
Encoder Based Lifelong Learning

Amal Rannen∗ Rahaf Aljundi∗ Matthew B. Blaschko Tinne Tuytelaars

KU Leuven

KU Leuven, ESAT-PSI, IMEC, Belgium

firstname.lastname@esat.kuleuven.be

Abstract

This paper introduces a new lifelong learning solution

where a single model is trained for a sequence of tasks. The

main challenge that vision systems face in this context is

catastrophic forgetting: as they tend to adapt to the most

recently seen task, they lose performance on the tasks that

were learned previously. Our method aims at preserving the

knowledge of the previous tasks while learning a new one

by using autoencoders. For each task, an under-complete

autoencoder is learned, capturing the features that are cru-

cial for its achievement. When a new task is presented to the

system, we prevent the reconstructions of the features with

these autoencoders from changing, which has the effect of

preserving the information on which the previous tasks are

mainly relying. At the same time, the features are given

space to adjust to the most recent environment as only their

projection into a low dimension submanifold is controlled.

The proposed system is evaluated on image classification

tasks and shows a reduction of forgetting over the state-of-

the-art.

1. Introduction

Intelligent agents are able to perform remarkably well

on individual tasks. However, when exposed to a new task

or a new environment, such agents have to be retrained. In

this process, they learn the specificity of the new task but

tend to loose performance on the tasks they have learned

before. For instance, imagine an agent that was trained to

localize the defects on a set of factory products. Then, when

new products are introduced and the agent has to learn to

detect the anomalies in these new products, it faces the risk

of forgetting the initial recognition task. This phenomenon

is known as catastrophic forgetting [16, 21, 15, 7, 10]. It

occurs when the datasets or the tasks are presented to the

model separately and sequentially, as is the case in a lifelong

learning setup [25, 26, 24].

∗Authors with equal contribution

The main challenge is to make the learned model adapt

to new data from a similar or a different environment [19],

without losing knowledge on the previously seen task(s).

Most of the classical solutions for this challenge suffer from

important drawbacks. Feature extraction (as in [5]), where

the model / representation learned for the old task is re-used

to extract features from the new data without adapting the

model parameters, is highly conservative for the old task

and suboptimal for the new one. Fine-tuning (as in [8]),

adapts the model to the new task using the optimal param-

eters of the old task as initialization. As a result, the model

is driven towards the newly seen data but forgets what was

learned previously. Joint training (as in [4]) is a method

where the model is trained jointly on previous and current

tasks data. This solution converges to the best compromise

between ta, but requires the presence of all the data at the

same time. Such a requirement can be hard to meet, espe-

cially in the era of big data.

To overcome these drawbacks without the constraint of

storing data from the previously seen tasks, two main ap-

proaches can be found in the literature. The first, presented

in [14], proposes a way to train convolutional networks,

where a shared model is used for the different tasks but with

separate classification layers. When a new task is presented,

a new classification layer is added. Then, the model is fine-

tuned on the data of the new task, with an additional loss

that incorporates the knowledge of the old tasks. This loss

tries to keep the previous task predictions on the new data

unchanged. Such a solution reduces the forgetting but is

heavily relying on the new task data. As a consequence, it

suffers from a build-up of errors when facing a sequence

of tasks [1]. The work presented recently in [12] tackles

the problem in a different way. Rather than having a data-

oriented analysis, they consider the knowledge gained in

the model itself, and transfer it from one task to another

in a Bayesian update fashion. The method relies on approx-

imating the weight distribution after training the model on

the new task. A Gaussian distribution, for which the mean is

given by the optimal weights for the first task, and the vari-

ance given by the diagonal of the Fisher information matrix

1320

Feature
extractor

F

Shared task
operator

T

T1

T2

TT

AE1

AE2

AET-1

K
no

w
le

dg
e

di
st

ill
at

io
n

lo
ss

Cross-entropy
loss

C
od

e
lo

ss

Main model
Sec. 3.1

Encoding of previous
task knowledge
Sec. 3.3

Sec. 3.2 &
3.3

Task specific
 operators

Figure 1. Diagram of the proposed model. Above the dotted line

are the model components that are retained during test time, while

below the dashed line are components necessary to our improved

training scheme.

is used as an approximation. Such a solution is based on a

strong principle and gives interesting results. However, it

requires to store a number of parameters that is comparable

to the size of the model itself.

In this work, we propose a compromise between these

two methods. Rather than heavily relying on the new task

data or requiring a huge amount of parameters to be stored,

we introduce the use of autoencoders as a tool to preserve

the knowledge from one task while learning another. For

each task, an undercomplete autoencoder is trained after

training the task model. It captures the most important fea-

tures for the task objective. When facing a new task, this

autoencoder is used to ensure the preservation of those im-

portant features. This is achieved by defining a loss on the

reconstructions made by the autoencoder, as we will explain

in the following sections. In this manner, we only restrict a

subset of the features to be unchanged while we give the

model the freedom to adapt itself to the new task using the

remaining capacity. Figure 1 displays the model we propose

to use.

Below, we first give a short description of the most rel-

evant related work in Sec. 2. Then, in Sec 3, we describe

how to use the autoencoders to avoid catastrophic forgetting

and motivate our choice by a short analysis that relates the

proposed objective to the joint training scheme. In Sec. 4,

we describe the experiments that we conducted, report and

discuss their results before concluding in Sec. 5.

2. Related work

Our end goal is to train a single model that can perform

well on multiple tasks, with tasks learned sequentially. This

problem is at the intersection of Joint training (or multi-

task training) and Lifelong learning. Standard multi-task

learning [4] aims to learn jointly from the data of the mul-

tiple tasks and uses inductive bias [17] in order to integrate

the knowledge from the different domains in a single model.

However, it requires the presence of data from all the tasks

during training. In a lifelong learning scenario, on the other

hand, tasks are treated in a sequential manner. The aim

is then to exploit the knowledge from previous tasks while

learning a new one. This knowledge is used to (i) preserve

the performance on the previously seen data, (ii) improve

this knowledge using inductive bias [17] from the new task

data, and (iii) act as a regularizer for the new task, which

can be beneficial for the performance. In this work we aim

at preserving the knowledge of the previous tasks and pos-

sibly benefiting from this knowledge while learning a new

task, without storing data from previous tasks.

Despite its potential benefits, this problem is under ex-

plored. Learning without forgetting (LwF), introduced

in [14], proposes to preserve the previous performance

through the knowledge distillation loss introduced in [11].

They consider a shared convolutional network between the

different tasks in which only the last classification layer is

task specific. When encountering a new task, the outputs

of the existing classification layers given the new task data

are recorded. During training, these outputs are preserved

through a modified cross-entropy loss that softens the class

probabilities in order to give a higher weight to the small

outputs. More details about this loss and the method can be

found in Sec. 3.2. This method reduces the forgetting, espe-

cially when the datasets come from related manifolds. Nev-

ertheless, it has been shown by iCaRL: Incremental Clas-

sifier and Representation Learning [22] that LwF suffers

from a build up of errors in a sequential scenario where the

data comes from the same environment. Similarly, Expert-

gate [1] shows that the LwF performance drops when the

model is exposed to a sequence of tasks drawn from differ-

ent distributions. [22] proposes to store a selection of the

previous tasks data to overcome this issue – something we

try to avoid. The goal in [1] is to obtain experts for dif-

ferent tasks (instead of a single joint model shared by all

tasks). They suggest a model of lifelong learning where ex-

perts on individual tasks are added to a network of models

sequentially. The challenge then is to decide which expert

to launch based on the input. Interestingly, they also use

undercomplete autoencoders – in their case to capture the

context of each task based on which a decision is made on

which task the test sample belongs to. In this work, we build

on top of LwF but reduce the cumulated errors using under-

complete autoencoders learned on the optimal representa-

1321

tions of the previous tasks.

Even more recently, another interesting solution to train

shared models without access to the previous data, some-

what similar in spirit to our work, has been proposed in [12],

in the context of reinforcement learning. The main idea of

this method, called Elastic weight consolidation, is to con-

strain the weights Wi while training for a second task with

an additional loss
∑

i
λ
2Fi(Wi −W ∗

1,i) where W ∗
1,i are the

optimal weights of the first task, and Fi the diagonal terms

of their Fisher information matrix. The use of the Fisher

matrix prevents the weights that are important for the first

task to change much. In our point of view, this method,

despite its success, has two drawbacks. First, the method

keeps the weights in a neighborhood of one possible mini-

mizer of the empirical risk of the first task. However, there

could be another solution that can give a better compromise

between the two tasks. Second, it needs to store a large

number of parameters that grows with the total number of

weights and the number of tasks. For these reasons, rather

than constraining the weights, we choose to constrain the

resulting features, enforcing that those that are important

for the previous tasks do not change much. By constraining

only a sub-manifold of the features, we allow the weights

to adjust so as to optimize the features for the new task,

while preserving those that ensure a good performance on

the previous tasks.

3. Overcoming forgetting with autoencoders

In this work, we consider the problem of training a su-

pervised deep model that can be useful for multiple tasks,

in the situation where at each stage the data fed to the net-

work come always from one single task, and the tasks enter

in the training scenario successively. The best performance

for all the tasks simultaneously is achieved when the net-

work is trained on the data from all the considered tasks at

the same time (as in joint training). This performance is of

course limited by the capacity of the used model, and can

be considered an upper bound to what can be achieved in a

lifelong learning setting, where the data of previous tasks is

no longer accessible when learning a new one.

3.1. Joint training

In the following, we will use the notations X (t) (model

input) and Y(t) (target) for the random variables from which

the dataset of the task t is sampled, and X
(t)
i and Y

(t)
i for

the data samples. When we have access to the data from

all T tasks jointly, the network training aims to control the

statistical risk:

T
∑

t=1

E(X (t),Y(t))[ℓ(ft(X
(t)),Y(t))], (1)

by minimizing the empirical risk:

T
∑

t=1

1

Nt

Nt
∑

i=1

ℓ(ft(X
(t)
i), Y

(t)
i), (2)

where Nt is the number of samples and ft the function im-

plemented by the network for task t. For most of the com-

monly used models, we can decompose ft as Tt ◦ T ◦ F
where:

• F is a feature extraction function (e.g. Convolutional

layers in ConvNets)

• Tt ◦ T is a task operator. It can be for example a clas-

sifier or a segmentation operator. T is shared among

all tasks, while Tt is task specific. (e.g. in ConvNets,

Tt could be the last fully-connected layer, and T the

remaining fully-connected layers.)

The upper part of Figure 1 gives a scheme of this gen-

eral model. For simplicity, we will focus below on two-task

training before generalizing to a multiple task scenario in

section 3.4.

3.2. Shortcomings of Learning without Forgetting

As a first step, we want to understand the limitations of

LwF [14]. In that work, it is suggested to replace in Eq (1)

ℓ(T1 ◦ T ◦ F (X (1)), Y(1)) with ℓ(T1 ◦ T ◦ F (X (2)),
T ∗
1 ◦ T

∗ ◦ F ∗(X (2))), where T ∗
1 ◦ T

∗ ◦ F ∗ is obtained from

training the network on the first task. If we suppose that the

model has enough capacity to integrate the knowledge of

the first task with a small generalization error, then we can

consider that

E(X (1))[ℓ(T1 ◦ T ◦ F (X (1)), T ∗
1 ◦ T ∗ ◦ F ∗(X (1)))] (3)

is a reasonable approximation of E(X (1),Y(1))[ℓ(T1 ◦ T ◦

F (X (1)),Y(1))]. However, in order to be able to compute

the measure (3) using samples fromX (2), further conditions

need to be satisfied.

In other terms, if we consider that T1◦ T ◦ F tries to learn

an encoding of the data in the target space X (1), then one

can say that the loss of information generated by the use of

X (2) instead of X (1) is a function of the Kullback-Leibler

divergence of the two related probability distributions, or

equivalently of their cross-entropy. Thus, if the two data

distributions are related, then LwF is likely to lead to high

performance. If the condition of the relatedness of the data

distributions fails, there is no direct guarantee that the use

of ℓ(T1 ◦ T ◦ F (X (2)), T ∗
1 ◦ T

∗ ◦ F ∗(X (2))) will not result

in an important loss of information for the first task. Indeed,

it has been shown empirically in [1] that the use of signifi-

cantly different data distributions may result in a significant

decrease in performance for LwF.

1322

Submanifold of informative
features

F*

F

Preserved during
training

Not controlled allows F to
adjust to the second task

Figure 2. Preservation of the features that are important for task 1

while training on task 2. During training, we enforce the projection

of F into the submanifold that captures these important features

to stay close to the projection of F ∗, the optimal features for the

first task. The part of F that is not meaningful for the first task is

allowed to adjust to the variations of the second task.

LwF is based on the knowledge distillation loss intro-

duced in [11] to reduce the gap resulting from the use of

different distributions. In this work, we build on top of

the LwF method. In order to make the used approximation

less sensitive to the data distributions, we see an opportu-

nity in controlling ‖T1 ◦ T ◦ F (X (1))−T1 ◦ T ◦ F (X (2))‖.
Under mild conditions about the model functions, namely

Lipschitz continuity, this control allows us to use T1 ◦ T ◦
F (X (2)) instead of T1 ◦ T ◦ F (X (1)) to better approximate

the first task loss in Eq. (1). Note that the condition of con-

tinuity on which this observation is based is not restrictive

in practice. Indeed, most of the commonly used functions

in deep models satisfy this condition (e.g. sigmoid, ReLU).

Our main idea is to learn a submanifold of the represen-

tation space F (X (1)) that contains the most informative fea-

tures for the first task. Once this submanifold is identified,

if the projection of the features F (X (2)) onto this subman-

ifold do not change much during the training of a second

task, then two consequences follow: (i) F (X (2)) will stay

informative for the first task during the training, and (ii) at

the same time there is room to adjust to the second task as

only its projection in the learned submanifold is controlled.

Figure 2 gives a simplified visualization of this mechanism.

In the next paragraphs, we propose a method to learn the

submanifold of informative features for a given task using

autoencoders.

3.3. Informative feature preservation

When beginning to train the second task, the feature ex-

tractor F ∗ of the model is optimized for the first task. A

feature extraction type of approach would keep this opera-

tor unchanged in order to preserve the performance on the

previous task. This is, however, overly conservative, and

usually suboptimal for the new task. Rather than preserving

Decoding
Wdec

Sigmoid σ

Fe
at

ur
es

 F
*

Fe
at

ur
es

 R
ec

on
st

ru
ct

io
n

r∘
F*Encoding

Wenc

Figure 3. Scheme of an undercomplete autoencoder trained to cap-

ture the important features submanifold.

all the features during training, our main idea is to preserve

only the features that are the most informative for the first

task while giving more flexibility for the other features in

order to improve the performance on the second task. An

autoencoder [3] trained on the representation of the first task

data obtained from an optimized model can be used to cap-

ture the most important features for this task.

3.3.1 Learning the informative submanifold with Au-

toencoders

An autoencoder is a neural network that is trained to re-

construct its input [9]. The network operates a projection

r that can be decomposed in an encoding and a decoding

function. The optimal weights are usually obtained by min-

imizing the mean ℓ2 distance between the inputs and their

reconstructions. If the dimension of the code is smaller than

the dimension of the input (i.e. if the autoencoder is under-

complete), the autoencoder captures the submanifold that

represents the best the structure of the input data. More pre-

cisely, we choose to use a two-layer network with a sigmoid

activation in the hidden layer: r(x) = Wdecσ(Wencx). Fig-

ure 3 shows a general scheme of such an autoencoder.

Here, our aim is to obtain through the autoencoder a sub-

manifold that captures the information that is not only im-

portant to reconstruct the features (output of the feature ex-

traction operator F ∗) of the first task, but also important for

the task operator (T ∗
1 ◦ T

∗). The objective is:

argmin
r

E(X (1),Y(1))[λ‖r(F
∗(X (1)))− F ∗(X (1))‖2 (4)

+ ℓ(T ∗
1 ◦ T

∗(r(F ∗(X (1)))),Y(1))],

where ℓ is the loss function used to train the model on the

first task data. λ is a hyper-parameter that controls the com-

promise between the two terms in this loss. In this manner,

the autoencoder represents the variations that are needed to

reconstruct the input and at the same time contain the infor-

mation that is required by the task operator.

1323

3.3.2 Representation control with separate task opera-

tors

To explain how we use these autoencoders, we start with the

simple case where there is no task operator shared among

all tasks (i.e., T = ∅). The model is then composed of a

common feature extractor F , and a task specific operator

for each task Tt. Each time a new task is presented to the

model, the corresponding task operator is then optimized.

However, in order to achieve the aim of lifelong learning,

we want to also update the feature extractor without dam-

aging the performance of the model on the previously seen

tasks.

In a two task scenario, after training the first task, we

have T ∗
1 and F ∗ optimized for that task. Then, we train

an undercomplete autoencoder using F ∗(X
(1)
i) minimizing

the empirical risk corresponding to (4). The optimal perfor-

mance for the first task, knowing that the operator T1 is kept

equal to T ∗
1 , is obtained with F equal to F ∗.

Nevertheless, preventing F from changing will lead to

suboptimal performance on the second task. The idea here

is to keep only the projection of F into the manifold repre-

sented by the autoencoder (r ◦ F) unchanged. The second

term of Eq. (4) explicitly enforces r to represent the sub-

manifold needed for good performance on task 1. Thus,

controlling the distance between r ◦ F and r ◦ F ∗ will pre-

serve the necessary information for task 1. From the un-

dercompleteness of the encoder, r projects the features into

a lower dimensional manifold, and by controlling only the

distance between the reconstructions, we give the features

flexibility to adapt to the second task variations (cf. Fig-

ure 2).

3.3.3 Representation control with shared task opera-

tor

We now consider the model presented in Figure 1 where a

part of the task operator is shared among the tasks as in the

setting used in LwF [14]. This is clearly a preferrable archi-

tecture in a lifelong learning setting, as the memory increase

when adding a new task is much lower. Our main idea is to

start from the loss used in the LwF method and add an ad-

ditional term coming from the idea presented in Sec. 3.3.2.

Thus, in a two task scenario, in addition to the loss used for

the second task, we propose to use two constraints:

1. The first constraint is the knowledge distillation loss

(ℓdist) used in [14]. If Ŷ := T1 ◦ T ◦ F (X (2)) and

Y∗ = T ∗
1 ◦ T

∗ ◦ F ∗(X (2)) then:

ℓdist(Ŷ,Y
∗) = −〈Z∗, log Ẑ〉 (5)

where log is operated entry-wise and

Z∗
i =

Y
∗1/θ
i

∑

j Y
∗1/θ
j

and Ẑi =
Ŷ

1/θ
i

∑

j Ŷ
1/θ
j

(6)

The application of a high temperature θ increases the

small values of the output and reduces the weight of

the high values. This mitigates the influence of the use

of different data distributions.

2. The second constraint is related to the preservation of

the reconstructions of the second task features (r ◦
F ∗(X (2))). The goal of this constraint is to keep r ◦F
close to r ◦ F ∗ as explained in Sec. 3.3.2.

For the second constraint, rather than controlling the dis-

tance between the reconstructions, we will here constrain

the codes σ(Wenc·). From sub-multiplicity of the Frobe-

nius norm, we have:

‖r(x1)−r(x2)‖2 ≤ ‖Wdec‖F ‖σ(Wencx1)−σ(Wencx2)‖2.

The advantage of using the codes is their lower dimension.

As the codes or reconstructions need to be recorded before

beginning the training on the second task, using the codes

will result in a better usage of the memory.

Finally, the objective for the training of the second task

is the following:

R = E[ℓ(T2 ◦ T ◦ F (X (2)),Y(2)))

+ ℓdist(T1 ◦ T ◦ F (X (2)), T ∗
1 ◦ T

∗ ◦ F ∗(X (2)))

+
α

2
‖σ(WencF (X (2)))− σ(WencF

∗(X (2)))‖22]. (7)

The choice of the parameter α will be done through

model selection. An analysis of this objective is given in

the appendix, giving a bound on the difference between

E[ℓ(T2 ◦ T ◦ F (X (2)),Y(2))) + ℓ(T1 ◦ T ◦ F (X (2)), T ∗
1 ◦

T ∗ ◦ F ∗(X (2)))] and the statistical risk in a joint-training

setting (1). It shows that (7) effectively controls this bound.

3.4. Training procedure

The proposed method in Sec. 3.3.3 generalizes easily to

a sequence of tasks. An autoencoder is then trained after

each task. Even if the needed memory will grow linearly

with the number of tasks, the memory required by an au-

toencoder is a small fraction of that required by the global

model. For example, in the case of AlexNet as a base model,

an autoencoder comprises only around 1.5% of the memory.

In practice, the empirical risk is minimized:

RN =
1

N

N
∑

i=1

(

ℓ(TT ◦ T ◦ F (X
(T)
i), Y

(T)
i)

+
T −1
∑

t=1

ℓdist(Tt ◦ T ◦ F (X
(T)
i), T ∗

t ◦ T
∗ ◦ F ∗(X

(T)
i))

+

T −1
∑

t=1

αt

2
‖σ(Wenc,tF (X

(T)
i))− σ(Wenc,tF

∗(X
(T)
i))‖22

)

.

(8)

1324

Algorithm 1 Encoder based Lifelong Learning

Input :

F ∗ shared feature extractor; T ∗: shared task operator;

{Tt}t=1..T −1 previous task operators;

{Wenc,t}t=1..T −1 previous task encoders;

(X(T), Y (T)) training data and ground truth of the new

task T ;

αt and λ //hyper parameters

Initialization :

1: Y ∗
t = T ∗

t ◦ T
∗ ◦ F ∗(X(T)) //record task targets

2: C∗
t = σ(Wenc,tF

∗(X(T))) //record new data codes

3: TT ← Init(|Y (T)|) // initialize new task operator

Training :

4: Ŷt = Tt ◦ T ◦ F (X(T)) // task outputs

5: Ĉt = σ(Wenc,tF (X(T))) //current codes

6: T ∗
t , T

∗, F ∗ ← argminTt,T,F [ℓ(ŶT , Y
(T)))

+
∑T −1

t=1 ℓdist(Ŷt, Y
∗
t) +

∑T −1
t=1

αt

2 ‖Ĉt − C∗
t ‖

2]
7: (Wenc,T ,Wdec,T)← autoencoder(T ∗

T , T
∗, F ∗,

X(T), Y (T);λ) // minimizes Eq. (4)

The training is done using stochastic gradient descent

(SGD) [2]. The autoencoder training is also done by SGD

but with an adaptive gradient method, AdaDelta [28] which

alleviates the need for setting the learning rates and has nice

optimization properties. Algorithm 1 shows the main steps

of the proposed method.

4. Experiments

We compare our method against the state-of-the-art and

several baselines on image classification tasks. We consider

sets of 2, 3 and 5 tasks learned sequentially, in two settings:

1) when the first task is a large dataset, and 2) when the first

task is a small dataset.

Architecture We experiment with AlexNet [13] as our

network architecture due to its widespread use and simi-

larity to other popular architectures. The feature extrac-

tion block F corresponds to the convolutional layers. By

default, the shared task operator T corresponds to all but

the last fully connected layers (i.e., fc6 and fc7), while

the task-specific part Ti contains the last classification layer

(fc8). Other choices for F and T are possible. More de-

tails can be found in the supplementary materials. During

the training, we used an α in the order of 10−3 for ImageNet

and 10−2 for the rest of the tasks. Note that this parameter

sets the trade off between the allowed forgetting on the pre-

vious task and the performance on the new task.

For the autoencoders, we use a very shallow architec-

ture, to keep their memory footprint low. Both the encoding

as well as the decoding consist of a single fully connected

layer, with a sigmoid as non-linearity in between. The di-

mensionality of the codes is 100 for all datasets, except for

ImageNet where we use a code size of 300. The size of the

autoencoder is 3MB, compared to 250MB for the size of the

network model. The training of the autoencoders is done

using AdaDelta as explained in Sec. 3.4. During training of

the autoencoders, we use a hyperparameter λ (cf. Eq. (4))

to find a compromise between the reconstruction error and

the classification error. This parameter is tuned manually

and is set to 10−6 in all cases.

Datasets We use multiple datasets of moderate size: MIT

Scenes [20] for indoor scene classification (5,360 samples),

Caltech-UCSD Birds [27] for fine-grained bird classifica-

tion (5,994 samples), Oxford Flowers [18] for fine-grained

flower classification (2,040 samples) and VOC Actions [6],

the human action classification subset of VOC challenge

2012. These datasets were also used in both [1] and [14].

For the scenario based on a large initial dataset, we start

from ImageNet (LSVRC 2012 subset) [23], which has more

than 1 million training images. For the small dataset sce-

nario, we start from Oxford Flowers, which has only 2,040

training and validation samples.

The reported results are obtained with respect to the test

sets of Scenes, Birds, Flowers and Actions, and on the vali-

dation set of ImageNet. As in LwF [14], we need to record

the targets corresponding to the old tasks before starting the

training procedure for a new task. Here, we perform an

offline augmentation with 10 variants of each sample (dif-

ferent crops and flips). This setting differs slightly from

what has been done in [14], which explains the higher per-

formance on the individual tasks in our experiments. We

therefore compare against a stronger baseline than the ac-

curacies reported in [14].

Compared Methods We compare our method (Ours)

with Learning without Forgetting (LwF) [14], which repre-

sents the current state-of-the-art. Additionally, we consider

two baselines: Finetuning, where each model (incl. F and

T) is learned for the new task using the previous task model

as initialization, and Feature extraction, where the weights

of the previous task model (F and T) are fixed and only the

classification layer (Tt) is learned for each new task. Fur-

ther, we also report results for a variant of our method, Ours

- separate FCs where we only share the representation lay-

ers (F) while each task has its own fully connected layers

(i.e., T = ∅ and Ti = {fc6 − fc7 − fc8}). This variant

aims at finding a universal representation for the current se-

quence of tasks while allowing each task to have its own

fully connected layers. With less sharing, the risk of forget-

ting is reduced, at the cost of a higher memory consump-

tion and less regularization for new tasks. Note that in this

case the fully connected layers of the previous tasks are not

retrained, and thus there is no need to use the knowledge

distillation loss. Moreover, task autoencoders can be used

at test time to activate only the fully connected layers of the

1325

ImageNet → Scenes ImageNet → Birds ImageNet → Flowers Average loss

Acc. on Task1 Acc. on Task2 Acc. on Task1 Acc. on Task2 Acc. on Task1 Acc. on Task2 Task 1 Task 2

Finetuning 48.0% (-9%) 65.0% (ref) 41.3% (-15.7%) 59.0% (ref) 50.8% (-6.2%) 86.4% (ref) -10.3% (ref)

Feature extraction 57.0% (ref) 60.6% (-4.4%) 57.0% (ref) 51.6% (-7.4%) 57.0% (ref) 84.6% (-1.8%) (ref) -4.5%

LwF 55.4% (-1.6%) 65.0% (-0%) 54.4% (-2.6%) 58.9% (-0.1%) 55.6% (-1.4%) 85.9% (-0.5%) -1.9% -0.2%

Ours 56.3% (-0.7%) 64.9% (-0.1%) 55.3% (-1.7%) 58.2% (-0.8%) 56.5% (-0.5%) 86.2% (-0.2%) -1.0% -0.4 %

Ours - separate FCs 57.0% (-0%) 65.9% (+0.9%) 57.0% (-0%) 57.7% (-1.3%) 56.5% (-0.5%) 86.4% (-0%) -0.2% -0.1 %

Table 1. Classification accuracy for the Two Task scenario starting from ImageNet. For the first task, the reference performance is given by

Feature extraction. For the second task, we consider Finetuning as the reference as it is the best that can be achieved by one task alone.

task that a test sample belongs to, in a similar manner to

what was done in [1].

Setups We consider sequences of 2, 3 and 5 tasks. In

the Two Tasks setup, we are given a model trained on one

previously seen task and then add a second task to learn.

This follows the experimental setup of LwF [14]. In their

work, all the tested scenarios start from a large dataset, Im-

ageNet. Here we also study the effect of starting from a

small dataset, Flowers.1 Further, we also consider a setup

involving Three Tasks. First, we use a sequence of tasks

starting from ImageNet, i.e. ImageNet→ Scenes→ Birds.

Additionally, we consider Flowers as a first task in the se-

quence Flowers→ Scenes→ Birds. Note that this is differ-

ent from what was conducted in [14] where the sequences

were only composed of splits of one dataset i.e. one task

overall. Finally, for a stronger validation of our method,

we also test on a longer sequence: ImageNet→ Scenes→
Birds→ Flowers→ Actions.

Results Table 1 shows, for the different compared meth-

ods, the achieved performance on the Two Tasks scenario

with ImageNet as the first task. While Finetuning is op-

timal for the second task, it shows the most forgetting of

the first task. The performance on the second task is on

average comparable for all methods except for Feature ex-

traction. Since the Feature extraction baseline doesn’t

allow the weights of the model to change and only opti-

mizes the last fully connected layers, its performance on

the second task is suboptimal and significantly lower than

the other methods. Naturally, the performance of the pre-

vious task is kept unchanged in this case. Ours - separate

FCs shows high performance on both tasks, with the per-

formance of the second task being comparable or better to

the methods with shared FCs. This variant of our method

has a higher capacity as it allocates separate fully connected

layers for each task, yet its memory consumption increases

more rapidly as tasks are added, a severe drawback. Our

method with a complete shared model Ours systematically

outperforms the LwF method on the previous task and on

average achieves a similar performance on the second task.

When we start from a smaller dataset, Flowers, the same

trends can be observed, but with larger differences in accu-

racy (Table 2). The performance on the second task is lower

than that achieved with ImageNet as a starting point for all

the compared methods. This is explained by the fact that the

1Due to the small size of the Flowers dataset, we use a network pre-

trained on ImageNet as initialization for training the first task model. The

main difference hence lies in the fact that in this case we do not care about

forgetting ImageNet.

representation obtained from ImageNet is more meaning-

ful for the different tasks than what has been finetuned for

Flowers. Differently from the ImageNet starting case, Ours

- separate FCs achieves a considerably better performance

on the second task than Ours and LwF while preserving

the previous task performance. Finetuning shows the best

performance on the second task while suffering from severe

forgetting on the previous task. The pair of tasks here is of

a different distribution and finding a compromise between

the two tasks is a challenging problem. As in the previous

case, Ours reduces the forgetting of LwF while achieving

a similar average performance on the second task.

Overall, the Ours-separate FCs achieves the best per-

formance on the different pairs of tasks. However, it re-

quires allocating seprate fully connected layers for each task

which requires a lot of memory. Thus, for the sequential ex-

periments we focus on the shared model scenario.

In Table 3 we report the performance achieved by Ours,

LwF and Finetuning for the sequence of ImageNet →
Scenes→ Birds. As expected, the Finetuning baseline suf-

fers from severe forgetting on the previous tasks. The per-

formance on ImageNet (the first task) drops from 57% to

37.9% after finetuning on the third task. As this baseline

does not consider the previous tasks in its training proce-

dure, it has the advantage of achieving the best performance

on the last task in the sequence.

Ours continually reduces forgetting compared to LwF

on the previous tasks while showing a comparable perfor-

mance on the new task in the sequence. For example, Ours

achieves 54.9% on ImageNet compared to 53.3% by LwF.

Similar conclusions can be drawn regarding the sequential

scenario starting from Flowers as reported in Table 4.

Effect of the code length In order to examine the effect of

varying the code size, we apply our method to the two-task

experiment ImageNet→ Scenes using AlexNet and autoen-

coders with code size varying from 20 to 9216 (full feature

dimension) trained on the output of conv5. Figure 4 shows

the classification accuracies for both of the datasets for dif-

ferent code sizes. The results indicate that the smaller code

sizes favor the performance on the new task, while the larger

code sizes lean towards a better preservation of the old task

knowledge but a lower performance on the new task. This

experiment confirms the motivation behind using autoen-

coders to encode the knowledge of previous tasks: a larger

code means then a better preservation (see Figure 2 and Sec-

tion 3.3.1), but a very large code preserves a noisy informa-

tion, which explains the drop in the first task performance

for the largest codes.

1326

Flowers → Scenes Flowers → Birds Average loss

Acc. on Task1 Acc. on Task2 Acc. on Task1 Acc. on Task2 Task 1 Task 2

Finetuning 61.6% (-24.8%) 63.9% (ref) 66.6% (-19.8%) 57.5% (ref) -22.3% (ref)

Feature extraction 86.4% (ref) 59.6% (-4.3%) 86.4% (ref) 48.6% (-8.9%) (ref) -6.6%

LwF 83.7% (-2.7%) 62.2% (-1.7%) 82.0 % (-4.4%) 52.2 % (-5.3%) -3.6% -3.5%

Ours 84.9% (-1.5%) 62.3% (-1.6%) 83.0% (-3.4%) 52.0 % (-5.5%) -2.4% -3.5%

Ours - separate FCs 86.4% (-0%) 63.0% (-0.9%) 85.4% (-1.0%) 55.1% (-2.4%) -0.5% -1.6%

Table 2. Classification accuracy for the Two Task scenario starting from Flowers. For the first task, the reference performance is given by

Feature extraction. For the second task, we consider Finetuning as reference as it is the best that can be achieved by one task alone.

ImageNet Scenes Birds Average Acc.

Finetuning 37.5% 45.6% 58.1% 47.2%

LwF 53.3% 63.5% 57.2 % 58.0%

Ours 54.9% 64.7% 56.9% 58.8%

Table 3. Classification accuracy for the Three Task scenario start-

ing from ImageNet. Ours achieves the best trade off between the

tasks in the sequence with less forgetting to the previous tasks.

Flowers Scenes Birds Average Acc.

Finetuning 51.2% 48.1% 58.5% 51.6%

LwF 81.1% 59.1% 52.3% 64.1%

Ours 82.8% 61.2 % 51.2% 65.0%

Table 4. Classification accuracy for the Three Task scenario start-

ing from Flowers. Ours achieves the best trade off between the

tasks in the sequence with less forgetting to the previous tasks.

Figure 4. Classification accuracy for the Two Task scenario Im-

ageNet → Scenes with different code sizes. The points in bold

mark the code size corresponding to the setting of the experiments

reported in Table 1.

Performance on longer sequences We compare the per-

formance of our method to LwF on a longer sequence of five

tasks: ImageNet→ Scenes→ Birds→ Flowers→Actions.

Figure 5 shows the obtained accuracies for the five datasets

with both methods. It shows that our method outperforms

LwF by 1.32% on average over all the tasks. The perfor-

mance of our method on ImageNet after five tasks (53.6%)

is higher than the performance of LwF (51.2%) . It worths

noticing that our performance after 5 tasks is better than

LwF performance after only 3 tasks (53.3%, Table 3).

5. Conclusions and future work

Strategies for efficient lifelong learning is still an open

research problem. In this work, we tackled the problem of

learning a sequence of tasks using only the data from the

most recent environment, aiming at obtaining a reasonable

Figure 5. Classification accuracy for a Five Task scenario. The

tasks (horizontal axis) are presented sequentially from left to right

to AlexNet. The training is done using LwF and our method with

shared fully connected layers for comparison.

performance on the whole sequence. Existing works con-

sider solutions to preserve the knowledge of the previous

tasks either by keeping the corresponding system predic-

tions unchanged during training of the new task, or by keep-

ing the model parameters in a neighborhood of the sequence

of the previous optimal weights. While the first suffers from

the difference in the task distributions, the second needs to

store a large number of parameters.

The solution presented here reduces forgetting of earlier

tasks by controlling the distance between the representa-

tions of the different tasks. Rather than preserving the opti-

mal weights of the previous tasks, we propose an alternative

that preserves the features that are crucial for the perfor-

mance in the corresponding environments. Undercomplete

autoencoders are used to learn the submanifold that repre-

sents these important features. The method is tested on im-

age classification problems, in sequences of two, three or

five tasks, starting either from a small or a large dataset.

An improvement in performance over the state-of-the-art is

achieved in all the tested scenarios. Especially, we showed

a better preservation of the old tasks.

Despite the demonstrated improvements, this work also

identifies possible further developments. A direction that is

worth exploring is to use the autoencoders as data genera-

tors rather than relying on the new data. This would give a

stronger solution in the situation where the new data does

not represent previous distributions well.

Acknowledgment: Rahaf Aljundi’s PhD is funded by an

FWO scholarship. This work is partially funded by Inter-

nal Funds KU Leuven, FP7-MC-CIG 334380, GOA-project

CAMETRON and an Amazon Research Award.

1327

References

[1] R. Aljundi, P. Chakravarty, and T. Tuytelaars. Expert gate:

Lifelong learning with a network of experts. IEEE confer-

ence on Computer Vision and Pattern Recognition, 2017.

[2] L. Bottou. Large-scale machine learning with stochastic gra-

dient descent. In Proceedings of International Conference

on Computational Statistics, pages 177–186. Springer, 2010.

[3] H. Bourlard and Y. Kamp. Auto-association by multilayer

perceptrons and singular value decomposition. Biological

cybernetics, pages 291–294, 1988.

[4] R. Caruana. Multitask learning. In Learning to learn, pages

95–133. Springer, 1998.

[5] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. Decaf: A deep convolutional ac-

tivation feature for generic visual recognition. In Interna-

tional Conference on Machine Learning, volume 32, pages

647–655, 2014.

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

[7] R. M. French. Catastrophic forgetting in connectionist net-

works. Trends in cognitive sciences, pages 128–135, 1999.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition, pages 580–587,

2014.

[9] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning.

MIT press, 2016.

[10] I. J. Goodfellow, M. Mirza, A. Courville, and Y. Bengio. An

empirical investigation of catastrophic forgetting in gradient-

based neural networks. stat, page 6, 2014.

[11] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. stat, 1050:9, 2015.

[12] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Des-

jardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho,

A. Grabska-Barwinska, et al. Overcoming catastrophic for-

getting in neural networks. Proceedings of the National

Academy of Sciences, page 201611835, 2017.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[14] Z. Li and D. Hoiem. Learning without forgetting. In Eu-

ropean Conference on Computer Vision, pages 614–629.

Springer, 2016.

[15] J. L. McClelland, B. L. McNaughton, and R. C. O’reilly.

Why there are complementary learning systems in the hip-

pocampus and neocortex: insights from the successes and

failures of connectionist models of learning and memory.

Psychological review, page 419, 1995.

[16] M. McCloskey and N. J. Cohen. Catastrophic interference

in connectionist networks: The sequential learning prob-

lem. Psychology of learning and motivation, pages 109–165,

1989.

[17] T. M. Mitchell. The need for biases in learning gener-

alizations. Department of Computer Science, Laboratory

for Computer Science Research, Rutgers Univ. New Jersey,

1980.

[18] M.-E. Nilsback and A. Zisserman. Automated flower classi-

fication over a large number of classes. In Proceedings of the

Indian Conference on Computer Vision, Graphics and Image

Processing, 2008.

[19] A. Pentina and C. H. Lampert. Lifelong learning with non-

iid tasks. In Advances in Neural Information Processing Sys-

tems, pages 1540–1548, 2015.

[20] A. Quattoni and A. Torralba. Recognizing indoor scenes. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 413–420. IEEE, 2009.

[21] R. Ratcliff. Connectionist models of recognition memory:

Constraints imposed by learning and forgetting functions.

Psychological review, pages 285–308, 1990.

[22] S.-A. Rebuffi, A. Kolesnikov, and C. H. Lampert. icarl: In-

cremental classifier and representation learning. IEEE con-

ference on Computer Vision and Pattern Recognition, 2017.

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, pages 211–252,

2015.

[24] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer,

J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and R. Hadsell.

Progressive neural networks. arXiv:1606.04671, 2016.

[25] D. L. Silver and R. E. Mercer. The task rehearsal method of

life-long learning: Overcoming impoverished data. In Con-

ference of the Canadian Society for Computational Studies

of Intelligence, pages 90–101. Springer, 2002.

[26] D. L. Silver, Q. Yang, and L. Li. Lifelong machine learning

systems: Beyond learning algorithms. In AAAI Spring Sym-

posium: Lifelong Machine Learning, pages 49–55. Citeseer,

2013.

[27] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-

longie, and P. Perona. Caltech-UCSD Birds 200. Technical

Report CNS-TR-2010-001, California Institute of Technol-

ogy, 2010.

[28] M. D. Zeiler. Adadelta: an adaptive learning rate method.

arXiv:1212.5701, 2012.

1328

