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Abstract

We introduce a novel semi-supervised video segmenta-
tion approach based on an efficient video representation,
called as “super-trajectory”. Each super-trajectory corre-
sponds to a group of compact trajectories that exhibit con-
sistent motion patterns, similar appearance and close spa-
tiotemporal relationships. We generate trajectories using
a probabilistic model, which handles occlusions and drifts
in a robust and natural way. To reliably group trajecto-
ries, we adopt a modified version of the density peaks based
clustering algorithm that allows capturing rich spatiotem-
poral relations among trajectories in the clustering pro-
cess. The presented video representation is discriminative
enough to accurately propagate the initial annotations in
the first frame onto the remaining video frames. Extensive
experimental analysis on challenging benchmarks demon-
strate our method is capable of distinguishing the target
objects from complex backgrounds and even reidentifying
them after occlusions.

1. Introduction

We state the problem of semi-supervised video object
segmentation as the partitioning of objects in a given video
sequence with available annotations in the first frame. Aim-
ing for this task, we incorporate an efficient video repre-
sentation, super-trajectory, to capture the underlying spa-
tiotemporal structure information that is intrinsic to real-
word scenes. Each super-trajectory corresponds to a group
of trajectories that are similar in nature and have common
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Figure 1. Our video segmentation method takes the first frame an-
notation as initialization (left). Leveraging on super-trajectories,
the segmentation process achieves superior results even for chal-
lenging scenarios including heavy occlusions, complex appear-
ance variations, and large shape deformations (middle, right).

characteristics. A point trajectory, e.g., the tracked posi-
tions of an individual point across multiple frames, is a
constituent of super-trajectory. This representation captures
several aspects of a video:

• Long-term motion information is explicitly modeled as
it consists of trajectories over extended periods;

• Spatiotemporal location information is implicitly in-
terpreted by clustering nearby trajectories; and

• Compact features, such as color and motion pattern,
are described in a conveniently compact form.

With above good properties, super-trajectory simplifies and
reduces the complexity of propagating human-provided la-
bels in the segmentation process. We first generate trajec-
tory based on Markovian process, which handles occlusions
and drifts naturally and efficiently. Then a density peaks
based clustering (DPC) algorithm [31] is modified for ob-
taining reasonable division of the trajectories, which offers
proper split of videos in space and time axes. The design of
our super-trajectory is motivated by the flowing two aspects.
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Firstly, for the task of video segmentation, it is desir-
able to have a powerful abstraction of videos that is ro-
bust to structure variations and deformations in image space
and time. As demonstrated in recently released DAVIS
dataset [28], most of the existing approaches exhibit se-
vere limitations for occlusions, motion blur, and appearance
changes. The proposed super-trajectory, encoded with sev-
eral well properties, is able to capture above instances (see
Fig. 1).

Secondly, from the perspective of feature generation,
point trajectory is desired to be improved for meeting above
requests. Merging and splitting video segments (and cor-
responding trajectories) into atomic spatiotemporal com-
ponents is essential for handling occlusions and temporal
discontinuities. However, it is well-known that, classical
clustering methods (e.g., k-means and spectral clustering),
which are widely adopted by previous trajectory methods,
even cannot reached a consensus on the definition of a clus-
ter. Here, we modify DPC algorithm [31] for grouping tra-
jectories, favoring its advantage of choosing cluster centers
based on a reasonable criterion.

We conduct video segmentation via operating trajecto-
ries as unified super-trajectory groups. To eliminate adverse
effects of camera motion, we introduce a reverse-tracking
strategy to exclude objects that originate outside the frame.
To reidentify objects after occlusions, we exploit object re-
occurrence information, which reflects the spatiotemporal
relations of objects across the entire video sequence.

The remainder of the article is organized as follows.
A summarization of related work is introduced in Sec. 2.
Our approach for super-trajectory generation is presented
in detail in Sec. 3. In Sec. 4, we describe our super-
trajectory based video segmentation algorithm. We then ex-
perimentally demonstrate its robustness, effectiveness, and
efficiency in Sec. 5. Finally, we draw conclusions in Sec. 6.

2. Related Work
We provide a brief overview of recent works in video

object segmentation and point trajectory extraction.

2.1. Video Object Segmentation

According to the level of supervision required, video
segmentation techniques can be broadly categorized as un-
supervised, semi-supervised and supervised methods.

Unsupervised algorithms [37, 49, 26, 44, 42] do not
require manual annotations but often rely on certain lim-
iting assumptions about the application scenario. Some
techniques [5, 14, 27] emphasize the importance of mo-
tion information. More specially, [5, 14] analyze long-
term motion information via trajectories, then solve the seg-
mentation as a trajectory clustering problem. The works
[10, 43, 46] introduce saliency information [45] as prior
knowledge to infer the object. Recently, [19, 22, 50, 12, 48]

generate object segments via ranking several object candi-
dates.

Semi-supervised video segmentation, which also refers
to label propagation, is usually achieved via propagating
human annotation specified on one or a few key-frames onto
the entire video sequence [4, 2, 35, 7, 21, 17, 32, 36]. These
methods mainly use flow-based random field propagation
models [38], patch-seams based propagation strategies [30],
energy optimizations over graph models [29], joint segmen-
tation and detection frameworks [47], or pixel segmentation
on bilateral space [23].

Supervised methods [3, 51, 11] require tedious user in-
teraction and iterative human corrections. These methods
can attain high-quality boundaries while suffering from ex-
tensive and time-consuming human supervision.

2.2. Point Trajectory

Point trajectories are generated through tracking points
over multiple frames and have the advantage of represent-
ing long-term motion information. Kanade-Lucas-Tomasi
(KLT) [33] is among the most popular methods that track a
small amount of feature points. Inspiring several follow-up
studies in video segmentation and action recognition, opti-
cal flow based dense trajectories [34] improve over sparse
interest point tracking. In particular, [39, 40, 41] introduce
dense trajectories for action recognition. Other methods
[5, 13, 20, 15, 14, 24, 25, 18, 9] address the problem of un-
supervised video segmentation, in which case the problem
also be described as motion segmentation. These methods
usually track points via dense optical flow and perform seg-
mentation via clustering trajectories.

Existing approaches often handle trajectories in pairs or
individually and directly group all the trajectories into few
clusters as segments, easily ignoring the inner coherence in
a group of similar trajectories. Instead, we operate trajecto-
ries as united super-trajectory groups instead of individual
entities, thus offering compact and atomic video represen-
tation and fully exploiting spatiotemporal relations among
trajectories.

3. Super-Trajectory via Grouping Trajectories
3.1. Trajectory Generation

Given a sequence of video frames I1:T = {I1, · · ·, IT }
within time range [1, T ], each pixel point can be tracked to
the next frame using optical flow. This tracking process can
be executed frame-by-frame until some termination condi-
tions (e.g., occlusion, incorrect motion estimates, etc.) are
reached. The tracked points are composed into a trajectory
and a new tracker is initialized where prior tracker finished.
We build our trajectory generation on a unified probabilistic
model which naturally considers various termination condi-
tions.



Let w denote a flow field indexed by pixel positions that
returns a 2D flow vector at a given point. Using LDOF [6],
we compute forward-flow field wt from frame It to It+1,
and the backward-flow field ŵt from It to It−1. We track
pixel potion x = (x, y, t) to the consecutive frames in both
directions. The tracked points of consecutive frames are
concatenated to form a trajectory τ :

τ = {xn}Ln=1 = {(xn, yn, tn)}Ln=1, tn ∈ [1, T ], (1)

where L indicates the length of trajectory τ and (xn, yn) =
(xn−1, yn−1)+wtn−1(xn−1, yn−1). We model point track-
ing process as a first order Markovian process, and denote
the probability that n-th point xn of trajectory τ is cor-
rectly tracked from frame It1 as p(xn|It1:tn). The predic-
tion model is defined by:

p(xn|It1:tn) = p(xn|xn−1)p(xn−1|It1:tn−1
), (2)

where p(x1|It1) = 1 and p(xn|xn−1) is formulated as:

p(xn|xn−1) = exp{−(Eapp + Eocc)}. (3)

The energy functions E penalize various potential tracking
error. The former energy Eapp is expressed as:

Eapp(xn, xn−1) = ||Itn(xn, yn)− Itn−1(xn−1, yn−1)||, (4)

which penalizes the appearance variations between corre-
sponding points. The latter energy Eocc is included to pe-
nalize occlusions. It uses the consistency of the forward
and backward flows:

Eocc(xn, xn−1)=
||ŵtn(xn, yn)+wtn−1(xn−1, yn−1)||

||ŵtn(xn, yn)||+||wtn−1(xn−1, yn−1)||
. (5)

When this consistency constraint is violated, occlusions or
unreliable optical flow estimates might occur (see [34] for
more discussion). It is important to notice that the proposed
tracking model performs accurately yet our model is not
limited to the above constraints. We terminate the track-
ing process when p(xn|It1:tn) < 0.5, and then we start a
new tracker at xn. In our implementation, we discard the
trajectories shorter than four frames.

3.2. Super-Trajectory Generation

Previous studies indicate the value of trajectory based
representation for long-term motion information. Our ad-
ditional intuition is that neighbouring trajectories exhibit
compact spatiotemporal relationships and they have simi-
lar natures in appearance and motion patterns. This motives
us operating on trajectories as united groups.

We generate super-trajectory by clustering trajectories
with density peaks based clustering (DPC) algorithm[31].
Before introducing our super-trajectory generation method,
we first describe DPC.

Density Peaks based Clustering (DPC) DPC is proposed
to cluster the data by finding of density peaks. It provides a
unique solution of fast clustering based on the idea that clus-
ter centers are characterized by a higher density than their
neighbors and by a relatively large distance from points with
higher densities. It offers a reasonable criterion for finding
clustering centers.

Given the distances dij between data points, for each
data point i, DPC calculates two quantities: local density
ρi and its distance δi from points of higher density. The
local density ρi of data point i is defined as 1:

ρi =
∑

j
dij . (6)

Here, δi is measured by computing the minimum distance
between the point i and any other point with higher density:

δi = min
j:ρj>ρi

(dij). (7)

For the point with highest density, it takes δi = maxj(dij).
Cluster centers are the points with high local density

(ρ ↑) and large distance (δ ↑) from other points with higher
local density. The data points can be ranked via γi = ρiδi,
and the top ranking points are selected as centers. After
successfully declaring cluster centers, each remaining data
points is assigned to the cluster center as its nearest neigh-
bor of higher density.
Grouping Trajectories via DPC Given a trajectory τ :
{(xn, yn, tn)}n spans L frames, we define three features:
spatial location (lτ ), color (cτ ), and velocity (vτ ), for de-
scribing τ :

lτ =
1

L

L∑
n=1

(xn, yn), cτ =
1

L

L∑
n=1

Itn(xn, yn),

vτ =
1

L

L∑
n=1

( 1

∆t
(xn+∆t − xn, yn+∆t − yn)

)
,

(8)

where we set ∆t = 3. We tested ∆t = {5, 7, 9} and did not
observe obvious effect on the results.

Between each pair of trajectories τi and τj that share
some frames, we define their distance dij via measuring de-
scriptor similarity:

dij =
∑

f∈{l,c,v}
||fτi − fτj ||. (9)

We normalize color distance on max intensity, location dis-
tance on sampling step R (detailed below), motion distance
on the mean motion magnitude of all the trajectories, which
makes above distance measures to have similar scales. In
case there is no temporal overlap, we set dij = H , where
H has a very large value.

1Here we do not use the cut-off kernel or gaussian kernel adopted in
[31], due to the small data amount.



(a) (b)
Figure 2. Illustration of initial super-trajectory generation. (a) The
arrows indicate trajectories and the dots indicate the initial location
of trajectory. (b) We roughly divide all the trajectories into K
groups with a given number of spatial grids K = 4.

We first roughly partition trajectories into several non-
overlap clusters, and then iteratively updates each partition
to get the optimized trajectory clusters.

The only parameter of our super-trajectory algorithm is
number of spatial grids K, as the degree of spatial subdi-
vision. The spatial sampling step becomes R =

√
S/K,

where S refers to the product of the height and width of im-
age frame. The clustering procedure begins with an initial-
ization step where we divide the input video I1:T into sev-
eral non-overlap spatiotemporal volumes of sizeR×R×T .
As shown in Fig. 2, all trajectories T = {τi}i are divided
into K volumes. A trajectory τ falls into the volume where
it starts. Then we need to find a proper cluster number of
each trajectory group, thereby further offering a reasonable
temporal split of video.

For each trajectory group, we initially estimate the clus-
ter number as C = T/L, where L indicates the average
length of all the trajectories. Then we apply a modified DPC
algorithm for generating trajectory clusters, as described
with in Alg. 1. In Alg. 1-3, if we have δi = H , then tra-
jectory τi does not have any temporal overlap with those
trajectories have higher local densities. That means trajec-
tory τi is the center of a isolated group. If C < n′, in
Alg. 1-4, that means there exist more than C unconnected

Algorithm 1 DPC for Generating Super-Trajectory Centers
Input: A sub-group of trajectories T ′ = {τ ′i}i (T ′ ⊂ T ),

distance matrix {dij} via Eq. 9 and cluster number C;
Output: Organized trajectory clusters;

1: Compute local densities {ρi}i via Eq. 6;
2: Compute distance {δi}i via Eq. 7;
3: Find {τ ′i′}i′ with δi′ = H , where |{τ ′i′}i′ | = n′;
4: if C < n′ then
5: Select {τ ′i′}i′ as cluster centers;
6: else
7: Compute {γi}i via γi = ρiδi;
8: Select the trajectories with C highest γ values as

cluster centers;
9: end if

10: Assign remaining trajectories to cluster centers.

Figure 3. Illustration of our super-trajectory generation via itera-
tive trajectory clustering. (a) Frame It. (b)-(f) Visualization re-
sults of super-trajectory in time slice It with different iterations.
Each pixel is assigned the average color of all the points along the
trajectory which it belongs to. The blank areas are the discarded
trajectories which are shorter than four frames.

trajectory groups. Then we select the trajectories with high-
est densities of those unconnected trajectory groups as cen-
ters (Alg. 1-5). Otherwise, in Alg. 1-7,8, the trajectories
with the C highest γ values are selected as the cluster cen-
ters. The whole initialization process is described in Alg. 2-
1,2,3.

Based on the above initialization process, we group
trajectories into super-trajectories according to their spa-
tiotemporal relationships and similarities (see Fig. 3(b)).
Next, we iteratively refine our super-trajectory assignments.
In this process, each trajectory is classified into the nearest
cluster center. For reducing the searching space, we only
search the trajectories fall into a 2R × 2R × T space-time
volume around the cluster center τi′ (Alg. 2-7). This re-
sults in a significant speed advantage by limiting the size
of search space to reduce the number of distance calcula-
tions. Once each trajectory has been associated to the near-
est cluster center, an update step adjusts the center of each
trajectory cluster via Alg. 1 with C = 1 (Alg. 2-14,15). We
drop very small trajectory clusters and combine those tra-
jectories to other nearest trajectory clusters. In practice, we
find 5 iterations for above refining process are enough for
obtaining satisfactory performance. Visualization results of
super-trajectory generation with different iterations are pre-
sented in Fig. 3.

Using Alg. 1, we group all trajectories T ={τi}i into m
nonoverlap clusters, represented as super-trajectories X =



{χj}mj=1, where χj = {τi | τi is classified into j-th cluster
via Alg. 2}. It is worth to note that,m (the number of super-
trajectories) is varied in each iteration in Alg. 2 since we
merge small clusters into other clusters. Additionally,m for
different videos is different even with same input parameter
K. That is important, since different videos have different
temporal characteristics, thus we only constrain their spatial
shape via K.

Algorithm 2 Super-Trajectory Generation
Input: All the trajectories {τi}i, spatial sampling step R;
Output: Super-trajectory assignments;

/* Initialization */
1: ObtainK trajectory groups via spatial sampling stepR;
2: Set initial cluster number C = T/L for each group;
3: Obtain initial cluster centers {τi′}i′ from each trajec-

tory group via Alg. 1, where |{τi′}i′ | = m;
4: loop

/* Iterative Assignment */
5: Set label li = −1 and distance κi = H for each

trajectory τi;
6: for each trajectory cluster center τi′ do
7: for each trajectory τj falls in a 2R × 2R × T

space-time volume around τi′ do
8: Compute distance dji′ between τj and τi′

via Eq. 9;
9: if dji′ < κj then

10: Set κj = dji′ , lj = i′;
11: end if
12: end for
13: end for

/* Update Assignment */
14: Set cluster number C = 1 for each group;
15: Update {τi′}i′ for each cluster via Alg. 1.
16: end loop

4. Super-Trajectory based Video Segmentation
In Sec. 3, we cluster a set of compact trajectories into

super-trajectory. In this section, we describe our video seg-
mentation approach that leverages on super-trajectories.

Given the mask M of the first frame, we seek a bi-
nary partitioning of pixels into foreground and background
classes. Clearly, the annotation can be propagated to the
rest of the video, using the trajectories that start at the first
frame. However, only a few of points can be successfully
tracked across the whole scene, due to occlusion, drift or
unreliable motion estimation. Benefiting from our efficient
trajectory clustering approach, super-trajectories are able to
spread more annotation information over longer periods.
This inspires us to base our label propagation process on
super-trajectory.

For inferring the foreground probability of super-

trajectories X , we first divide all the trajectories T into
three categories: foreground trajectories T f , background
trajectories T b and unlabeled trajectories T u, where T =
T f ∪ T b ∪ T u. The T f and T b are the trajectories which
start at the first frame and are labeled by the annotation
mask M, while the T u are the trajectories start at any
frames except the first frame, thus cannot be labeled via
M. Accordingly, super-trajectories X are classified into
two categories: labeled ones X l and unlabeled ones X u.
A labeled super-trajectory χlj ∈ X l contains at least one
labeled trajectory from T f or T b, and its foreground prob-
ability can be computed as the ratio between the included
foreground trajectories and the labeled ones it contains:

pf (χlj) =
|χlj ∩ T f |

|χlj ∩ T f |+ |χlj ∩ T b|
. (10)

For the points belonging to the labeled super-trajectory χlj ,
their foreground probabilities are set as pf (χlj).

Then we build an appearance model for estimating the
foreground probabilities of unlabeled pixels. The appear-
ance model is built upon the labeled super-trajectories X l,
consists of two weighted Gaussian Mixture Models over
RGB colour values, one for the foreground and one for
the background. The foreground GMM is estimated form
all labeled super-trajectories X l, weighted by their fore-
ground probabilities {pf (χlj)}j . The estimation of back-
ground GMM is analogous, with the weight replaced by
the background probabilities {1−pf (χlj)}j . The appear-
ance models leverage the foreground and background super-
trajectories over many frames, instead of only using the first
frame or labeled trajectories, therefore they can robustly es-
timate appearance information.

Although above model successfully propagates more an-
notation information across the whole video sequence, it
still suffers from some difficulties: the model will be con-
fused when a new object come into view (see Fig. 4 (b)). To
this, we propose to reverse track points for excluding new
incoming objects. We compute the ‘source’ of unlabeled
trajectory τui ∈ T u:

(x0, y0) = (x1, y1)− vτu
i
, (11)

where (x1, y1) indicates starting position and vτu
i

refers
to velocity via Eq. 8. It is clear that, if the virtual posi-
tion (x0, y0) is out of image frame domain, trajectory τui
is a latecomer. For those trajectories T o ⊂ T u start out-
side view, we treat them as background. Labeled super-
trajectory χlj ∈ X l is redefined as the one contains at least
one trajectory from T f , T b or T o, and Eq. 10 is updated as

pf (χlj) =
|χlj ∩ T f |

|χlj ∩ T f |+ |χlj ∩ T b|+ |χlj ∩ T o|
. (12)



(a) (b) (c) (d) (e)
Figure 4. (a) Input frames. (b) Foreground estimates via Eq. 10. (c) Foreground estimates via our reverse tracking strategy (Eq. 12). (d)
Foreground estimates via backward re-occurrence based optimization (Eq. 14). (e) Final segmentation results.

Those outside trajectories T o are also adopted for training
appearance model in prior step. According to our exper-
iment, this assumption offers about 6% performance im-
provement. Foreground estimation results via our reverse
tracking strategy are presented in Fig. 4 (c).

For re-identifying objects after long-term occlusions
and constraining segmentation consistency, we explore re-
occurrence of objects. As suggested by [10], objects, or
regions, often re-occur both in space and in time. Here, we
build correspondences among re-occurring regions across
distant frames and transport foreground estimates globally.
This process is based on super-pixel level, since super-
trajectories cannot cover all of pixels.

Let {ri}i be the superpixel set of input video. For each
region, we search its N Nearest Neighbors (NNs) as its
re-occurring regions using KD-tree search. For region ri
of frame It, we only search its NNs in previous frames
{I1, · · ·, It}. Such backward search strategy is for biasing
the segmentation results of prior frames as the propagation
accuracy degrades over time. Following [10], each region
ri is represented as a concatenation of several descriptors
fri : RGB and LAB color histograms (6 channels×20 bins),
HOG descriptor (9 cells×6 orientation bins) computed over
a 15 × 15 patch around superpixel center, and spatial coor-
dinate of superpixel center. The spatial coordinate is with
respect to image center and normalized into [0, 1], which
implicitly incorporates spatial consistency in NN-search.

After NN-search in the feature space, we construct a
weight matrix W for all the regions {ri}i:

Wij =


e−||fri−frj || if rj is one of NNs of ri
1 if i = j

0 otherwise

(13)

Then a probability transition matrix P is built via row-wise
normalization ofW . We define a column vector v that gath-
ers all the foreground probabilities of {ri}i. The foreground
probability of a superpixel is assigned as the average fore-
ground probabilities of its pixels.

We iteratively update v via the probability transition ma-
trix P . In each iteration k, we update v(k) via:

v(k) = Pv(k−1), (14)

which equivalents to updating foreground probability of a
region with the weighted average of its NNs. In each iter-
ation, we keep the foreground probabilities of those points
belonging to labeled trajectories unchanged. Then we re-
compute v(k) and update it in next iteration. In this way,
the relatively accurate annotation information of the labeled
trajectories is preserved. Additionally, the annotation infor-
mation is progressively propagated in a forward way and the
super-trajectories based foreground estimates are consistent
even across many distant frames (see Fig. 4 (d)).

After 10 iterations, the pixels (regions) with foreground
probabilities lager than 0.5 are classified as foreground,
thus obtaining final binary segments. In Sec. 5.2, we test
N = {4, 6, · · ·, 20} and only observe ±0.3% performance
variation. We set N = 8 for obtaining best performance.

5. Experimental results

Parameter Settings In Sec. 3.2, we set number of spatial
grids K = 1200. In Sec. 4, we over-segment each frame
into about 2000 superpixels via SLIC [1] for well boundary
adherence. For each superpixel, we set the number of NNs
N = 8. In our experiments, all the parameters of our algo-
rithm are fixed to unity.
Datasets We evaluate our method on two public video seg-
mentation benchmarks, namely DAVIS [28], and Segtrack-
V2 [21]. The new released DAVIS [28] contains 50 video
sequences (3, 455 frames in total) and pixel-level man-
ual ground-truth for the foreground object in every frame.
Those videos span a wide range of object segmentation
challenges such as occlusions, fast-motion and appearance
changes. Since DAVIS contains diverse scenarios which
break classical assumptions, as demonstrated in [28], most
state-of-the-art methods fail to produce reasonable seg-
ments. Segtrack-V2 [21] consists of 14 videos with 24 in-



Figure 5. Qualitative segmentation results on three video sequences from DAVIS [28] (from top to bottom: breakdance-flare, dog-agility
and libby). It can be observed that the proposed algorithm is applicable to a quite general set of sequences and robust to many challenges.

Video IoU score
BVS FCP JMP SEA TSP HVS STV

breakdance-flare 0.727 0.723 0.430 0.131 0.040 0.499 0.835
camel 0.669 0.734 0.640 0.649 0.654 0.876 0.798

car-roundabout 0.851 0.717 0.726 0.708 0.614 0.777 0.904
dance-twirl 0.492 0.471 0.444 0.117 0.099 0.318 0.640

drift-chicane 0.033 0.457 0.243 0.119 0.018 0.331 0.466
horsejump-low 0.601 0.607 0.663 0.498 0.291 0.551 0.768

libby 0.776 0.316 0.295 0.226 0.070 0.553 0.723
mallard-fly 0.606 0.541 0.536 0.557 0.200 0.436 0.650
motorbike 0.563 0.713 0.506 0.451 0.340 0.687 0.749

rhino 0.782 0.794 0.716 0.736 0.694 0.812 0.893
soapbox 0.789 0.449 0.759 0.783 0.247 0.684 0.751
stroller 0.767 0.597 0.656 0.464 0.369 0.662 0.826

surf 0.492 0.843 0.941 0.821 0.814 0.759 0.917
swing 0.784 0.648 0.115 0.511 0.098 0.104 0.765
tennis 0.737 0.623 0.765 0.482 0.074 0.576 0.826

Avg. (entire) 0.665 0.631 0.607 0.556 0.358 0.596 0.736

Table 1. IoU score on a representative subset of the DAVIS dataset
[28], and the average computed over all 50 video sequences. The
best results are boldfaced.

stance objects and 947 frames. Pixel-level mask is offered
for every frame.

5.1. Performance Comparison

Quantitative Results Standard Intersection-over-Union
(IoU) metric is employed for quantitative evaluation. Given
a segmentation mask M and ground-truth G, IoU is com-
puted via M∩G

M∪G . We compare the proposed STV against
various state-of-the-art alternatives: BVS [23], FCP [29],
JMP [11], SEA [30], TSP [8], HVS [16], JOT [47], and
OFL [36].

In Table 1, we report IoU score on a representative sub-
set of the DAVIS dataset. As shown, the proposed STV
performs superior on most video sequences. And STV
achieves the highest average IoU score (0.736) over all the

Method BVS OFL SEA FCP HVS JOT STV
IoU 0.584 0.675 0.453 0.574 0.518 0.718 0.781

Table 2. Average IoU score for SegtrackV2 dataset. The best re-
sults are boldfaced.

50 video sequence of the DAVIS dataset, which demon-
strates significant improvement over previous methods.

We further report quantitative results on Segtrack-V2
[21] dataset in Table 2. The results consistently demonstrate
the favorable performance of the proposed method.
Qualitative Results Qualitative video segmentation results
for video sequences from the DAVIS dataset [28] and
SegTrack-V2 [21] are presented in Fig. 5 and Fig. 6. With
the first frame as initialization, the proposed algorithm has
the ability to segment the objects with fast motion patterns
(breakdance-flare and cheetah1) or large shape deformation
(dog-agility). It also produces accurate segmentation maps
even when the foreground suffers occlusions (libby).

5.2. Validation of the Proposed Algorithm

In this section, we offer more detailed exploration for the
proposed approach in several aspects with DAVIS dataset
[28]. We test the values of important parameters, verify
basic assumptions of the proposed algorithm, evaluate the
contributions from each part of our approach, and perform
runtime comparison.
Parameter Verification We study the influence of the
needed input parameter: number of spatial grids K, of
our super-trajectory algorithm in Sec. 3.2. We report the
performance by plotting the IoU value of the segmenta-
tion results as functions of a variety of Ks, where we vary
K = {800, 900, · · ·, 1500}. As shown in Fig. 7 (a), the
performance increases with finer super-trajectory clustering
in spatial domain (K↑). However, when we further increase
K, the final performance does not change obviously. We set
K = 1200 where the maximum performance is obtained.



Figure 6. Qualitative segmentation results on representative video sequences from SegTrack-V2 [21] (from top to bottom: cheetah1, drift1,
and girl). The initial masks are presented in the first row.

Figure 7. Parameter selection for number of spatial grids K (a)
and the number of the number of the NNs N (b). The IoU score is
plotted as a function of a variety of Ks (Ns).

Later, we investigate the influence of parameter N , which
indicates the number of the NNs of a region in Sec. 4. We
plot IoU score with varying N = {2, 4, · · ·, 20} in Fig. 7
(b), and set N = 8 for achieving best performance.
Ablation Study To quantify the improvement obtained with
our proposed trajectories in Sec. 3.1, we compare to two
baseline trajectories: LTM [14] and DAD [39] in our ex-
perimental results. LTM is widely used for motion segmen-
tation and DAD shows promising performance for action
detection. To be fair, we only replace our trajectory gen-
eration part with above two methods, estimate optical flow
via LDOF [6] and keep all other parameters fixed. From the

Method LTM DAD STV
IoU 0.718 0.654 0.736

Table 3. Average IoU score for DAVIS dataset with comparison to
two trajectory methods: LTM [14] and DAD [39]. The best results
are boldfaced.
comparison results in Table. 3. we can find that, compared
with classical trajectory methods [14, 39], the proposed tra-
jectory generation approach is preferable.

6. Conclusions
This paper introduced a video segmentation approach by

representing video as super-trajectories. Based on DPC al-
gorithm, compact trajectories are efficiently grouped into
super-trajectories. Occlusion and drift are naturally handled
by our trajectory generation method based on a probabilis-
tic model. We proposed to perform video segmentation on
super-trajectory level. Via reverse tracking points and lever-
aging the property of region re-occurrence, the algorithm
is robust for many segmentation challenges. Experimen-
tal results on famous video segmentation datasets [28, 21]
demonstrate that our approach outperforms current state-of-
the-art methods.
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[17] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-
columns for object segmentation and fine-grained localiza-
tion. In CVPR, 2015.

[18] M. Keuper, B. Andres, and T. Brox. Motion trajectory seg-
mentation via minimum cost multicuts. In ICCV, 2015.

[19] Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video
object segmentation. In ICCV, 2011.

[20] J. Lezama, K. Alahari, J. Sivic, and I. Laptev. Track to the
future: Spatio-temporal video segmentation with long-range
motion cues. In CVPR, 2011.

[21] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video
segmentation by tracking many figure-ground segments. In
ICCV, 2013.

[22] T. Ma and L. J. Latecki. Maximum weight cliques with
mutex constraints for video object segmentation. In CVPR,
2012.

[23] N. Maerki, F. Perazzi, O. Wang, and A. Sorkine-Hornung.
Bilateral space video segmentation. In CVPR, 2016.

[24] P. Ochs and T. Brox. Higher order motion models and spec-
tral clustering. In CVPR, 2012.

[25] P. Ochs, J. Malik, and T. Brox. Segmentation of moving
objects by long term video analysis. IEEE PAMI, 2014.

[26] D. Oneata, J. Revaud, J. Verbeek, and C. Schmid. Spatio-
temporal object detection proposals. In ECCV, 2014.

[27] A. Papazoglou and V. Ferrari. Fast object segmentation in
unconstrained video. In ICCV, 2013.

[28] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool,
M. Gross, and A. Sorkine-Hornung. A benchmark dataset
and evaluation methodology for video object segmentation.
In CVPR, 2016.

[29] F. Perazzi, O. Wang, M. Gross, and A. Sorkinehornung.
Fully connected object proposals for video segmentation. In
ICCV, 2015.

[30] S. A. Ramakanth and R. V. Babu. SeamSeg: Video object
segmentation using patch seams. In CVPR, 2014.

[31] A. Rodriguez and A. Laio. Clustering by fast search and find
of density peaks. Science, 2014.

[32] N. Shankar Nagaraja, F. R. Schmidt, and T. Brox. Video
segmentation with just a few strokes. In ICCV, 2015.

[33] J. Shi and C. Tomasi. Good features to track. In CVPR, 1994.
[34] N. Sundaram, T. Brox, and K. Keutzer. Dense point trajecto-

ries by GPU-accelerated large displacement optical flow. In
ECCV, 2010.

[35] D. Tsai, M. Flagg, and J. M. Rehg. Motion coherent tracking
using multi-label MRF optimization. BMVC, 2010.

[36] Y.-H. Tsai, M.-H. Yang, and M. J. Black. Video segmenta-
tion via object flow. In CVPR, 2016.

[37] A. Vazquez-Reina, S. Avidan, H. Pfister, and E. Miller. Mul-
tiple hypothesis video segmentation from superpixel flows.
In ECCV, 2010.

[38] S. Vijayanarasimhan and K. Grauman. Active frame selec-
tion for label propagation in videos. In ECCV, 2012.
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