
No More Discrimination: Cross City Adaptation of Road Scene Segmenters

Yi-Hsin Chen1, Wei-Yu Chen3,4, Yu-Ting Chen1∗, Bo-Cheng Tsai2∗, Yu-Chiang Frank Wang4, Min Sun1

Department of {1Electrical Engineering,2Communication Engineering}, National Tsing Hua University, Taiwan
3Department of Electrical Engineering, National Taiwan University, Taiwan

4Research Center for Information Technology Innovation, Academia Sinica, Taiwan
{yhethanchen, wyharveychen, yuting2401, vigorous0503}@gmail.com

, ycwang@citi.sinica.edu.tw , sunmin@ee.nthu.edu.tw

Abstract

Despite the recent success of deep-learning based se-
mantic segmentation, deploying a pre-trained road scene
segmenter to a city whose images are not presented in the
training set would not achieve satisfactory performance
due to dataset biases. Instead of collecting a large num-
ber of annotated images of each city of interest to train
or refine the segmenter, we propose an unsupervised learn-
ing approach to adapt road scene segmenters across dif-
ferent cities. By utilizing Google Street View and its time-
machine feature, we can collect unannotated images for
each road scene at different times, so that the associated
static-object priors can be extracted accordingly. By ad-
vancing a joint global and class-specific domain adver-
sarial learning framework, adaptation of pre-trained seg-
menters to that city can be achieved without the need of
any user annotation or interaction. We show that our
method improves the performance of semantic segmenta-
tion in multiple cities across continents, while it performs
favorably against state-of-the-art approaches requiring an-
notated training data.

1. Introduction
Recent developments of technologies in computer vi-

sion, deep learning, and more broadly artificial intelligence,
have led to the race of building advanced driver assistance
systems (ADAS). From recognizing particular objects of in-
terest toward understanding the corresponding driving envi-
ronments, road scene segmentation is among the key com-
ponents for a successful ADAS. With a sufficient amount
of annotated training image data, existing computer vision
algorithms already exhibit promising performances on the
above task. However, when one applies pre-trained seg-

∗indicates equal contribution

Figure 1: Illustration of our unsupervised domain
adaptation method consisting of global and class-wise
segmentation adaptations. For class-wise adaptation, we
leverage “soft” pseudo labels and static object priors
(obtained without human supervision) to further alleviate
the domain discrimination in each class.

menters to a scene or city which is previously not seen,
the resulting performance would be degraded due to dataset
(domain) biases.

We conduct a pilot experiment to illustrate how severe
a state-of-the-art semantic segmenter would be affected by
the above dataset bias problem. We consider the segmenter
of [2] which is trained on Cityscapes [5], and apply for seg-
menting about 400 annotated road scene images of differ-
ent cities across countries: Rome, Rio, Taipei, and Tokyo.
A drop in mean of intersection over union (mIoU) of 25-
30% was observed (see later experiments for more details).
Thus, how to suppress the dataset bias would be critical
when there is a need to deploy road scene segmenters to
different cities.

It is not surprising that, collecting a large number of an-
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notated training image data for each city of interest would
be time-consuming and expensive. For instance, pixel la-
beling of one Cityscapes image takes 90 minutes on av-
erage [5]. To alleviate this problem, a number of meth-
ods have been proposed to reduce human efforts in pixel-
level semantic labeling. For example, researchers choose
to utilize 3D information [37], rendered images [30, 31],
or weakly supervised labels [32, 34, 3] for labeling. How-
ever, these existing techniques still require human annota-
tion during data collection, and thus might not be easily
scaled up to larger image datasets.

Inspired by the recent advances in domain adapta-
tion [23, 35, 12], we propose an unsupervised learning
framework for performing cross-city semantic segmenta-
tion. Our proposed model is able to adapt a pre-trained
segmentation model to a new city of interest, while only
the collection of unlabeled road scene images of that city is
required. To avoid any human interaction or annotation dur-
ing data collection, we utilize Google Street View with its
time-machine1 feature to harvest road scene images taken at
the same (or nearby) locations but across different times. As
detailed later in Sec. 4, this allows us to extract static-object
priors from the city of interest. By integrating such priors
with the proposed global and class-specific domain adver-
sarial learning framework, refining/adapting the pre-trained
segmenter can be easily realized.

The main contributions of this paper can be summarized
as follows:

• We propose an unsupervised learning approach, which
performs global and class-wise adaptation for deploy-
ing pre-trained road scene segmenters across cities.

• We utilize Google Street View images with time-
machine features to extract static-object priors from
the collected image data, without the need of user an-
notation or interaction.

• Along with the static-object priors, we advance adver-
sarial learning for assigning pseudo labels to cross-city
images, so that joint global and class-wise adaptation
of segmenters can be achieved.

2. Related Work

2.1. CNN-based Semantic Segmentation

Semantic segmentation is among the recent break-
through in computer vision due to the development and
prevalence of Convolutional Neural Networks (CNN),
which has been successfully applied to predict dense pixel-
wise semantic labels [6, 18, 22, 2, 4]. For example, Long

1https://maps.googleblog.com/2014/04/go-back-in-time-with-street-
view.html

et al. [18] utilize CNN for performing pixel-level classifi-
cation, which is able to produce pixel-wise outputs of arbi-
trary sizes. In order to achieve high resolution prediction,
[22, 2] further adapt deconvolution layers into CNN with
promising performances. On the other hand, Chen et al. [4]
choose to add a fully-connected CRF layer at their CNN
output, which refines the pixel labels with context informa-
tion properly preserved. We note that, since the goal of this
paper is to adapt pre-trained segmenters across cities, we
do not limit the use of particular CNN-based segmentation
solvers in our proposed framework.

2.2. Segmentation of Road Scene Images

To apply CNN-based segmenters to road scene images,
there are several attempts to train segmenters on large-scale
image datasets [5, 37, 30, 31]. For example, Cordts et al. [5]
release a natural road scene segmentation dataset, which
consists of over 5000 annotated images. Xie et al. [37]
annotate 3D semantic labels in a scene, followed by trans-
ferring the 3D labels into the associated 2D video frames.
[30, 31] collect semantic labels from Computer Graphic
(CG) images at a large scale; however, building CG worlds
for practical uses might still be computationally expensive.

On the other hand, [3] choose to relax the supervision
during the data collection process, and simply require a
number of point-labels per image. Moreover, [24, 26, 27]
only require image-level labels during data collection and
training. In addition to image-level labels, Pathak et al. [25]
incorporate constraints on object sizes, [14, 34, 32] uti-
lize weak object location knowledge, and [14] exploit ob-
ject boundaries for constrained segmentation without us-
ing a large annotated dataset. Alternatively, [15, 38] apply
free-form squiggles to provide partial pixel labels for data
collection. Finally, [10] utilize image-level labels with co-
segmentation techniques to infer semantic segmentation of
foreground objects in the images of ImageNet.

2.3. DNN-based Domain Adaptation

Since the goal of our work is to adapt CNN-based seg-
menters across datasets (or cities to be more precise), we
now review recent deep neural networks (DNN) based ap-
proaches for domain adaptation [23]. Based on Maximum
Mean Discrepancy (MMD), Long et al. [19] minimize the
mean distance between data domains, and later they in-
corporate the concept of residual learning [21] for further
improvements. Zellinger et al. [40] consider Central Mo-
ment Discrepancy (CMD) instead of MMD, while Sener et
al. [33] enforce cyclic consistency on adaptation and struc-
tured consistency on transduction in their framework.

Recently, Generative Adversarial Network (GAN) [9]
has raised great attention in the fields of computer vi-
sion and machine learning. While most existing architec-
tures are applied for synthesizing images with particular



Figure 2: Example road scene images of different cities in our dataset. For evaluation purposes, we randomly select 100
images in each city to annotate pixel-level semantic labels. Color-coded labels are overlaid on each example image, where
the mapping between colors and semantic classes are shown in the left panel.

styles [9, 29, 41]. Some further extend such frameworks for
domain adaptation. In Coupled GAN [16], domain adapta-
tion is achieved by first generating corresponded instances
across domains, followed by performing classification.

In parallel with the appearance of GAN [9], Ganin et al.
propose Domain Adversarial Neural Networks (DANN) [7,
8], which consider adversarial training for suppressing do-
main biases. For further extension, Variational Recurrent
Adversarial Deep Domain Adaptation (VRADA) [28] uti-
lizes Variational Auto Encoder (VAE) and RNN for time-
series adaptation. Sharing a similar goal as ours, Hoffman
et al. [11] extend such frameworks for semantic segmenta-
tion.

3. Dataset

We now detail how we collect our road scene image
dataset, and explain its unique properties.

Diverse locations and appearances. Using Google
Street View, road scene images at a global scale can be
accessed across a large number of cities in the world. To
address the issue of geo-location discrimination of a road
scene segmenter, we download the road scene images of
four cities at diverse locations, Rome, Rio, Tokyo, and
Taipei, which are expected to have significant appearance
differences. To ensure that we cover sufficient variations in
visual appearances from each city, we randomly sample the
locations in each city for image collection.

Temporal information. With the time-machine features of
Google Street View, image pairs of the same location yet

across different times can be further obtained. As detailed
later in the Sec. 4.2, this property particularly allows us to
observe prior information from static objects, so that im-
proved adaptation without any annotation can be achieved.
In our work, we have collected 1600 image pairs (3200 im-
ages in total) at 1600 different locations per city with high
image quality (647× 1280 pixels).

For evaluation purposes, we select 100 image pairs
from each city as the testing set, with pixel-level ground
truth labels annotated by 15 image processing experts. We
define 13 major classes for annotation: road, sidewalk,
building, traffic light, traffic sign, vegetation, sky, person,
rider, car, bus, motorcycle, and bicycle, as defined in
Cityscapes [5]. Fig. 2 shows example images of our
dataset. The dataset will be publicly available later for
academic uses. To see more details and examples of our
dataset, please refer to Appendix B or visit our website:
https://yihsinchen.github.io/segmentation adaptation/.

We now summarize the uniqueness of our dataset below:

• Unlike existing datasets which typically collect im-
ages in nearby locations (e.g., road scenes of the same
city), our dataset includes over 400 road scene images
from four different cities around the world, with high-
quality pixel-level annotations (for evaluation only).

• Our dataset include image pairs at the same location
but across different times, which provide additional
temporal information for further processing and learn-
ing purposes.

https://yihsinchen.github.io/segmentation_adaptation/


Figure 3: The overview of our proposed DNN framework. The feature extractor MF transforms cross-domain images into a proper
feature space, which is derived by performing global MG and class-wise Mc

class domain alignment via adversarial learning. The label
predictor MY regularizes the learned model by only observing the ground-truth annotation of source-domain images.

4. Our Method

In this section, we present the details of our proposed
unsupervised domain adaptation framework, which is
able to adapt pre-trained segmenters across different cities
without using any user annotated data. In other words,
while both images IS and labels YS are available from the
source domain S, only images IT for the target domain T
can be observed.

Domain shift. When adapting image segmenters across
cities, two different types of domain shifts (or dataset bi-
ases) can be expected: global and class-wise domain shift.
The former comes from the overall differences in appear-
ances between the cities, while the latter is due to distinct
compositions of road scene components in each city.

To minimize the global domain shift, we follow [11] and
apply the technique of adversarial learning, which intro-
duces a domain discriminator with a loss LG. This is to dis-
tinguish the difference between source and target-domain
images, with the goal to produce a common feature space
for images across domains. To perform class-wise align-
ment, we extend the above idea and utilize multiple class-
wise domain discriminators (one for each class) with the
corresponding adversarial loss Lclass. Unlike the discrimi-
nator for global alignment, these class-wise discriminators
are trained to suppress the difference between cross-domain
images but of the same class. Since we do not have any an-
notation for the city of interest (i.e., target-domain images),
later we will explain how our method performs unsuper-

vised learning to jointly solve the above adaptation tasks.
With the above loss terms defined, the overall loss of our

approach can be written as:

Ltotal = Ltask + λGLG + λclassLclass , (1)

where λG and λclass are weights for the global and
class-wise domain adversarial loss, respectively. Note
that Ltask denotes the prediction loss of source-domain
images, which can be viewed as a regularization term when
adapting the learned model across domains.

Our proposed framework. Fig. 3 illustrates our frame-
work. Let C be the set of classes, and an input im-
age denoted as x. Our proposed architecture can be de-
coupled into four major components: feature extractor
MF (x, θF ) that transforms the input image to a high-
level, semantic feature space (the gray part), label predic-
tor MY (MF (x, θF ), θY ) that maps feature space to task la-
bel space (the orange part), and domain discriminator for
global MG(MF (x, θF ), θG) (the green part) and class-wise
M c
class(MF (x, θF ), θcclass), c ∈ C alignments (the yellow

part). The feature extractor and task label predictor are ini-
tialized from a pre-trained segmenter, while the domain dis-
criminators are randomly initialized. While we utilize the
front-end dilated-FCN [39] as the pre-trained segmenter in
our work, it is worth noting that our framework can be gen-
erally applied to other semantic segmenters.

In Sec. 4.1 and Sec. 4.2, we will detail our unsupervised
learning for global alignment and class-wise alignment, re-
spectively. In particular, how we extract and integrate static-



object priors for the target domain images without any hu-
man annotation will be introduced in Sec. 4.3.

4.1. Global Domain Alignment

Previously, domain adversarial learning frameworks
have been applied for solving cross-domain image classifi-
cation tasks [7]. However, for cross-domain image segmen-
tation, each image consists of multiple pixels, which can be
viewed as multiple instances per observation. Thus, how to
extend the idea of domain adversarial learning for adapting
segmenters across image domains would be our focus.

Inspire by [11], we take each grid in the fc7 feature map
of the FCN-based segmenter as an instance. Let the feature
maps of source and target domain images as MF (IS , θF )
and MF (IT , θF ), each map consists of N grids. Let
pn(x) = σ(MG(MF (x, θF )n, θG)) be the probability that
the grid n of image x belongs to the source domain, where
σ is the sigmoid function. We note that, for cross-domain
classification, Ganin et al. [7] use the same loss function
plus a gradient reversal layer to update the feature extractor
and domain discriminator simultaneously. If directly apply-
ing their loss function for cross-domain segmentation, we
would observe:

max
θF

min
θG
LG =−

∑
IS∈S

∑
n∈N

log(pn(IS))

−
∑
IT ∈T

∑
n∈N

log(1− pn(IT )) . (2)

Unfortunately, this loss function will result in gradient
vanishing as the discriminator converges to its local min-
imum. To alleviate the above issue, we follow [9] and de-
compose the above problem into two subtasks. More specif-
ically, we have a domain discriminator θG trained with LDG
for classifying these two distributions into two groups, and
a feature extractor θF updated by its inverse loss LDinvG

which minimizes the associated distribution differences. In
summary, our objective is to minimize LG = LDG + LDinvG

by iteratively update θG and θF :

min
θG

LDG , min
θF

LDinvG , (3)

where LDG and LDinvG are defined as:

LDG =−
∑
IS∈S

∑
n∈N

log(pn(IS))

−
∑
IT ∈T

∑
n∈N

log(1− pn(IT )) , (4)

LDinvG =−
∑
IS∈S

∑
n∈N

log(1− pn(IS))

−
∑
IT ∈T

∑
n∈N

log(pn(IT )) . (5)

4.2. Class-wise Domain Alignment

In addition to suppressing the global misalignment be-
tween image domains, we propose to advance the same ad-
versarial learning architecture to perform class-wise domain
adaptation.

While the idea of regularizing class-wise information
during segmenter adaptation has been seen in [11], its class-
wise alignment is performed based on the composition of
the class components in cross-city road scene images. To
be more precise, it assumes that the composition/proportion
of object classes across cities would be similar. Thus, such
a regularization essentially performs global instead of class-
specific adaptation.

Recall that, when adapting our segmenters across
cities, we only observe road scene images of the target
city of interest without any label annotation. Under
such unsupervised settings, we extend the idea in [20]
and assign pseudo labels to pixels/grids in the images
of the target domain. That is, after the global adapta-
tion in Fig. 3, the predicted probability distribution maps
φ(IT ) = softmax(MY (MF (IT , θF ), θY )) of target domain
images can be produced. Thus, φ(IT ) can be viewed as
the “soft” pseudo label map for the target domain images.
As a result, class-wise association across data domains can
be initially estimated by relating the ground truth label in
the source domain and the soft pseudo label in the target
domain.

From pixel to grid-level pseudo label assignment. In
Sec. 4.1, to train the domain discriminator, we define each
grid n in the feature space as one instance, which corre-
sponds to multiple pixels in the image space. If the (pseudo)
labels of these grids can be produced, adapting class-wise
information using the same adversarial learning framework
can be achieved.

To propagate and to determine the pseudo labels from
pixels to each grid for the above adaptation purposes, we
simply calculate the proportion of each class in each grid as
the soft (pseudo) label. That is, let i be the pixel index in
image space, n be the grid index in feature space, andR(n)
be the set of pixels that correspond to grid n. If yi(IS) de-
note the ground truth label of pixel i for source domain im-
ages, we then calculate source-domain grid-wise soft-label
Φcn(IS) as the probability of grid n belonging to class c:

Φcn(IS) =
∑

i∈R(n)

yi(IS) == c

| R(n) |
. (6)

On the other hand, due to the lack of annotated target-
domain data, it is not as straightforward to assign grid-level
soft pseudo labels to images in that domain. To solve this
problem, we utilize φ(IT ) derived above. Let φci (IT ) be
the pixel-wise soft pseudo label of pixel i corresponding to



Figure 4: Illustration of static-object prior extraction. Given a
pair of images at the same location but at different times, image
regions belonging to static objects (e.g., the red blobs) can be
identified by performing dense matching and superpixel
segmentation.

class c for target-domain images, we have target grid-wise
soft pseudo label Φcn(IT ) of grid n:

Φcn(IT ) =
∑

i∈R(n)

φci (IT )

| R(n) |
. (7)

Intuitively, grid-wise soft (pseudo) labels Φcn(IS) and
Φcn(IT ) are estimations of the probabilities that each grid n
in source and target domain images belongs to object class
c. To balance the appearance frequency of different classes,
we normalize the estimated outputs in (6) and (7) as follows:

Φ̃cn(IS) =
Φcn(IS)∑

n∈N
Φcn(IS)

Φ̃cn(IT ) =
Φcn(IT )∑

n∈N
Φcn(IT )

. (8)

Class-wise adversarial learning. With the soft labels as-
signed to the source-domain images and the soft pseudo la-
bels predicted for the target-domain ones, we now explain
our adversarial learning for class-wise domain adaptation.

As depicted in Fig. 3, we deploy multiple class-wise
domain discriminators θcclass, c ∈ C in our proposed ar-
chitecture, and each discriminator is specially trained for
differentiating objects of the corresponding class c across
domains. Similar to pn(x), given that each object class c
has a corresponded domain discriminatorM c

class, we define
pcn(x) = σ(M c

class(MF (x, θF )n, θ
c
class)) as the probability

predicted by M c
class that the grid n of image x is from the

source domain. Combining the definition in (8), we define
a pair of class-wise adversarial loss LDclass and LDinvclass to
guide the optimization for class-wise alignment:

LDclass =−
∑
IS∈S

∑
c∈C

∑
n∈N

Φ̃cn(IS)log(pcn(IS))

−
∑
IT ∈T

∑
c∈C

∑
n∈N

Φ̃cn(IT )log(1− pcn(IT )) , (9)

LDinvclass =−
∑
IS∈S

∑
c∈C

∑
n∈N

Φ̃cn(IS)log(1− pcn(IS))

−
∑
IT ∈S

∑
c∈C

∑
n∈N

Φ̃cn(IT )log(pcn(IT )) . (10)

Finally, similar to (3), the class-wise alignment process
is to iteratively solve the following optimization problem:

min⋃
c∈C

θcclass

LDclass , min
θF

LDinvclass , (11)

which minimizes the overall loss Lclass = LDclass+LDinvclass .

4.3. Harvesting Static-Object Prior

While jointly performing global and class-wise align-
ment between source and target-domain images would pro-
duce promising adaptation performance, the pseudo labels
are initialized by pre-trained segmenter. Under the unsu-
pervised domain adaptation setting, since no annotation of
target-domain data can be obtained, fine-tuning the seg-
menter by such information is not possible.

However, with the use of time-machine features from
Google Street View images, we are able to leverage the
temporal information for extracting the static-object priors
from images in the target domain. As illustrated in Fig. 4,
given an image pair of the same location but across differ-
ent times, we first apply DeepMatching [36] to relate pix-
els within each image pair. For the regions with matched
pixels across images, it implies such regions are related to
static objects (e.g., building, road, etc.). Then, we addi-
tionally perform superpixel segmentation on the image pair
using Entropy Rate Superpixel [17], which would group the
nearby pixels into regions while the boundaries of the ob-
jects can be properly preserved. With the above derivation,
we view the matched superpixels containing more than k
matched pixels (we fix k = 3 in this work) as the static-
object prior Pstatic(IT ). Please refer to Appendix A for
typical examples of mining static-object prior.

Let Cstatic be the set of static-object classes. For the
pixels that belong to Pstatic(IT ), we then refine their soft
pseudo labels by suppressing its probabilities of being non-



Table 1: Accuracy of applying dilated-FCNs pre-trained on
Cityscapes (Frankfurt) to different cities (i.e., no adaptation).

City Dataset mIOU (%)
Frankfurt Cityscapes 64.6%
Rome Ours 38.2%
Tokyo Ours 39.2%
Rio Ours 38.5%
Taipei Ours 35.1%

static objects:

∀ i ∈ Pstatic(IT )

φ̃ci (IT ) =

 φci (IT ) /
∑

ĉ∈Cstatic

φĉi (IT ) if c ∈ Cstatic

0 else
(12)

5. Experiments
We first conduct experiments to demonstrate the issue

of cross-city discrimination even using a state-of-the-art
semantic segmenter. Then, we will verify the effective-
ness of our proposed unsupervised learning method on the
Cityscapes to Our Dataset domain adaptation task. By
comparing it with a fully-supervised baseline (i.e., fine-
tuning by fully annotated training data), we show that
our unsupervised method would achieve comparable per-
formances as the fully-supervised methods in most cases.
Finally, we perform an extra experiment, SYNTHIA to
Cityscapes, to prove that our method could be generally
applied to different datasets.

5.1. Implementation Details

In this work, all the implementations are produced uti-
lizing the open source TensorFlow [1] framework, and the
codes will be released upon acceptance. In the following
experiments, we use mini-batch size 16 and the Adam opti-
mizer [13] with learning rate of 5× 10−6, beta1 = 0.9, and
beta2 = 0.999 to optimize the network. Moreover, we set
the hyper-parameters in (1): λG and λclass, to be numbers
gradually changing from 0 to 0.1 and 0 to 0.5, respectively.
In addition, for the experiments using static-object priors,
we use {road, sidewalk, building, wall, fence, pole, traf-
fic light, traffic sign, vegetation, terrain, sky} as the set of
static-object classes Cstatic defined in Sec. 4.3.

5.2. Cross-City Discrimination

We apply the segmenter pre-trained on Cityscapes to im-
ages of different cities in Our Dataset. As shown in Ta-
ble 1, there is a severe performance drop in the four cities

compared to its original performance on Cityscapes. Inter-
estingly, we observe a trend that the farther the geo-distance
between the target city and the pre-trained city (Frankfurt),
the severer the performance degradation. This implies that
different visual appearances across cities due to cultural dif-
ferences would dramatically impact the accuracy of the seg-
menter. For example, in Taipei, as shown in Fig. 2, there
are many signboards and shop signs attached to the build-
ings, and many scooters on the road, which are uncommon
in Frankfurt. It also justifies the necessity of an effective
domain adaptation method for the road scene segmenter to
alleviate the discrimination.

5.3. Cross-City Adaptation

Baseline. We use a fully-supervised method to establish a
strong baseline as the upper bound of adaptation improve-
ment. We divide our 100 images with fine annotations to
10 subsets for each city. Each time we select one subset as
the testing set, and the other 90 images as the training set
and fine-tune the segmenter for 2000 steps. We repeat the
procedure for 10 times and average the testing results as the
baseline performance.
Our method. Now we apply our domain adversarial learn-
ing method to adapt the pre-segmenter in an unsupervised
fashion. Meanwhile, we do the ablation study to demon-
strate the contribution from each component: global align-
ment, class-wise alignment, and static-object prior. We
summarize the experimental results in Table 2, where ”Pre-
trained” denotes the pre-trained model, ”UB” denotes the
fully-supervised upper bound, ”GA” denotes the global
alignment part of our method, ”GA+CA” denotes the com-
bination of global alignment and class-wise alignment, and
finally, ”Full Method” denotes our overall method that uti-
lizes the static-object priors. On average over four cities,
our global alignment method contributes 2.6% mIoU gain,
our class-wise alignment method also contributes 0.9%
mIoU gain, and finally, the static-object priors contributes
another 0.6% mIOU improvement. Furthermore, the t-SNE
visualization results in Appendix A also show that the do-
main shift keeps decreasing from ”Pre-trained” to ”GA” to
”GA+CA”. These results demonstrate the effectiveness of
each component of our method. In Fig. 5, we show some
typical examples.

5.4. Synthetic to Real Adaptation

We additionally apply our method to another adapta-
tion task with a different type of domain shift: SYNTHIA
to Cityscapes. In this experiment, we take SYNTHIA-
RAND-CITYSCAPES [31] as the source domain, which
contains 9400 synthetic road scene images with Cityscapes-
compatible annotations. For the unlabeled target domain,
we use the training set of Cityscapes. During evaluation,
we test our adapted segmenter on the validation set of



Table 2: Segmentation performance comparisons (in mIOU), in which SW, BLDG, TL, TS, VEG, Motor stand for Sidewalk, Building,
Traffic Light, Traffic Sign, Vegetation, and Motorbike, respectively. Note that GA/CA denote the components of global/class-wise
adaptation in our architecture, while our method (Full Method) integrates both components with static-object priors for unsupervised
domain adaptation. The performance upper bound achieved by the fully supervised baseline is noted as UB.

City Method
Cityscapes → Our Dataset

Road SW BLDG TL TS VEG Sky Person Rider Car Bus Motor. Bicycle mIOU

Rome

Pre-trained 77.7 21.9 83.5 0.1 10.7 78.9 88.1 21.6 10.0 67.2 30.4 6.1 0.6 38.2
GA 79.2 25.7 84.0 0.1 11.8 81.0 83.3 29.3 8.9 71.8 35.9 23.7 0.9 41.2

GA+CA 78.2 26.0 84.9 0.0 21.5 81.7 83.0 31.0 11.2 72.0 33.0 24.1 1.2 42.1
Full Method 79.5 29.3 84.5 0.0 22.2 80.6 82.8 29.5 13.0 71.7 37.5 25.9 1.0 42.9

UB 84.9 33.0 87.3 0.0 10.9 84.6 91.6 30.5 19.1 77.7 10.6 38.3 0.5 43.8

Rio

Pre-trained 69.0 31.8 77.0 4.7 3.7 71.8 80.8 38.2 8.0 61.2 38.9 11.5 3.4 38.5
GA 72.8 42.2 79.0 4.4 6.1 76.2 75.3 38.9 7.1 66.5 41.2 16.9 5.5 40.9

GA+CA 73.2 42.9 78.4 3.3 7.9 76.2 72.4 39.1 9.1 68.3 43.8 16.8 6.5 41.4
Full Method 74.2 43.9 79.0 2.4 7.5 77.8 69.5 39.3 10.3 67.9 41.2 27.9 10.9 42.5

UB 80.2 53.8 84.5 0.0 16.4 81.4 85.4 42.3 17.4 74.0 49.4 37.3 16.7 49.1

Tokyo

Pre-trained 81.2 26.7 71.7 8.7 5.6 73.2 75.7 39.3 14.9 57.6 19.0 1.6 33.8 39.2
GA 83.5 36.2 72.3 10.8 7.1 77.0 66.2 44.0 18.6 61.5 21.9 4.9 37.5 41.7

GA+CA 83.6 36.1 71.9 11.3 13.0 77.6 64.4 41.2 19.3 63.7 20.2 13.9 38.8 42.6
Full Method 83.4 35.4 72.8 12.3 12.7 77.4 64.3 42.7 21.5 64.1 20.8 8.9 40.3 42.8

UB 85.2 38.7 79.8 13.9 19.7 81.7 86.9 45.3 35.9 66.9 29.0 2.0 42.4 48.3

Taipei

Pre-trained 77.2 20.9 76.0 5.9 4.3 60.3 81.4 10.9 11.0 54.9 32.6 15.3 5.2 35.1
GA 79.0 27.7 76.6 13.1 5.0 67.7 74.8 17.5 6.1 60.4 28.9 25.5 7.1 37.6

GA+CA 79.2 29.0 80.3 14.1 8.2 68.8 81.1 16.3 10.5 64.7 33.8 16.2 6.5 38.8
Full Method 78.6 28.6 80.0 13.1 7.6 68.2 82.1 16.8 9.4 60.4 34.0 26.5 9.9 39.6

UB 84.0 36.6 87.7 9.9 13.7 76.2 91.9 23.4 24.1 65.1 39.4 47.8 3.2 46.4

Figure 5: Examples of cross-city adaptation. The first/third and second/fourth rows show the results before and after adaptation,
respectively. The regions with improved segmentation adaptation are highlighted for better visualization.

Cityscapes. We note that, since there are no paired images
with temporal information in Cityscapes (as those in our
dataset), we cannot extract static-object priors in this ex-

periment. Nevertheless, from the results shown in Table 3,
performing global and class-wise alignment using our pro-
posed method still achieves 3.1% and 1.9% mIOU gain, re-



Table 3: Experimental results for the SYNTHIA-to-Cityscapes segmentation adaptation task.

Method
SYNTHIA → Cityscapes

Road SW BLDG TL TS VEG Sky Person Rider Car Bus Motor. Bicycle mIOU
Pre-trained 24.3 19.5 48.3 1.5 5.4 77.4 76.1 42.8 9.7 62.5 9.8 0.5 20.9 30.7

GA 56.5 24.0 78.9 1.1 5.9 77.8 77.3 35.8 5.4 61.7 5.2 0.9 8.4 33.8
GA+CA 62.7 25.6 78.3 1.2 5.4 81.3 81.0 37.4 6.4 63.5 16.1 1.2 4.6 35.7

spectively. These results again demonstrate the robustness
of our proposed method. For typical examples of this adap-
tation task, please refer to Appendix C.

6. Conclusion
In this paper, we present an unsupervised domain adap-

tation method for semantic segmentation, which alleviates
cross-domain discrimination on road scene images across
different cities. We propose a unified framework utilizing
domain adversarial learning, which performs joint global
and class-wise alignment by leveraging soft labels from
source and target-domain data. In addition, our method
uniquely identifies and introduce static-object priors to our
method, which are retrieved from images via natural syn-
chronization of static objects over time. Finally, we pro-
vide a new dataset containing road scene images of four
cities across countries, good-quality annotations and paired
images with temporal information are also included. We
demonstrate the effectiveness of each component of our
method on tasks with different levels of domain shift.
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Appendix

A. Visualize GA, CA and Static-Object prior
In Sec. 4.1-4.3 of the main paper, we explain how each

component in our structure enhance the performance of seg-
mentation, and also show quantitative results in experiment.
Here we’ll further illustrate effects of these components:
T-SNE Visualization To visualize the adaptation results on
common feature space with t-SNE, we randomly select 100
images from each domain, and for each image we extracted
its average fc7 feature from each class, so for both source
and target we have 100 feature points from each class.

As shown in Fig. 6, with pre-trained model only, there is
an obvious shift between source and target domain. After
applying the global alignment (GA), the distance between
clusters with same labels becomes closer, while we could
still observe a gap between domains. Once we further apply
the class-wise alignment (CA), the gap between domains
nearly vanishes. This result again demonstrates the effec-
tiveness of each component of our proposed method.
Harvesting Static-Object Prior In Sec. 4.3, we propose
a novel pipeline to extract the static-object prior using the
natural synchronization of static objects over time. For bet-
ter understanding, we show some typical results of our pro-
posed pipeline in Fig. 7. Clearly, most of the regions iden-

Figure 6: t-SNE visualization results. For simplicity, we only
show the results of the task Cityscapes → Rio. We could clearly
observe that the alignment between domains becomes better from
pre-trained to GA+CA.

tified by our method truly belong to static-objects. This
demonstrates the effectiveness of our method.

Figure 7: Typical results of our static-object prior pipeline. The
first row is the original unlabeled image pair of same place across
time. The second row is the result of dense matching, noted by
points of same color. The third row is the result of superpixel
segmentation marked by different colors. Combining the results
from the above two rows, we could extract static-object prior of
this image pair, as shown by the red regions in the last row.

B. Dataset

To demonstrate the uniqueness of our dataset for road
scene semantic segmenter adaptation, here we show more
examples of it.

Unlabeled Image Pairs There are more examples collected
at different cities with diverse appearances in Fig. 8. Valu-
able temporal information which facilitates unsupervised
adaptation is contained in these image pairs.

Labeled Image We also show more annotated images in
Fig. 9 to demonstrate the label-quality of our dataset.

C. Synthetic to Real Adaptation

In Sec. 5.4 of the main paper, we have shown the quan-
titative results of this adaptation task in Table 3. We con-
clude that our method could perform well even under this
challenging setting. To better support our conclusion, here
we show some typical examples of this task in Fig. 10.



Figure 8: Examples of the unlabeled image pairs of different cities in our dataset. In each row, we show two image pairs at different
locations in one city.

Figure 9: Examples of the labeled images of different cities in our dataset. Each image is annotated in good quality.



Figure 10: adaptation task: STNTHIA to Cityscapes. The first
row and second show the results before and after adaptation,
respectively.


