
Factorized Bilinear Models for Image Recognition

Yanghao Li1 Naiyan Wang2 Jiaying Liu1∗ Xiaodi Hou2

1 Institute of Computer Science and Technology, Peking University 2 TuSimple
lyttonhao@pku.edu.cn winsty@gmail.com liujiaying@pku.edu.cn xiaodi.hou@gmail.com

Abstract

Although Deep Convolutional Neural Networks (CNNs)
have liberated their power in various computer vision tasks,
the most important components of CNN, convolutional lay-
ers and fully connected layers, are still limited to linear
transformations. In this paper, we propose a novel Factor-
ized Bilinear (FB) layer to model the pairwise feature inter-
actions by considering the quadratic terms in the transfor-
mations. Compared with existing methods that tried to in-
corporate complex non-linearity structures into CNNs, the
factorized parameterization makes our FB layer only re-
quire a linear increase of parameters and affordable com-
putational cost. To further reduce the risk of overfitting of
the FB layer, a specific remedy called DropFactor is de-
vised during the training process. We also analyze the con-
nection between FB layer and some existing models, and
show FB layer is a generalization to them. Finally, we vali-
date the effectiveness of FB layer on several widely adopted
datasets including CIFAR-10, CIFAR-100 and ImageNet,
and demonstrate superior results compared with various
state-of-the-art deep models.

1. Introduction

Deep convolutional neural networks (CNNs) [21, 23]
have demonstrated their power in most computer vision
tasks, from image classification [12, 38], object detec-
tion [10, 31], to semantic segmentation [27]. The impres-
sive fitting power of a deep net mainly comes from its re-
cursive feature transformations. Most efforts to enhance the
representation power of a deep neural net can be roughly
categorized into two lines. One line of works features on
increasing the depth of the network, namely the number of
non-linear transformations. ResNet [12] is a classic exam-
ple of such extremely deep network. By using skip con-
nections to overcome the gradients vanishing/exploding and
degradation problems, ResNet achieves significant perfor-
mance improvements. The other line of efforts aims at en-

∗Corresponding author

hancing the fitting power for each layer. For example, Deep
Neural Decision Forests [19] was proposed to integrate dif-
ferentiable decision forests as the classifier. In [26], the
authors modeled pairwise feature interactions using explicit
outer product at the final classification layer. The main
drawbacks of these approaches are that they either bring
in large additional parameters (for instance, [26] introduces
250M additional parameters for ImageNet classification)
or have a slow convergence rate ([19] requires 10x more
epochs to converge than a typical GoogLeNet [38]).

In this paper, we propose the Factorized Bilinear (FB)
model to enhance the capacity of CNN layers in a simple
and effective way. At a glance, the FB model can be con-
sidered as a generalized approximation of the Bilinear Pool-
ing [26], but with two modifications. First, our FB model
generalizes the original Bilinear Pooling to all convolutional
and fully connected layers. In this way, all computational
layers in CNN could have larger capacity with pairwise in-
teractions. However, under the original settings of Bilinear
Pooling, such generalization will lead to explosion of pa-
rameters. To mitigate this problem, we constrain the rank of
all quadratic matrices. This constraint significantly reduces
the number of parameters and computational cost, making
the complexity of FB layer linear with respect to the origi-
nal conv/fc layer. Furthermore, in order to cope with overfit-
ting, we propose a regularization method called DropFactor
for the FB model. Analogous to Dropout [36], DropFactor
randomly sets some elements of the bilinear terms to zero
during each iteration in the training phase, and uses all of
them in the testing phase.

To summarize, our contributions of this work are three-
fold:

• We present a novel Factorized Bilinear (FB) model to
consider the pairwise feature interactions with linear
complexity. We further demonstrate that the FB model
can be easily incorporated into convolutional and fully
connected layers.

• We propose a novel method DropFactor for the FB
layers to prevent overfitting by randomly dropping fac-
tors in the training phase.

1

ar
X

iv
:1

61
1.

05
70

9v
2 

 [
cs

.C
V

] 
 4

 S
ep

 2
01

7



• We validate the effectiveness of our approach on sev-
eral standard benchmarks. Our proposed method
archives remarkable performance compared to state-
of-the-art methods with affordable complexity.

2. Related Work
The Tao of tuning the layer-wise capacity of a DNN lies

in the balance between model complexity and computation
efficiency. The naive, linear approach of increasing layer
capacity is either adding more nodes, or enlarging receptive
fields. As discussed in [2], these methods have beneficial ef-
fect up to a limit. From a different perspective, PReLU [11]
and ELU [8] add flexibilities upon the activation function
at a minimal cost, by providing a single learned parame-
ter for each rectifier. Besides activation functions, many
other works tried to use more complex, non-linear models
to replace vector/matrix operations in each layer. For in-
stance, Network In Network (NIN) [25] replaced the lin-
ear convolutional filters with multilayer perception (MLP),
which is proven to be a general function approximator [14].
The MLP is essentially stacked of fully connected layers.
Thus, NIN is equivalent of increasing the depth of the net-
work. In [19], random forest was unified as the final predic-
tors with the DNNs in a stochastic and differentiable way.
This back-propagation compatible version of random forest
guides the lower layers to learn better representation in an
end-to-end manner. However, the large computation over-
load makes this method inappropriate for practical applica-
tions.

Before the invention of deep learning, one of the most
common tricks to increase model capacity is to apply ker-
nels [35]. Although the computational burden of some ker-
nel methods can go prohibitively high, its simplest form –
bilinear kernel is certainly affordable. In fact, many of to-
day’s DNN has adopted bilinear kernel and have achieved
remarkable performance in various tasks, such as fine-
grained classification [26, 9], semantic segmentation [1],
face identification [6], and person re-identification [3].

2.1. Revisiting Bilinear Pooling

In [26], a method called Bilinear Pooling is introduced.
In this model, the final output is obtained by a weighted
pooling of a global descriptor, which comes from the outer
product of the final convolutional layer with itself1:

z =
∑
i∈S

xix
T
i , (1)

where {xi|xi ∈ Rn, i ∈ S} is the input feature map, S is the
set of spatial locations in the feature map, n is the dimension

1Although the original Bilinear Pooling supports input vectors from
two different networks, there is little difference performance-wise. For
simplicity, we only consider the bilinear model using identical input vec-
tors in this paper.

of each feature vector, and z ∈ Rn×n is the global feature
descriptor. Here we omit the signed square-root and l2 nor-
malization steps for simplicity. Then a fully connected layer
is appended as the final classification layer:

y = b+Wvec(z), (2)

where vec(·) is the vectorization operator which converts a
matrix to a vector, W ∈ Rc×n2

and b ∈ Rc are the weight
and bias of the fully connected layer, respectively. y ∈ Rc

is the output raw classification scores, and c is the number
of classification labels.

It is easy to see that the size of the global descriptor can
go huge. To reduce the dimensionality of this quadratic term
in bilinear pooling, [9] proposed two approximations to ob-
tain compact bilinear representations. Despite the efforts to
reduce dimensionality in [9], bilinear pooling still has large
amounts of parameters and heavy computation burden. In
addition, all of these models are based on the interactions of
the final convolution layer, which is not able to be extended
to earlier feature nodes in DNN.

3. The Model
Before introducing the FB models, we first rewrite the

bilinear pooling with its fully connected layer as below:

yj = bj +WT
j·vec(

∑
i∈S

xix
T
i )

= bj +
∑
i∈S

xT
i W

R
j·xi,

(3)

where Wj· is the j-th row of W, WR
j· ∈ Rn×n is a ma-

trix reshaped from Wj·, and yj and bj are the j-th value of
y and b. Although the bilinear pooling is capable of cap-
turing pairwise interactions, it also introduces a quadratic
number of parameters in weight matrices WR

j·, leading to
huge computational cost and the risk of overfitting.

Previous literatures, such as [41] have observed patterns
of the co-activation of intra-layer nodes. The responses of
convolutional kernels often form clusters that have seman-
tic meanings. This observation motivates us to regularize
WR

j· by its rank to simplify computations and fight against
overfitting.

3.1. Factorized Bilinear Model

Given the input feature vector x ∈ Rn of one sample, a
common linear transformation can be represented as:

y = b+wTx, (4)

where y is the output of one neuron, b is the bias term, w ∈
Rn is the corresponding transformation weight and n is the
dimension of the input features.



To incorporate the interactions term, we present the fac-
torized bilinear model as follows:

y = b+wTx+ xTFTFx, (5)

where F ∈ Rk×n is the interaction weight with k ∈ N+
0

factors. To explain our model more clearly, the matrix ex-
pression of Eq. (5) can be expanded as:

y = b+

n∑
i=1

wixi +

n∑
i=1

n∑
j=1

〈f·i, f·j〉xixj , (6)

where xi is the i-th variable of the input feature x, wi is
i-th value of the first-order weight and f·i is the i-th column
of F. 〈f·i, f·j〉 is defined as the inner product of f·i and f·j ,
which describes the interaction between the i-th and j-th
variables of the input feature vector.

End-to-End Training. During the training, the parame-
ters in FB model can be updated by back-propagating the
gradients of the loss l. Let ∂l/∂y be the gradient of the loss
function with respect to y, then by the chain rule we have:

∂l

∂x
=

∂l

∂y
w + 2

∂l

∂y
FTFx,

∂l

∂F
= 2

∂l

∂y
FxxT ,

∂l

∂w
=

∂l

∂y
x,

∂l

∂b
=

∂l

∂y
.

(7)

Thus, the FB model applied in DNNs can be easily trained
along with other layers by existing optimizers, such as
stochastic gradient descent.

Extension to Convolutional Layers. The aforemen-
tioned FB model can be applied in fully connected layers
easily by considering all the output neurons. Besides, the
above formulations and analyses can also be extended to the
convolutional layers. Specifically, the patches of the input
feature map in the convolutional layers can be rearranged
into vectors using im2col trick [17, 30], and convolution
operation is converted to dense matrix multiplication like in
fully connected layers. Most popular deep learning frame-
works utilize this reformulation to calculate the convolution
operator, since dense matrix multiplication could maximize
the utility of GPU. Thus, the convolutional layer could also
benefit from the proposed FB model.

Complexity Analysis. According to the definition of the
interaction weight F in Eq. (5), the space complexity, which
means the number of parameters for one neuron in the FB
model, is O(kn). Although the complexity of naı̈ve com-
putation of Eq. (6) is O(kn2), we can compute the factor-
ization bilinear term efficiently by manipulating the order

of matrix multiplication in Eq. (5). By computing Fx and
xTFT first, xTFTFx can be computed in O(kn). Thus,
the total computation complexity of Eq. (5) is also O(kn).
As a result, the FB model has linear complexity in terms of
both k and n for the computation and the number of param-
eters. We will show the actual runtime of the FB layers in
our implementation in the experiments section.

3.2. DropFactor

Dropout [36] is a simple yet effective regularization to
prevent DNNs from overfitting. The idea behind Dropout
is that it provides an efficient way to combine exponentially
different neural networks by randomly dropping neurons.
Inspired by this technique, we propose a specific DropFac-
tor method in our FB model.

We first reformulate Eq. (5) as:

y = b+wTx+

k∑
j=1

xT fj·f
T
j·x, (8)

where fj· is the j-th row of interaction weight F, which
represents the j-th factor. Based on Eq. (8), Fig. 1(a) shows
the expanding structure of the FB layer which composes of
one linear transformation path and k bilinear paths. The
key idea of our DropFactor is to randomly drop the bilinear
paths corresponding to k factors during the training. This
prevents k factors from co-adapting.

In our implementation, each factor is retained with a
fixed probability p during training. With the DropFactor,
the formulation of FB layer in the training becomes:

y = b+wx+

k∑
j=1

mjx
T fj·f

T
j·x, (9)

where mj ∼ Bernoulli(p). With the DropFactor, the net-
work can be seen as a set of 2k thinned networks with shared
weights. In each iteration, one thinned network is sam-
pled randomly and trained by back-propagation as shown
in Fig. 1(b).

For testing, instead of explicitly averaging the outputs
from all 2k thinned networks, we use the approximate
“Mean Network” scheme in [36]. As shown in Fig. 1(c),
each factor term xT fj·f

T
j·x is multiplied by p at testing time:

y = b+wTx+

k∑
j=1

pxT fj·f
T
j·x. (10)

In this way, the output of each neuron at testing time is
the same as the expected output of 2k different networks
at training time.



(a) Expanding FB model structure (b) DropFactor at training time (c) DropFactor at test time

Figure 1. The structure of the FB layer and the explanations of DropFactor. (a) The expanding FB layer contains one conventional linear
path (the blue line) and k bilinear paths (the orange lines). (b) Each bilinear path is retained with probability p at training time. (c) At
testing time, each bilinear path is always present and the output is multiplied by p.

(a) Bilinear Pooling block (b) Factorized Bilinear block

Figure 2. The structure of bilinear pooling block and its corre-
sponding FB block. x is the input feature map of the final convo-
lutional block.

4. Relationship to Existing Methods
In this section, we connect our proposed FB model with

several closely related works, and discuss the differences
and advantages over them.
Relationship to Bilinear Pooling. Bilinear pooling [26]
modeled pairwise interactions of features by outer product
of two vectors. In the following, we demonstrate that our
FB block is a generalization form of bilinear pooling block.

As shown in Fig. 2(a), the bilinear pooling is applied af-
ter the last convolutional layer of a CNN (e.g. VGG) , then
followed by a fully-connected layer for classification. We
construct an equivalent structure with our FB model by us-
ing the FB convolutional layer with 1×1 kernel as shown in
Fig. 2(b). The final average pooling layer is used to aggre-
gate the scores around the spatial locations. Thus, Eq. (5)
can be reformulated as:

y = b+
1

‖S‖
∑
i∈S

(wTxi + xT
i F

TFxi). (11)

Compared with bilinear pooling in Eq. (3), we add the linear
term and replace the pairwise matrix WR

j· with factorized
bilinear weight FTF.

We argue that such symmetric and low rank constraints
on the interaction matrix are reasonable in our case. First,
the interaction between i-th and j-th feature and that be-
tween j-th and i-th feature should be same. Second, due
to the redundancy in neural networks, the neurons usually
form the clusters [41]. As a result, only a few factors should
be enough to capture the interactions between them. Be-
sides reducing the space and time complexity, restricting k
also potentially prevents overfitting and leads to better gen-
eralization.

An improvement of bilinear pooling is compact bilin-
ear pooling [9] which reduces the feature dimension of bi-
linear pooling using two approximation methods: Random
Maclaurin (RM) [18] and Tensor Sketch (TS) [29]. How-
ever, the dimension of the projected compact bilinear fea-
ture is still too large (10K for the 512-dimensional input)
for deep networks. Table 1 compares the factorized bi-
linear with bilinear pooling and its variant compact bilin-
ear pooling. Similar to compact bilinear pooling, our FB
model requires much fewer parameters than bilinear pool-
ing. It also reduces the computation complexity signifi-
cantly (from 133M in TS to 10M) at the same time. In addi-
tion, not only used as the final prediction layer, our method
can also be applied in the early layers as a common transfor-
mation layer, which is much more general than the bilinear
pooling methods.
Relationship to Factorization Machines. Factorization
Machine (FM) [32] is a popular predictor in machine learn-
ing and data mining, especially for very sparse data. Similar
to our FB model, FM also captures the interactions of the in-
put features in a factorized parametrization way. However,
since FM is only a classifier, its applications are restricted
in the simple regression and classification. In fact, a 2-way
FM can be constructed by a tiny network composed of a
single FB layer with one output unit. In this way, a 2-way
FM is a special case of our FB model. While our FB model
is much more general, which can be integrated into regular
neural networks seamlessly for different kinds of tasks.



Method Parameter Computation
Bilinear [26] cn2 [262M] O(cn2) [262M]
RM [9] 2nd+ cd [20M] O(cnd) [5G]
TS [9] 2n+ cd [10M] O(c(n+ dlogd)) [133M]
Factorized Bilinear ckn [10M] O(ckn) [10M]

Table 1. The comparison of number of parameters and computa-
tion complexity among the proposed factorized bilinear, bilinear
pooling and compact bilinear pooling. Parameters n, c, d, k cor-
respond to the dimension of input feature, the dimension of output
(number of classes), the projected dimension of compact bilinear
pooling and the number of factors in factorized bilinear. Numbers
in brackets indicate typical values of each method for a common
CNN on a 1000-class classification task, i.e., n = 512, c = 1, 000,
d = 10, 000, k = 20. Note that we omit the width and height of
the input feature map for simplicity.

5. Experiments

In this section, we conduct comprehensive experiments
to validate the effectiveness of the proposed FB model.
In Sec. 5.1, we first investigate the design choices and
properties of the proposed FB model, including the ar-
chitecture of the network, parameters setting and speed.
Then, we conduct several experiments on three well-
known standard image classification datasets and two fine-
grained classification datasets, in Sec. 5.2. In the fol-
lowing experiments, we refer the CNN equipped with our
FB model as Factorized Bilinear Network (FBN). Code
is available at https://github.com/lyttonhao/
Factorized-Bilinear-Network.
Implementation Details. We adopt two standard network
structures: Inception-BN [16] and ResNet [13] as our base-
lines. Our FBN improves upon these two structures. Some
details are elaborated below. For one specified network and
its corresponding FBN, we use all the same experiment set-
tings (e.g. the training policy and data augmentation), ex-
cept two special treatments for FBNs. (i) To prevent the
quadratic term in FB layer explodes too large, we change
the activation before every FB layer from ‘ReLU’ [28] to
‘Tanh’, which restricts the output range of FB layers. We
do not use the power normalization and l2 normalization
in [26]. The reason is that: 1) square root is not numerically
stable around zero. 2) we do not calculate the bilinear fea-
tures explicitly. (ii) We use the slow start training scheme,
which shrinks the initialized learning rate of the FB layer by
a tenth and gradually increases the learning rate to the reg-
ular level in several epochs (e.g. 3 epochs). This treatment
learns a good initialization and is beneficial for converging
of FBNs, which is similar to the warmup step in [12].

5.1. Ablation Analyses

In this section we investigate the design of architecture
of FBNs and the appropriate parameters, such as the num-

Figure 3. The structure of the simplified version of Inception-BN
and the SimpleFactory block.

ber of factors k and the DropFactor rate p 2. Most of the
following experiments are conducted on a simplified ver-
sion of Inception-BN network3 on CIFAR-100. Some de-
tails about the experiment settings, such as training policies
and data augmentations, will be explained in Sec. 5.2.

Architecture of FBNs. As discovered in [41], the lower
layers of CNNs usually respond to simple low-level fea-
tures. Thus, linear transformation is enough to abstract
the concept within images. Consequently, we modify the
higher layers of Inception-BN network to build our FBNs.
As shown in Fig. 3, the original Inception-BN is constructed
by several SimpleFactories, and each SimpleFactory con-
tains a 1 × 1 conv block and a 3 × 3 conv block. The five
FBNs with different structures are explained as follows:

1. In5a-FBN. We replace the 1x1 conv layer in In5a fac-
tory with our FB convolutional layer. The parameters
such as kernel size and stride size are kept the same.

2. In5b-FBN. This is same as In5a-FBN except we apply
FB model in In5b factory.

3. FC-FBN. The final fully-connected layer is replaced
by our FB fully connected layer.

4. Conv-FBN. As shown in Fig. 2(b), Conv-FBN is con-
structed by inserting a FB conv layer with 1× 1 kernel
before the global pooling layer and removing the fully-
connected layer.

5. Conv+In5b-FBN. This network combines Conv-FBN
and In5b-FBN.

The results of original Inception-BN and five FBNs are
shown in Table 2. The training and testing curves for these
networks are presented in Fig. 4. The number of factors k of
different FBNs is fixed as 20 and the appropriate values for
the DropFactor rate p are chosen for different FBNs (More
experiments about k and p are shown in Table 3 and Fig. 5).
From Table 2, we can see that most FBNs achieve better re-
sults than the baseline Inception-BN model, and Conv-FBN
achieves 21.98% error which outperforms Inception-BN by

2More exploration experiments can be found in supplemental material.
3https://goo.gl/QwVS3Z

https://github.com/lyttonhao/Factorized-Bilinear-Network
https://github.com/lyttonhao/Factorized-Bilinear-Network
https://goo.gl/QwVS3Z


Network type p CIFAR-100
Inception-BN - 24.70
In5a-FBN 0.8 24.73
In5b-FBN 0.8 22.63
FC-FBN 0.5 24.07
Conv-FBN 0.5 21.98
In5b+Conv-FBN (0.8, 0.5) 23.70

Table 2. Test error (%) of original Inception-BN and five FBNs on
CIFAR-100. p is the DropFactor rate. The (0.8, 0.5) of p in the
last row indicates that p is set as 0.8 in In5b factory and 0.5 in the
Conv FB layer.

Figure 4. Training on CIFAR-100 with different architectures.
Dashed lines denote training error, and bold lines denote testing
error. Best viewed in color.

a large margin of 2.72%. It demonstrates that incorporating
FB model indeed improves the performance of the network.

From Table 2 and Fig. 4, we have several interesting find-
ings: 1) Comparing the results of Conv-FBN, In5b-FBN
and In5a-FBN, we find that incorporating FB model in the
lower layers may lead to inferior results and suffer from
overfitting more. 2) The difference between FC-FBN and
Conv-FBN is whether to consider the interactions across
different locations of the input feature map. The results
show that the pairwise interactions should be captured at
each position of the input separately. 3) Incorporating two
FB blocks (In5b+Conv-FBN) does not further improve the
performance at least in CIFAR-100, but leads to more se-
vere overfitting instead.

Number of Factors in FB layer. As the number of pa-
rameters and computational complexity in the FB layer in-
crease linearly in the number of factors k, we also evaluate
the sensitivity of k in a FB layer. Table 3 shows the results
of In5b-FBN and Conv-FBN on CIFAR-100. As can be no-
ticed, after k grows beyond 20, the increase of performance
is marginal, and too large k may be even detrimental. Thus,
we choose 20 factors in all the subsequent experiments.

DropFactor in FBNs. We also vary the DropFactor rate
p to see how it affects the performance. Fig. 5(a) shows the

factors k In5b-FBN Conv-FBN
10 23.07 22.99
20 22.63 21.98
50 22.82 21.90
80 23.07 21.88

Table 3. Test error (%) on CIFAR-100 of In5b-FBN and Conv-
FBN with different number of factors. The DropFactor rate p is
0.8 and 0.5 for In5b-FBN and Conv-FBN according to the perfor-
mance.

testing error on CIFAR-100 of In5b-FBN and Conv-FBN
with different p. Note that even the FBNs without Drop-
Factor (p = 1.0) can achieve better results than the baseline
method. With the DropFactor, FBNs further improve the
result and achieve the best result 21.98% when p = 0.5
for Conv-FBN and 22.63% when p = 0.8 for In5b-FBN.
Fig. 5(b) and 5(c) show the training and testing curves with
different p. As illustrated, the testing curves are similar at
the first 200 epochs for different networks, yet the training
curves differ much. The smaller DropFactor rate p makes
the network less prone to overfitting. It demonstrates the
effectiveness of DropFactor. On the other hand, a too small
rate may deteriorate the convergence of the FBNs.

Speed Analysis of FB networks. We show the runtime
speed comparison of a small network (Inception-BN) and a
relatively large network (ResNet of 1001 layers) with and
without FB layers in Table 4. The test is performed on
the Titan X GPU. Since the FB layers implemented on our
own are not optimized by advanced implementation such as
cuDNN [5], we also show the results of all methods without
cuDNN for a fair comparison. For Inception-BN, the loss
of speed is still tolerable. In addition, since we only insert
a single FB block, it has little impact on the speed of large
networks, e.g. ResNet-1001. Lastly, cuDNN accelerates all
methods a lot. We believe that the training speed of our FB
layers will also benefit from a deliberate optimization.

Speed (samples/s)
w/o cuDNN cuDNN

Inception-BN (24.70%) 722.2 2231.1
Inception-BN-FBN (21.98%) 438.1 691.7
ResNet-1001 (20.50%) 20.3 79.1
ResNet-1001-FBN (19.67%) 20.1 74.9

Table 4. The training speeds of different methods on CIFAR-100.
We use the Conv-FBN structure in the comparison.

5.2. Evaluation on Multiple Datasets

In this section, we compare our FBN with other start-
of-art methods on multiple datasets, including CIFAR-10,
CIFAR-100, ImageNet and two fine-grained classification
datasets. For the following experiments, we do not try ex-
haustive parameter search and use the Conv-FBN network



(a) Test error of In5b-FBN and Conv-FBN (b) Training curves of In5b-FBN (c) Training curves of Conv-FBN
Figure 5. Training on CIFAR-100 of Conv-FBN networks with k = 20 and different p. (a) Test error (%) on CIFAR-100 of In5b-FBN
and Conv-FBN networks. (b)(c) Training curves of In5b-FBN and Conv-FBN networks. Dashed lines denote training error, and bold lines
denote testing error. Note that we do not show the results of smaller DropFactor rates, since the performance drops significantly when p is
too small. Best viewed in color.

with fixed factors k = 20 and DropFactor rate p = 0.5 as
the default setting of FBNs, since this setting achieves the
best performance according to the ablation experiments in
Sec. 5.1. Our FB layers are implemented in MXNet [4] and
we follow some training policies in “fb.resnet”4.

5.2.1 Results on CIFAR-10 and CIFAR-100

The CIFAR-10 and CIFAR-100 [20] datasets contain
50,000 training images and 10,000 testing images of 10 and
100 classes, respectively. The resolution of each image is
32× 32. We follow the moderate data augmentation in [13]
for training: a random crop is taken from the image padded
by 4 pixels or its horizontal flip. We use SGD for optimiza-
tion with a weight decay of 0.0001 and momentum of 0.9.
All models are trained with a minibatch size of 128 on two
GPUs. For ResNet and its corresponding FBNs, we start
training of a learning rate of 0.1 for total 200 epochs and
divide it by 10 at 100 and 150 epochs. For Inception-BN
based models, the learning rate is 0.2 at start and divided by
10 at 200 and 300 epochs for total 400 epochs.

We train three different networks: Inception-BN,
ResNet-164 and ResNet-1001, and their corresponding FB
networks. Note that we use the pre-activation version of
ResNet in [13] instead of the original ResNet [12]. Table 5
summarizes the results of our FBNs and other state-of-the-
art algorithms. Our FBNs have consistent improvements
over all three corresponding baselines. Specifically, our
Inception-BN-FBN outperforms Inception-BN by 2.72% on
CIFAR-100 and 0.24% on CIFAR-10, and ResNet-1001-
FBN achieves the best result 19.67% on CIFAR-100 among
all the methods. A more intuitive comparison is in Fig. 6.
Most remarkably, our method improves the performance
with slightly additional cost of parameters. For exam-
ple, compared to ResNet-1001 with 10.7M parameters, our
ResNet-1001-FBN obtains better results with only 0.5M
(5%) additional parameters. This result is also better than

4https://github.com/facebook/fb.resnet.torch

the best Wide ResNet, which uses 36.5M parameters. Al-
though Bilinear Pooling methods [26, 9] were not utilized
in general image classification tasks, we also re-implement
them here using Inception-BN and ResNet-164 architec-
tures. Their performance is inferior to our results.

Figure 6. Comparison of different baselines and their correspond-
ing FBNs on CIFAR-100.

5.2.2 Results on ImageNet

Although lots of works show their improvements on small
datasets such as CIFAR-10 and CIFAR-100, few works
prove their effectiveness in large scale datasets. Thus, in
this section we evaluate our method on the ImageNet [34]
dataset, which is the golden test for image classification.
The dataset contains 1.28M training images, 50K valida-
tion images and 100K testing images. We report the Top-1
and Top-5 errors of validation set in the single-model sin-
gle center-crop setting. For the choice of FBN, we use the
Conv-FBN structure in Sec. 5.1 and the DropFactor rate is
set as 0.5. In the training, we also follow some well-known
strategies in “fb.resnet”4, such as data augmentations and
initialization method. The initial learning rate starts from
0.1 and is divided by 10 at 60, 75, 90 epochs for 120 epochs.

We adopt two modern network structures: Inception-
BN [16] and ResNet [13] in this experiment. Table 6 shows
their results compared with FB variants. Relative to the
original Inception-BN, our Inception-BN-FBN has a Top-
1 error of 26.4%, which is 1.1% lower. ResNet-34-FBN

https://github.com/facebook/fb.resnet.torch


Method # params CIFAR-10 CIFAR-100
NIN [25] - 8.81 35.67
DSN [24] - 8.22 34.57
FitNet [33] - 8.39 35.04
Highway [37] - 7.72 32.39
ELU [8] - 6.55 24.28
Original ResNet-110 [12] 1.7M 6.43 25.16
Original ResNet-1202 [12] 10.2M 7.93 27.82
Stoc-depth-110 [15] 1.7M 5.23 24.58
Stoc-depth-1202 [15] 10.2M 4.91 -
ResNet-164 [13] 1.7M 5.46 24.33
ResNet-1001 [13] 10.2M 4.62 22.71
FractalNet [22] 22.9M 5.24 22.49
Wide ResNet (width×8) [40] 11.0M 4.81 22.07
Wide ResNet (width×10) [40] 36.5M 4.17 20.50
Inception-BN-Bilinear [26] 13.1M 5.82 25.72
Inception-BN-TS [9] 2.0M 5.75 24.63
ResNet-164-Bilinear [26] 8.3M 5.32 23.85
ResNet-164-TS [9] 2.0M 5.58 23.48
Inception-BN 1.7M 5.82 24.70
ResNet-164 (ours) 1.7M 5.30 23.64
ResNet-1001 (ours) 10.2M 4.04 20.50
Inception-BN-FBN 2.4M 5.58 21.98
ResNet-164-FBN 2.2M 5.00 22.50
ResNet-1001-FBN 10.7M 4.09 19.67

Table 5. Top-1 error (%) of different methods on CIFAR-10 and CIFAR-100 datasets using moderate data augmentation (flip/translation).
The number of parameters is calculated on CIFAR-100.

Method Top-1 (%) Top-5 (%)
Inception-BN [16] 27.5 9.2
Inception-BN-FBN 26.4 8.4
ResNet-34 [13] 27.7 9.1
ResNet-34-FBN 26.3 8.4
ResNet-50 [13] 24.7 7.4
ResNet-50-FBN 24.0 7.1

Table 6. Comparisons of different methods by single center-crop
error on the ImagNet validation set.

and ResNet-50-FBN achieve 26.8% and 24.7% Top-1 er-
ror, and improve 1.4% and 0.7% over the baselines, respec-
tively. The results demonstrate the effectiveness of our FB
models on the large scale dataset.

5.2.3 Results on Fine-grained Recognition Datasets

Original Bilinear pooling methods [26, 9] only show their
results on fine-grained recognition applications, thus we ap-
ply our FB models in two fine-grained datasets CUB-200-
2011 [39] and Describable Texture Dataset (DTD) [7] for
comparisons. We use the same base network VGG-16 in
this experiment. Table 7 compares our method with bilinear
pooling [26] and two compact bilinear pooling [9] methods
(RM and TS). The results show that our FBN and the bi-
linear pooling methods all improves significantly over the
VGG-16. We also re-implement bilinear pooling under the
same training setting as our FBN. It should be more fair to
compare its results (in the brackets) with our FBN. Note that
our FBN also has much lower cost of memory and compu-

Dataset FC Bilinear [26] RM [9] TS [9] FBN
CUB 33.88 16.00 (17.79) 16.14 16.00 17.09
DTD 39.89 32.50 (32.26) 34.43 32.29 32.20

Table 7. Comparisons of different methods by classification error
on CUB and DTD datasets. The number in the brackets are our
re-implemented results.

tation than bilinear pooling methods as described in Sec. 4.

6. Conclusion and Future Work
In this paper, we have presented the Factorized Bilinear

(FB) model to incorporate pairwise interactions of features
in neural networks. The method has low cost in both mem-
ory and computation, and can be easily trained in an end-
to-end manner. To prevent overfitting, we have further pro-
posed a specific regularization method DropFactor by ran-
domly dropping factors in FB layers. Our method achieves
remarkable performance in several standard benchmarks,
including CIFAR-10, CIFAR-100 and ImageNet.

In the future work, we will go beyond the interactions
inside features, and explore the generalization to model the
correlations between samples in some more complicated
tasks, such as face verification and re-identification.

Acknowledgement
This work was supported by the National Natural Sci-

ence Foundation of China under Contract 61472011.



References
[1] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Se-

mantic segmentation with second-order pooling. In ECCV,
2012.

[2] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.
Return of the devil in the details: Delving deep into convo-
lutional nets. arXiv preprint arXiv:1405.3531, 2014.

[3] D. Chen, Z. Yuan, G. Hua, N. Zheng, and J. Wang. Similar-
ity learning on an explicit polynomial kernel feature map for
person re-identification. In CVPR, 2015.

[4] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang. MXNet: A flexible and effi-
cient machine learning library for heterogeneous distributed
systems. NIPS Workshop on Machine Learning Systems,
2016.

[5] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer. cuDNN: Efficient prim-
itives for deep learning. arXiv preprint arXiv:1410.0759,
2014.

[6] A. R. Chowdhury, T.-Y. Lin, S. Maji, and E. Learned-Miller.
One-to-many face recognition with bilinear cnns. In WACV,
2016.

[7] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and
A. Vedaldi. Describing textures in the wild. In CVPR, 2014.

[8] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and
accurate deep network learning by exponential linear units
(ELUs). arXiv preprint arXiv:1511.07289, 2015.

[9] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell. Compact
bilinear pooling. In CVPR, 2016.

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In CVPR, 2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CVPR, 2016.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. ECCV, 2016.

[14] K. Hornik, M. Stinchcombe, and H. White. Multilayer feed-
forward networks are universal approximators. Neural Net-
works, 2(5):359–366, 1989.

[15] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger. Deep
networks with stochastic depth. ECCV, 2016.

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015.

[17] Y. Jia. Learning Semantic Image Representations at a Large
Scale. PhD thesis, EECS Department, University of Califor-
nia, Berkeley, 2014.

[18] P. Kar and H. Karnick. Random feature maps for dot product
kernels. In AISTATS, 2012.

[19] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulo.
Deep neural decision forests. In CVPR, 2015.

[20] A. Krizhevsky. Learning multiple layers of features from
tiny images. Tech Report, 2009.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks. In
NIPS, 2012.

[22] G. Larsson, M. Maire, and G. Shakhnarovich. FractalNet:
Ultra-deep neural networks without residuals. arXiv preprint
arXiv:1605.07648, 2016.

[23] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural Compu-
tation, 1(4):541–551, 1989.

[24] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-
supervised nets. In AISTATS, 2015.

[25] M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR,
2014.

[26] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN
models for fine-grained visual recognition. In CVPR, 2015.

[27] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015.

[28] V. Nair and G. E. Hinton. Rectified linear units improve re-
stricted Boltzmann machines. In ICML, 2010.

[29] N. Pham and R. Pagh. Fast and scalable polynomial kernels
via explicit feature maps. In SIGKDD, 2013.

[30] J. S. Ren and L. Xu. On vectorization of deep convolutional
neural networks for vision tasks. In AAAI, 2015.

[31] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-
wards real-time object detection with region proposal net-
works. In NIPS, 2015.

[32] S. Rendle. Factorization machines. In ICDM, 2010.
[33] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,

and Y. Bengio. Fitnets: Hints for thin deep nets. In ICLR,
2015.

[34] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. ImageNet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252,
2015.

[35] J. Shawe-Taylor and N. Cristianini. Kernel methods for pat-
tern analysis. Cambridge University Press, 2004.

[36] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[37] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training
very deep networks. In NIPS, 2015.

[38] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015.

[39] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 dataset. 2011.

[40] S. Zagoruyko and N. Komodakis. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

[41] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In ECCV, 2014.



7. Supplementary: More Exploration Experi-
ments of Factorized Bilinear Models

We study the effect of different kernel sizes in Factorized
Bilinear (FB) Models. We also present comparisons with
Dropout and our DropFactor in FB models.

7.1. Effect of Kernel Size

Tab. 8 shows the results of different kernel sizes (1x1 and
3x3) for FB layers. We conduct experiments on CIFAR-100
dataset [20] with two FB networks In5b-FBN and Conv-
FBN as described in the paper. We insert a 1x1 FB layer and
3x3 FB layer, respectively, for both two FBNs. The results
of 3x3 kernel size are still better than the baseline. This
demonstrates that our FB models can generalize to model
interactions with larger kernel size. However, it also leads
to more severe over-fitting than 1x1 at least on CIFAR-100
and has 9 times parameters than an 1x1 FB layer. Thus,
incorporating 1x1 FB layer can achieve more efficient and
effective performance.

Method Kernel Size Error
Inception-BN - 24.70

In5b-FBN 1x1 22.63
3x3 23.87

Conv-FBN 1x1 21.98
3x3 23.08

Table 8. Results of different kernel sizes in the FB layers on the
CIFAR-100 dataset.

7.2. Comparisons with Dropout and DropFactor

Network Method Error

Inception-BN

Baseline 24.70
FBN 23.55
FBN + Dropout 23.19
FBN + DropFactor 21.98
FBN + Dropout + DropFactor 22.71

ResNet-164

Baseline 23.64
FBN 23.39
FBN + Dropout 22.97
FBN + DropFactor 22.50
FBN + Dropout + DropFactor 22.60

Table 9. Results of Dropout and DropFactor on the CIFAR-100
dataset.

Our DropFactor scheme shares similar idea with
Dropout [36], which is also a simple yet effective regu-
larization to prevent over-fitting. We evaluate the perfor-
mance of Dropout with our specific designed DropFactor
for Factorized Bilinear models. Tab. 9 illustrates the re-
sults of two methods on the CIFAR-100 dataset. We adopt

the Inception-BN and ResNet-164 networks as the base net-
works in this experiments. The FBN models are constructed
by inserting the FB layers in the base networks. As shown in
the table, Dropout and DropFactor both improve the perfor-
mance individually over the original FBN model. DropFac-
tor achieves even better results and combining them does
not get further improvement. This demonstrates the effec-
tiveness of DropFactor scheme to reduce the over-fitting of
FB models.


