 23.0 —
ATT-FCN [53] 64.7 46.0 324 23.0 18.9 70.9 53.7 40.2 30.4 24.3 —
ERD+GoogLeNet [52] — — — — — — — — 29.8 24.0 88.6
emb-gLSTM [15] 64.6 44.6 30.5 20.6 17.9 67.0 49.1 35.8 26.4 22.7 81.3
VAE [40] 72.0 53.0 38.0 25.0 — 72.0 52.0 37.0 28.0 24.0 90.0
State-of-the-art results using model assembling or extra information
Google NICv2 [47] — — — — — — — — 32.1 25.7 99.8
Attributes-CNN+RNN [50]| 73.0 55.0 40.0 28.0 — 74.0 56.0 42.0 31.0 26.0 94.0
Our results

CNN_+RNN 71.3 53.8 39.6 28.7 22.6 72.2 55.0 40.7 29.5 24.5 95.2
CNN.+RHN 73.8 56.3 41.9 30.7 21.6 72.3 55.3 413 30.6 25.2 98.9
CNN_.+LSTM 64.5 45.8 322 22.4 19.0 72.1 54.6 40.9 30.4 25.1 99.1
CNN.+GRU 71.4 54.0 39.5 28.2 21.1 72.6 55.4 41.1 30.3 24.6 96.1

Table 5. Performance in terms of BLEU-n, METEOR, and CIDEr compared with other state-of-the-art methods on the MS COCO and
Flickr30k datasets. For those competing methods, we extract their performance from their latest version of papers.

pendencies can be taken as enhancement of simple RNNss,
which can solve the difficulty of learning long-term depen-
dencies.

4.3.3 Results Using CNN/ on Flickr30K

We also evaluate the effectiveness of language CNN on the
smaller dataset Flickr30K. The results in Table {4| clearly
indicate the advantage of exploiting the language CNN to
model the long-term dependencies in words for image cap-
tioning. Among all models, CNN+RHN achieves the best
performances in B@(1,2,3,4) metrics, and CNN/+RNN
achieves the best performances in METEOR, CIDEr, and
SPICE metrics.

As for the low results (without CNN /) on Flickr30k, we
think that it is due to lack of enough training data to avoid
overfitting. In contrast, our CNN, can help learn better
word embedding and better representation of history words
for word prediction, and it is much easier to be trained com-
pared with LSTM due to its simplicity and efficiency. Note
that the performance of LSTM and CNN£+LSTM models
are lower than RHN/GRU and CNN+RHN/GRU. This il-
lustrates that the LSTM networks are easily overfitting on
this smaller dataset.

4.3.4 Comparison with State-of-the-art Methods

To empirically verify the merit of our models, we compare
our methods with other state-of-the-art approaches.
Performance on MS COCO. The right-hand side of Ta-
ble [5] shows the results of different models on MS COCO
dataset. CNN -based models perform better than most im-
age captioning models. The only two methods with better

performance (for some metrics) than ours are Attributes-
CNN+RNN [50]] and Google NICv2 [47]. However, Wu et
al. [50] employ an attribute prediction layer, which requires
determining an extra attribute vocabulary. While we gener-
ate the image descriptions only based on the image features.
Google NICv2 [47]] is based on Google NIC [46]], the re-
sults of Google NICv2 are achieved by model ensembling.
All our models are based on VGG-16 for a fair compari-
son with [6, [7, [15} 135} [50} [51]. Indeed, better image CNN
(e.g. Resnet [[L1]) leads to higher performanceﬂ Despite all
this, the CIDEr score of our CNN ~+LSTM model can still
achieve 99.1, which is comparable to their best performance
even with a single VGG-16 model.

Performance on Flickr30K. The results on Flickr30K
are reported on the left-hand side of Table 5]  In-
terestingly, CNN;+RHN performs the best on this
smaller dataset and even outperforms the Attributes-
CNN+RNN [50]. Obviously, there is a significant
performance gap between CNN/+RNN/RHN/GRU and
RNN/RHN/GRU/LSTM models. This demonstrates the ef-
fectiveness of our language CNN on the one hand, and also
shows that our CNN+RNN/RHN/GRU models are more
robust and easier to train than LSTM networks when less
training data is available.

4.4. Qualitative Results

Figure [3] shows some examples generated by our mod-
els. It is easy to see that all of these caption generation
models can generate somewhat relevant sentences, while

2We uploaded the results based on Resnet-101+CNN £ +LSTM (named
jxgu_-LCNN_NTU) to the official MS COCO evaluation server (https:
//competitions.codalab.org/competitions/3221), and
achieved competitive ranking across different metrics.


https://competitions.codalab.org/competitions/3221
https://competitions.codalab.org/competitions/3221

CNNL+RH] k and white cat looking at itself in a mirror, CNNZ+RHN : a man standing next to a child on a snow covered slope] CNNz+RHN : a man talking on a cell phone while walking down a street] CNNL-+RHN : a cat looking at a dog in a door

k and white cat sitting in front of a mirror | CNNZ+RNN : a man and a woman standing on a snow covered slope man is talking on a cell phone
GRU : a black and white cat standing next to a mirror GRU : a man is talking on a cell phone in the strect standing next to a door looking out a window
LSTM : a black and white cat sitting in a bathroom sink LSTM : a man is talking on his cell phone LSTM : a dog and a cat are standing in front of a window
RNN : a cat sitting on the floor in a bathroom RNN : a man standing next to a woman talking on a cell phone RNN : a cat sitting on the side of the road

cat is looking at a dog in front of a window

GRU : a man and a child standing on a snow covered slope
LSTM : aman and a child are standing in the snow
RNN : a man and a woman are skiing on the snow

- there is a black tuxedo cat looking in the mirror

- two cats sitting on top of a wooden floor

- a cat looking at itself in the mirror next to a tripod
- a cat and a tripod sitting in front of a mirror

- a close up of a cat in a mirror

- a woman and child in ski gear next to a lodge

- aman and a child are smiling while standing on skiis

- a young man poses with a little kid in the snow

- an adult and a small child dressed for skiing

- a man and a little girl in skis stand in front of a mountain lodge

- a man talking on the phone in front of a blue car

- aman on a telephone holds his hand up to his other ear as he walks
- a man standing next to a car with a cellphone

- a man is talking on a cell phone next to a city street

- a man standing on the side of the street with a cell phone up to his

- a dog looking at a cat through a glass window
- a cat is outside looking through in at a dog

- the dog wants to go outside with the cat

- a cat sitting outside of a door next to a dog

- a cat sitting at a sliding glass door

Figure 3. Qualitative results for images on MS COCO. Ground-truth annotations (under each dashed line) and the generated descriptions

are shown for each image.

- a bear that is hanging in a tree

- a young bear holding onto a pine tree

- a bear cub in the branches of a pine tree
- a black bear cub climbing a pine tree

- the bear cub UNK high up into the tree

- a tan dog standing on a sidewalk next to a UNK and grass
- the dog is standing outside all alone in the backyard

- a dog standing on a brick walk way

- a brown dog is standing on the side of a walk way

- a brown dog standing on a brick path

- a couple that is eating some food together

- the groom is feeding the bride a slice of cake
- a man feeding a piece of cake to his bride

- a husband feeds his wife a piece of cake

- a groom feeding wedding cake to his bride

- a child is looking a white bear in a water aquarium

- child stands viewing a polar bear as it dives under water to
retrieve a bone

- a boy reaching towards an aquarium in which a polar bear
chews on a bone

- a boy watches a polar bear chew on a bone

- a young boy touching the glass of a polar bear

Figure 4. Some failure descriptions for images on MS COCO. Ground-truth descriptions are under each dashed line.

the CNN £-based models can predict more high-level words
by jointly exploiting history words and image representa-
tions. Take the last image as an example, compared with
the sentences generated by RNN/LSTM/GRU model, “a
cat is looking at a dog in front of a window” generated by
CNN_/,+RNN is more precise to describe their relationship
in the image.

Besides, our CNN -based models can generate more de-
scriptive sentences. For instance, with the detected object
“cat” in the first image, the generated sentence “a black and
white cat looking at itself in a mirror” by CNN+RHN de-
picts the image content more comprehensively. The results
demonstrate that our model with language CNN can gener-
ate more humanlike sentences by modeling the hierarchical
structure and long-term information of words.

Figure [] shows some failure samples of our CNN-
based models. Although most of the generated captions
are complete sentences. However, the biggest problem is
that those predicted visual attributes are wrong. For ex-
ample, “bear” in the first image is detected as “bird”, and
“brown” in the second image is detected as “black and
white”. This will decrease the precision-based evaluation
score (e.g., B@n). We can improve our model by further
taking high-level attributes into account.

5. Conclusion

In this work, we present an image captioning model with
language CNN to explore both hierarchical and temporal in-
formation in sequence for image caption generation. Exper-
iments conducted on MS COCO and Flickr30K image cap-
tioning datasets validate our proposal and analysis. Perfor-
mance improvements are clearly observed when compared
with other image captioning methods. Future research di-
rections will go towards integrating extra attributes learning
into image captioning, and how to apply a single language
CNN for image caption generation is worth trying.
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