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Abstract

In this paper we present a differential approach to photo-

polarimetric shape estimation. We propose several alterna-

tive differential constraints based on polarisation and pho-

tometric shading information and show how to express them

in a unified partial differential system. Our method uses the

image ratios technique to combine shading and polarisation

information in order to directly reconstruct surface height,

without first computing surface normal vectors. Moreover,

we are able to remove the non-linearities so that the prob-

lem reduces to solving a linear differential problem. We also

introduce a new method for estimating a polarisation image

from multichannel data and, finally, we show it is possible

to estimate the illumination directions in a two source setup,

extending the method into an uncalibrated scenario. From

a numerical point of view, we use a least-squares formula-

tion of the discrete version of the problem. To the best of

our knowledge, this is the first work to consider a unified

differential approach to solve photo-polarimetric shape es-

timation directly for height. Numerical results on synthetic

and real-world data confirm the effectiveness of our pro-

posed method.

1. Introduction

A recent trend in photometric [7, 13, 12, 26, 23, 20]

and physics-based [24] shape recovery has been to develop

methods that solve directly for surface height, rather than

first estimating surface normals and then integrating them

into a height map. Such methods are attractive since: 1.

they only need solve for a single height value at each pixel

(as opposed to the two components of surface orientation),

2. integrability is guaranteed, 3. errors do not accumulate

through a two step pipeline of shape estimation and integra-

tion and 4. it enables combination with cues that provide

depth information directly [10]. In both photometric stereo

[13, 12, 23] and recently in shape-from-polarisation (SfP)

[24], such a direct solution was made possible by deriving

equations that are linear in the unknown surface gradient.

In this paper, we explore the combination of SfP

constraints with photometric constraints (i.e. photo-

polarimetric shape estimation) provided by one or two light

sources. Photometric stereo with three or more light sources

is a very well studied problem with robust solutions avail-

able under a range of different assumptions. Two source

photometric stereo is still considered a difficult problem

[21] even when the illumination is calibrated and albedo is

known. We show that various formulations of one and two

source photo-polarimetric stereo lead to the same general

problem (in terms of surface height), that illumination can

be estimated and that certain combinations of constraints

lead to an albedo invariant formulation. Hence, with only

modest additional data capture requirements (a polarisation

image rather than an intensity image), we arrive at an ap-

proach for uncalibrated two source photometric stereo. We

make the following novel contributions:

• We show how to estimate a polarisation image from

multichannel data such as from colour images, multi-

ple light source data or both (Sec. 2.2).

• We show how polarisation and photometric constraints

(Sec. 3) can be expressed in a unified formulation (of

which previous work [24] is a special case) and that

various combinations of these constraints provide dif-

ferent practical advantages (Sec. 4).

• We show how to estimate the illumination directions in

two source photo-polarimetric data leading to an un-

calibrated solution (Sec. 6).

1.1. Related Work

The polarisation state of light reflected by a surface pro-

vides a cue to the material properties of the surface and,

via a relationship with surface orientation, the shape. Po-

larisation has been used for a number of applications, in-
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cluding early work on material segmentation [28] and dif-

fuse/specular reflectance separation [18]. However, there

has been a resurgent interest [24, 10, 25, 19] in using polar-

isation information for shape estimation.

Shape-from-polarisation The degree to which light is lin-

early polarised and the orientation associated with maxi-

mum reflection are related to the two degrees of freedom

of surface orientation. In theory, this polarisation informa-

tion alone restricts the surface normal at each pixel to two

possible directions. Both Atkinson and Hancock [1] and

Miyazaki et al. [15] solve the problem of disambiguating

these polarisation normals via propagation from the bound-

ary under an assumption of global convexity. Huynh et al.

[8] also disambiguate polarisation normals with a global

convexity assumption but estimate refractive index in ad-

dition. These works all used a diffuse polarisation model

while Morel et al. [16] use a specular polarisation model

for metals. Recently, Taamazyan et al. [25] introduced a

mixed specular/diffuse polarisation model. All of these

methods estimate surface normals that must be integrated

into a height map. Moreover, since they rely entirely on the

weak shape cue provided by polarisation and do not enforce

integrability, the results are extremely sensitive to noise.

Photo-polarimetric methods There have been a number

of attempts to combine photometric constraints with po-

larisation cues. Mahmoud et al. [11] used a shape-from-

shading cue with assumptions of known light source direc-

tion, known albedo and Lambertian reflectance to disam-

biguate the polarisation normals. Atkinson and Hancock [3]

used calibrated, three source Lambertian photometric stereo

for disambiguation but avoiding an assumption of known

albedo. Smith et al. [24] showed how to express polari-

sation and shading constraints directly in terms of surface

height, leading to a robust and efficient linear least squares

solution. They also show how to estimate the illumination,

up to a binary ambiguity, making the method uncalibrated.

However, they require known or uniform albedo. We ex-

plore variants of this method by introducing additional con-

straints that arise when a second light source is introduced,

allowing us to relax the uniform albedo assumption. We

also give an explanation for why the matrix they consider is

full-rank except in a unique case. Recently, Ngo et al. [19]

derived constraints that allowed surface normals, light di-

rections and refractive index to be estimated from polarisa-

tion images under varying lighting. However, this approach

requires at least 4 lights. All of the above methods operate

on single channel images and do not exploit the information

available in colour images.

Polarisation with additional cues Rahmann and Can-

terakis [22] combined a specular polarisation model with

stereo cues. Similarly, Atkinson and Hancock [2] used po-

larisation normals to segment an object into patches, sim-

plifying stereo matching. Stereo polarisation cues have also

been used for transparent surface modelling [14]. Huynh

et al. [9] extended their earlier work to use multispectral

measurements to estimate both shape and refractive index.

Drbohlav and Sara [6] showed how the Bas-relief ambigu-

ity [4] in uncalibrated photometric stereo could be resolved

using polarisation. However, this approach requires a po-

larised light source. Recently, Kadambi et al. [10] proposed

an interesting approach in which a single polarisation image

is combined with a depth map obtained by an RGBD cam-

era. The depth map is used to disambiguate the normals and

provide a base surface for integration.

2. Representing Polarisation Information

We place a camera at the origin of a three-dimensional

coordinate system (Oxyz) in such a way that Oxy coincides

with the image plane and Oz with the optical axis. In Sec. 4

we propose a unified formulation for a variety of methods,

all of which assume a) orthographic projection, b) known

refractive index of the surface. Other assumptions will be

given later on, depending on the specific problem at hand.

We denote by v the viewer direction, by s a general light

source direction with v 6= s. We only require the third com-

ponents of these unit vectors to be greater than zero (i.e. all

the vectors belong to the upper hemisphere). We will denote

by t a second light source where required. We parametrise

the unknown surface height by the function z(x), where

x = (x, y) is an image location, and the unit normal to

the surface at the point x is given by:

n(x) =
n̂(x)

|n̂(x)| =
[−zx,−zy, 1]

T

√

1 + |∇z(x)|2
, (1)

where n̂(x) is the outgoing normal vector and zx, zy de-

notes the partial derivative of z(x) w.r.t. x and y, respec-

tively, so that ∇z(x) = (zx, zy). We now introduce rele-

vant polarization theory, describing how we can estimate a

polarisation image from multichannel data.

2.1. Polarisation image

When unpolarised light is reflected by a surface it be-

comes partially polarised [27]. A polarisation image can

be estimated by capturing a sequence of images in which

a linear polarising filter in front of the camera lens is ro-

tated through a sequence of P ≥ 3 different angles ϑj ,

j ∈ {1, . . . , P}. The measured intensity at a pixel varies

sinusoidally with the polariser angle:

iϑj
(x) = iun(x)

(

1 + ρ(x) cos(2ϑj − 2φ(x))
)

. (2)

The polarisation image is thus obtained by decomposing the

sinusoid at every pixel location into three quantities [27]:

the phase angle, φ(x), the degree of polarisation, ρ(x), and

the unpolarised intensity, iun(x). The parameters of the si-

nusoid can be estimated from the captured image sequence
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using non-linear least squares [1], linear methods [8] or via

a closed form solution [27] for the specific case of P = 3,

ϑ ∈ {0◦, 45◦, 90◦}.

2.2. Multichannel polarisation image estimation

A polarisation image is usually computed by fitting the

sinusoid in (2) to observed data in a least squares sense.

Hence, from P ≥ 3 measurements we estimate iun, ρ and

φ. In practice, we may have access to multichannel mea-

surements. For example, we may capture colour images

(3 channels), polarisation images with two different light

source directions (2 channels) or both (6 channels). Since

ρ and φ depend only on surface geometry (assuming that,

in the case of colour images, the refractive index does not

vary with wavelength), then we expect these quantities to

be constant over the channels. On the other hand, iun will

vary between channels either because of a shading change

caused by the different lighting or because the albedo or

light source intensity is different in the different colour

channels. Hence, in a multichannel setting with C channels,

we have C + 2 unknowns and CP observations. If we use

information across all channels simultaneously, the system

is more constrained and the solution will be more robust

to noise. Moreover, we do not need to make an arbitrary

choice about the channel from which we estimate the polar-

isation image. This idea shares something in common with

that of Narasimhan et al. [17], though their material/shape

separation was not in the context of polarisation.

Specifically, we can express the multichannel observa-

tions in channel c with polariser angle ϑj as

icϑj
(x) = icun(x)(1 + ρ(x) cos(2ϑj − 2φ(x))). (3)

The system of equations is linear in the unpolarised inten-

sities and, by a change of variables, can be made linear in

ρ and φ [8]. Hence, we wish to solve a bilinear system and

do so in a least squares sense using interleaved alternating

minimisation. Specifically, we a) fix ρ and φ and then solve

linearly for the unpolarised intensity in each channel and

b) then fix the unpolarised intensities and solve linearly for

ρ and φ using all channels simultaneously. Concretely, for

a single pixel, we obtain the unpolarised intensities across

channels by solving:

min
i1un(x),...,i

C
un(x)

∥

∥

∥
CI

[

i1un(x), . . . , i
C
un(x)

]T − dI

∥

∥

∥

2

, (4)

where CI ∈ R
CP×C is given by

CI =







(1 + ρ(x) cos(2ϑ1 − 2φ(x)))IC
...

(1 + ρ(x) cos(2ϑP − 2φ(x)))IC






, (5)

with IC denoting the C×C identity matrix, and dI ∈ R
CP

is given by

dI =
[

i
1
ϑ1
(x), . . . , iCϑ1

(x), i1ϑ2
(x), . . . , iCϑP

(x)
]T

.

Then, with the unpolarised intensities fixed, we solve for ρ
and φ using the following linearisation:

min
a,b

∥

∥

∥

∥

Cρφ

[

a
b

]

− dρφ

∥

∥

∥

∥

2

, (6)

where [a b]T = [ρ(x) cos(2φ(x)), ρ(x) sin(2φ(x))]T , and
Cρφ ∈ R

CP×2 is given by

Cρφ =























i1un(x) cos(2ϑ1) i1un(x) sin(2ϑ1)
...

...

i1un(x) cos(2ϑP ) i1un(x) sin(2ϑP )
i2un(x) cos(2ϑ1) i2un(x) sin(2ϑ1)

...
...

iCun(x) cos(2ϑP ) iCun(x) sin(2ϑP )























, (7)

and dρφ ∈ R
CP is given by:

dρφ =























i1ϑ1
(x)− i1un(x)

...

i1ϑP
(x)− i1un(x)

i2ϑ1
(x)− i2un(x)

...

iCϑP
(x)− iCun(x)























. (8)

We estimate ρ and φ from the linear parameters using

φ(x) = 1
2atan2(b, a) and ρ(x) =

√
a2 + b2.

We initialise by computing a polarisation image from

one channel using linear least squares, as in [8], and

then use the estimated ρ and φ to begin alternating inter-

leaved optimisation by solving for the unpolarised intensi-

ties across channels. We interleave and alternate the two

steps until convergence. In practice, we find that this ap-

proach not only dramatically reduces noise in the polarisa-

tion images but also removes the ad hoc step of choosing

an arbitrary channel to process. We show an example of

the results obtained in Figure 1. The multichannel result is

visibly less noisy than the single channel performance.

3. Photo-polarimetric height constraints

In this section we describe the different constraints pro-

vided by photo-polarimetric information and then show

how to combine them to arrive at linear equations in the

unknown surface height.

3.1. Degree of polarisation constraint

A polarisation image provides a constraint on the sur-

face normal direction at each pixel. The exact nature of the

constraint depends on the polarisation model used. In this

paper we will consider diffuse polarisation, due to subsur-

face scattering (see [1] for more details). The degree of dif-

fuse polarisation ρd(x) at each point x can be expressed in
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Figure 1. Multichannel polarisation image estimation. Left to right: an image from the input sequence; phase angle (φ) and degree of

polarisation (ρ) estimated from a single channel; phase angle (φ) and degree of polarisation (ρ) estimated from three colour channels and

two light source directions.

terms of the refractive index η and the surface zenith angle

θ ∈ [0, π
2 ] as follows (Cf. [1]):

ρd(x) = (9)

(η − 1/η)2 sin2(θ)

2+2η2−(η+1/η)2 sin2(θ)+4 cos(θ)
√

η2− sin2(θ)
.

Recall that the zenith angle is the angle between the unit
surface normal vector n(x) and the viewing direction v. If
we know the degree of polarisation ρd(x) and the refractive
index η (or have good estimates of them at hand), equation
(9) can be rewritten with respect to the cosine of the zenith
angle, and expressed in terms of the function, f(ρd(x), η),
that depends on the measured degree of polarisation and the
refractive index:

cos(θ) = n(x) · v = f(ρd(x), η) = (10)
√

η4(1−ρ2d)+2η2(2ρ2d+ρd−1)+ρ2d+2ρd−4η3ρd
√

1−ρ2d+1

(ρd + 1)2 (η4 + 1) + 2η2(3ρ2d + 2ρd − 1)

where we drop the dependency of ρd on (x) for brevity.

3.2. Shading constraint

The unpolarised intensity provides an additional con-

straint on the surface normal direction via an appropriate re-

flectance model. We assume that pixels have been labelled

as diffuse or specular dominant and restrict consideration to

diffuse shading. In practice, we deal with specular pixels

in the same way as [24] and simply assume that they point

in the direction of the halfway vector between s and v. For

the diffuse pixels, we therefore assume that light is reflected

according to the Lambert’s law. Hence, the unpolarised in-

tensity is related to the surface normal by:

iun(x) = γ(x) cos(θi) = γ(x)n(x) · s, (11)

where γ(x) is the albedo. Writing n(x) in terms of the

gradient of z as reported in (1), (11) can be rewritten as

follows:

iun(x) = γ(x)
−∇z(x) · s̃+ s3
√

1 + |∇z(x)|2
, (12)

with s̃ = (s1, s2). This is a non-linear equation, but we

will see in Sec. 3.4 and 3.5 how it is possible to remove the

non-linearity by using the ratios technique.

3.3. Phase angle constraint

An additional constraint comes from the phase angle,

which determines the azimuth angle of the surface normal

α(x) ∈ [0, 2π] up to a 180◦ ambiguity. This constraint can

be rewritten as a collinearity condition [24], that is satisfied

by either of the two possible azimuth angles implied by the

phase angle measurement. Specifically, for diffuse pixels

we require the projection of the surface normal into the x-y
plane, [nx ny], and a vector in the image plane pointing in

the phase angle direction, [sin(φ) cos(φ)], to be collinear.

This corresponds to requiring

n(x) · [cos(φ(x)) − sin(φ(x)) 0]T = 0. (13)

In terms of the surface gradient, using (1), it is equivalent to

(− cosφ, sinφ) · ∇z = 0. (14)

A similar expression can be obtained for specular pixels,

substituting in the π
2 -shifted phase angles. The advantage

of doing this will become clear in Sec. 4.2.

3.4. Degree of polarisation ratio constraint

Combining the two constraints illustrated in Sec. 3.1 and

3.2, we can arrive at a linear equation, that we refer to as

the DOP ratio constraint. Recall that cos(θ) = n(x) ·v and

that we can express n in terms of the gradient of z by using

(1), then isolating the non-linear term in (10) we obtain

√

1 + |∇z(x)|2 =
−∇z(x) · ṽ + v3

f(ρd(x), η)
, (15)

where ṽ = (v1, v2). On the other hand, considering the

shading information contained in (12), and again isolating

the non-linearity we arrive at the following

√

1 + |∇z(x)|2 = γ(x)
−∇z(x) · s̃+ s3

iun(x)
. (16)

Note that we are supposing s 6= v, and iun(x) 6= 0,

f(ρd(x), η) 6= 0. Inspecting Eqs. (15) and (16) we obtain

−∇z(x) · ṽ + v3
f(ρd(x), η)

= γ(x)
−∇z(x) · s̃+ s3

iun(x)
. (17)
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We thus arrive at the following partial differential equation

(PDE):

b(x) · ∇z(x) = h(x), (18)

where

b(x) := b(f,iun) = iun(x)ṽ − γ(x)f(ρd(x), η) s̃, (19)

and

h(x) := h(f,iun) = iun(x)v3 − γ(x)f(ρd(x), η) s3. (20)

3.5. Intensity ratio constraint

Finally, we construct an intensity ratio constraint by con-

sidering two unpolarised images, iun,1, iun,2, taken from two

different light source directions, s, t. We construct our con-

straint equation by applying (11) twice, once for each light

source. We can remove the non-linearity as before and take

a ratio, arriving at the following equation:

iun,2(−∇z(x) · s̃+ s3) = iun,1(−∇z(x) · t̃+ t3). (21)

The above equation is independent of albedo, light source

intensity and non-linear normalisation term. Again as be-

fore, we can rewrite (21) as a PDE in the form of (18) with

b(x) := b(iun,1,iun,2) = iun,2(x)s̃− iun,1(x) t̃, (22)

where t̃ = (t1, t2), and

h(x) := h(iun,1,iun,2) = iun,2(x)s3 − iun,1(x) t3. (23)

4. A unified PDE formulation

Commencing from the constraints introduced in Sec. 3,

in this section we show how to solve several different prob-

lems in photo-polarimetric shape estimation. The common

feature is that these are all linear in the unknown height, and

are expressed in a unified formulation in terms of a system

of PDEs in the same general form:

B(x)∇z(x) = h(x), (24)

where B : Ω̄ → R
J×2, h : Ω̄ → R

J×1, denoting by Ω
the reconstruction domain and being J = 2, 3 or 4 depend-

ing on the cases. (24) is a compact and general equation,

suitable for describing several cases in a unified differential

formulation that solves directly for surface height.

Different combinations of the three constraints described

in Sec. 3 that are linear in the surface gradient can be com-

bined in the formulation of (24). Each corresponds to dif-

ferent assumptions and have different pros and cons. We

explore three variants and show that [24] is a special case

of our formulation. We summarise the alternative formula-

tions in Tab. 1.

Phase DOP Intensity

Method angle ratio ratio

[24] X X

Proposed 1 X X

Proposed 2 X X

Proposed 3 X X X

Table 1. Summary of the different formulations

4.1. Single light and polarisation formulation

This case has been studied in [24]. It uses a single po-

larisation image, requires known illumination (though [24]

show how this can be estimated if unknown) and assumes

that albedo is known or uniform. This last assumption is

quite restrictive, since it can only be applied to objects with

homogeneous surfaces. With just a single illumination con-

dition, only the phase angle and DOP ratio constraints are

available. This thus becomes a special case of our general

unified formulation (24), where B and h are defined as

B =

[

b
(f,iun)
1 b

(f,iun)
2

− cosφ sinφ

]

, h = [h(f,iun), 0]T , (25)

with b(f,iun) and h(f,iun) defined by (19) and (20), with uni-

form γ(x) and v = [0, 0, 1]T .

4.2. Proposed 1: Albedo invariant formulation

Our first proposed method uses the phase angle con-
straint (14) and two unpolarised images, taken from two
different light source directions, obtained through (12) and
combined as in (21). In this case the problem studied is
described by the system of PDEs (24) with

B(x) =

[

b
(iun,1,iun,2)

1 b
(iun,1,iun,2)

2

− cosφ sinφ

]

,h(x) =

[

h(iun,1,iun,2)

0

]

,

(26)

where b(iun,1,iun,2) and h(iun,1,iun,2) defined as in (22) and

(23). The phase angle does not depend on albedo and the

intensity ratio constraint is invariant to albedo. As a re-

sult, this formulation is particularly powerful because it al-

lows albedo invariant height estimation. Moreover, the light

source directions in the two images can be estimated (again,

in an albedo invariant manner) using the method in Sec. 6.

Once surface height has been estimated, we can compute

the surface normal at each pixel and it is then straightfor-

ward to estimate an albedo map using (11). Where we have

two diffuse observations, we can compute albedo from two

equations of the form of (11) in a least squares sense. In

real data, where we have specular pixel labels, we use only

the diffuse observations at each pixel. To avoid artifacts at

the boundary of specular regions, we introduce a gradient

consistency term into the albedo estimation. We encourage

the gradient of the albedo map to match the gradients of the

intensity image for diffuse pixels.
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4.3. Proposed 2: Phase invariant formulation

Our second proposed method uses only the DOP ratio

and the intensity ratio constraints. This means that phase

angle estimates are not used. The advantage of this is

that phase angles are subject to a shift of π
2 at specular

reflections when compared to diffuse reflections. So, the

phase angle constraint relies upon having accurate per-pixel

specularity labels, which classify reflections as either dom-

inantly specular or diffuse (or alternatively use a mixed po-

larisation model [25] with a four way ambiguity). In this

case we need a) two unpolarised intensity images, taken

with two different light source directions, s and t, obtained

through (12), b) polarisation information from the function

f(ρ, η) and c) knowledge of the albedo map. We need

s, t,v non-coplanar in order to have the matrix field B not

singular. Note that the function f , obtained from polariza-

tion information (as in (10)), is the same for the two re-

quired images. The reason for this is that it does not depend

on the light source directions but only on the viewer direc-

tion v which does not change. This formulation can be de-

duced starting from (21) and (17), arriving at a PDE system

as in (24) with

B = [b(f,iun,1),b(f,iun,2),b(iun,1,iun,2)]T , (27)

and h = [h(f,iun,1), h(f,iun,2), h(iun,1,iun,2)]T , using (19), (20),

(22), (23) to define the vector fields b and the scalar fields

h that appear in B and h.

4.4. Proposed 3: Most constrained formulation

Our final proposed method combines all of the previous

constraints, leading to a problem of the form (24) with

B=











b
(f,iun,1)
1 b

(f,iun,1)
2

b
(f,iun,2)
1 b

(f,iun,2)
2

b
(iun,1,iun,2)
1 b

(iun,1,iun,2)
2

− cosφ sinφ











, h =









h(f,iun,1)

h(f,iun,2)

h(iun,1,iun,2)

0









.

(28)

This formulation uses the most information and so is poten-

tially the most robust method. However, it requires known

albedo in order to use the DOP ratio constraint. Neverthe-

less, it is possible to first apply proposed method 1, esti-

mate the albedo and then re-estimate surface height using

the maximally constrained formulation and the estimated

albedo map. In fact, the best performance is obtained by it-

erating these two steps, alternately using the surface height

estimate to compute albedo and then using the updated

albedo to re-compute surface height.

4.5. Extension to colour images

We now consider how to extend the above systems of

equations when colour information is available. If a sur-

face is lit by a coloured point source, then each pixel pro-

vides three equations of the form in (11). In principle, this

provides no more information than a grayscale observation

since the surface normal and light source direction are fixed

across colour channels. However, in the presence of noise

using all three observations improves robustness. In partic-

ular, if the albedo value at a pixel is lower in one colour

channel, the signal to noise ratio will be worse in that chan-

nel than the others. For a multicoloured object, it is impos-

sible to choose a single colour channel that provides the best

signal to noise ratio across the whole object. For this rea-

son, we propose to use information from all colour channels

where available.

We already exploit colour information in the estimation

of the polarisation image in Sec. 2.2. Hence, the phase angle

estimates have already benefited from the improved robust-

ness. Both the DOP ratio and intensity ratio constraints can

also exploit colour information by repeating each constraint

three times, once for each colour channel. In the case of the

intensity ratio, the colour albedo once again cancels if ratios

are taken between the same colour channels under different

light source directions.

5. Height estimation via linear least squares

We have seen that each of the variants illustrated in the

previous section, each with different advantages, can be

written as a PDE system (24). Denoting by M the num-

ber of pixels, we discretise the gradient in (24) via finite

differences, arriving at the following linear system in z

Az = h̄, (29)

where A = B̄G, with G ∈ R
2M×M the matrix of finite dif-

ference gradients. B̄ ∈ R
JM×2M is the discrete per-pixel

version of the matrix B(x), hence A ∈ R
JM×M , where J

depends on the various proposed cases reported in Sec. 4

(J = 2 for (25) and (26), J = 3 for (27) and J = 4 for

(28)). h̄ is the discrete per-pixel version of the function

h(x), h̄ ∈ R
JM×1, and z ∈ R

M×1 the vector of the un-

known height values. The resulting discrete system is large,

since we have JM linear equations in M unknowns, but

sparse, since A has few non-zero values for each row, and

has as unknowns the height values. The per-pixel matrix A

is a full-rank matrix, for each choice of B̄ that comes from

the proposed formulations in Sec. 4, under the different as-

sumptions specified for each case. The per-pixel matrix A

related to [24] is full-rank except in one case: when the

first two components of the light vector s are non-zero and

s1 = −s2 and it happens that the phase angle is φ = π/4
at least in one pixel. In that case, the matrix has a rank-

deficiency (though in practice φ assuming a value of exactly

π/4, up to numerical tolerance, is unlikely).

We want to find a solution of (29) in the least-squares

sense, i.e. find a vector z ∈ R
M such that

||Az− h̄||22 ≤ ||Ay − h̄||22, ∀y ∈ R
M . (30)
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Considering the associate system of normal equations

AT (Az− h̄) = 0, (31)

it is well-known that if there exists z ∈ R
M that satisfies

(31), then z is also solution of the least-squares problem,

i.e. z satisfies (30). Since A is a full-rank matrix, then the

matrix ATA is not singular, hence there exists a unique so-

lution z of (31) for each data term h̄. Since neither B nor

h depend on z in (24), the solution can be computed only

up to an additive constant (which is consistent with the or-

thographic projection assumption). To resolve the unknown

constant, knowledge of z at just one pixel is sufficient. In

our implementation, we remove the height of one pixel from

the variables and substitute its zero value elsewhere.

6. Two source lighting estimation

Our three proposed shape estimation methods require

knowledge of the two light source directions. Previously,

Smith et al. [24] showed that a single polarisation image

can be used to estimate illumination conditions up to a bi-

nary ambiguity. However, to do so, they assumed that the

albedo was known or uniform, and they also worked only

with a single colour channel. In a two source setting, we

show that it is possible to estimate both light source direc-

tions simultaneously, and do so in an albedo invariant man-

ner. Moreover, we can exploit information across different

colour channels to improve robustness to noise. Hence, our

three methods can be used in an uncalibrated setting.

The intensity ratio (21) provides one equation per pixel

relating unpolarised intensities, surface gradient and light

source directions. Given two polarisation images with dif-

ferent light directions, we have one such equation per pixel

and six unknowns in total. We assume that ambiguous sur-

face gradient estimates are known from ρ and φ, and then

use (21) to estimate the light source directions.
The intensity ratio (21) is homogeneous in s and t and

so has a trivial solution s = t = [0 0 0]T . If we assume that
the intensity of the light source remains constant in each
colour channel across the two images, then this intensity di-
vides out when taking an intensity ratio and so the length of
the light source vectors is arbitrary. We therefore constrain
them to unit length (avoiding the trivial solution), and rep-
resent them by spherical coordinates (θs, αs) and (θt, αt),
such that [s1, s2, s3] = [cosαs sin θs, sinαs sin θs, cos θs]
and [t1, t2, t3] = [cosαt sin θt, sinαt sin θt, cos θt]. This
reduces the number of unknowns to four. We can now
write the residual at each pixel given an estimate of the light
source directions. There are two possible residuals, depend-
ing on which of the two ambiguous polarisation normals we
use. From the phase angle and the zenith angle estimated
from the degree of polarisation using (10), we have two
possible surface normal directions at each pixel and there-
fore two possible gradients: zx(x) ≈ ± cosφ(x) tan θ(x),
zy(x) ≈ ± sinφ(x) tan θ(x). Hence, the residuals at pixel

xj in channel c are given by either:

rj,c(θs, αs, θt, αt) =i
c
un,1(xj)(−zx(xj)t1 − zy(xj)t2 + t3)−

i
c
un,2(xj)(−zx(xj)s1 − zy(xj)s2 + s3),

or

qj,c(θs, αs, θt, αt) =i
c
un,1(xj)(zx(xj)t1 + zy(xj)t2 + t3)−

i
c
un,2(xj)(zx(xj)s1 + zy(xj)s2 + s3).

We can now write a minimisation problem for light source

direction estimation by summing the minimum of the two

residuals over all pixels and colour channels:

min
θs,αs,θt,αt

∑

j,c

min[r2j,c(θs, αs, θt, αt), q
2
j,c(θs, αs, θt, αt)].

The minimum of two convex functions is not itself con-

vex and so this optimisation is non-convex. However, we

find that, even with a random initialisation, it almost always

converges to the global minimum. As in [24], the solu-

tion is still subject to a binary ambiguity, in that if (s, t)
is a solution then (Ts,Tt) is also a solution (with T =
diag([−1,−1, 1])), corresponding to the convex/concave

ambiguity. We resolve this simply by choosing the maxi-

mal solution when surface height is later recovered.

7. Experiments

We begin by using synthetic data generated from the

Mozart height map (Fig. 3). We differentiate to obtain sur-

face normals and compute unpolarised intensities by ren-

dering the surface using light sources s = [1, 0, 5]T and

t = [−1,−2, 7]T according to (11). We experiment with

both uniform albedo and varying albedo for which we use

a checkerboard pattern. We simulate the effect of polarisa-

tion according to (2), varying the polariser angle between

0◦ and 180◦ in 10◦ increments. Next, we corrupt this data

by adding Gaussian noise with zero mean and standard de-

viation σ, saturate and quantise to 8 bits. This noisy data

provides the input to our reconstruction. First, we estimate a

polarisation image using the method in Sec. 2.2, then apply

each of the proposed methods or the state-of-the-art com-

parison method [24] to recover the height map.

In Tab. 2 we report Root-Mean-Square (RMS) error in

the surface height (in pixels) and mean angular error (in de-

grees) in the surface normals obtained by differentiating the

estimated surface height. In Fig. 3 we show a sample of

qualitative results from this experiment. In all cases, more

than one of our proposed methods outperform [24]. When

albedo is uniform, our phase invariant (Prop. 2) or maxi-

mally constrained solution (Prop. 3) provides the best re-

sults. When albedo is non-uniform, the albedo invariant

method (Prop. 1) provides much better performance. Al-

though the combination of the albedo invariant method fol-

lowed by the maximally constrained method (Prop. 1+3)
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Figure 2. Qualitative results on real objects with varying albedo obtained by using Prop. 1+3 and comparison to [24] (zoom for detail).

Input Input Ground

(uniform albedo) (varying albedo) truth height

[24] Prop. 1 Prop. 2 Prop. 3 Prop. 1+3

U
n

if
o
rm

a
lb

ed
o

V
a
ry

in
g

a
lb

ed
o

Figure 3. Qualitative results on synthetic data.

does not give quantitatively the best performance, we find

that on real world data containing more complex noise and

specular reflections, this approach is most robust.

In Fig. 2 we show qualitative results on two real objects

with spatially varying albedo. From left to right we show:

an image from the input sequence; the surface normals of

the estimated height map (inset sphere shows how orienta-

tion is visualised as colour); the estimated albedo map; a

re-rendering of the estimated surface and albedo map under

novel lighting with Blinn-Phong reflectance [5]; a rotated

view of the estimated surface; and, for comparison, recon-

structions of the same surfaces using [24]. The results of

[24] are highly distorted in the presence of varying albedo.

Our approach avoids transfer of albedo details into the re-

covered shape, leading to convincing relighting results.

8. Conclusions

In this paper we have introduced a unifying formulation

for recovering height from photo-polarimetric data and pro-

posed a variety of methods that use different combinations

of linear constraints. We proposed a more robust way to

estimate a polarisation image from multichannel data and

σ = 0% σ = 0.5% σ = 2%

Setting Method
Height Normal Height Normal Height Normal

(pix) (deg) (pix) (deg) (pix) (deg)

Uniform

albedo,

known

lighting

[24] 1.12 2.85 1.68 4.48 5.06 11.28

Prop. 1 1.78 2.52 1.94 3.30 3.49 7.22

Prop. 2 0.23 1.45 0.70 1.70 6.50 5.33

Prop. 3 0.42 1.03 0.52 1.74 1.53 4.73

Prop. 1+3 3.37 3.22 3.62 4.03 5.82 9.15

Uniform

albedo,

estimated

lighting

[24] 1.10 2.84 1.55 4.36 4.94 11.16

Prop. 1 1.77 2.51 1.88 3.23 3.04 6.86

Prop. 2 0.23 1.45 0.71 1.71 5.87 5.68

Prop. 3 0.41 1.02 0.49 1.74 1.47 4.88

Prop. 1+3 3.36 3.21 3.57 3.97 5.73 8.93

Unknown

albedo,

known

lighting

[24] 22.50 28.03 21.63 27.76 20.76 26.74

Prop. 1 2.74 4.18 3.28 5.76 6.65 13.11

Prop. 2 141.19 59.69 140.04 59.49 131.16 57.69

Prop. 3 18.62 16.76 18.58 16.85 17.33 16.82

Prop. 1+3 5.22 9.59 5.80 11.26 7.56 16.50

Unknown

albedo,

estimated

lighting

[24] 7.78 18.10 8.20 18.82 9.93 22.68

Prop. 1 2.73 4.17 3.19 5.62 6.53 12.98

Prop. 2 140.56 59.58 133.76 58.31 91.24 47.88

Prop. 3 18.66 16.79 19.02 17.15 20.34 18.76

Prop. 1+3 5.21 9.57 5.75 11.09 8.84 19.56

Table 2. Height and surface normal errors on synthetic data.

showed how to estimate lighting from two source photo-

polarimetric images. Together, our methods provide un-

calibrated, albedo invariant shape estimation with only two

light sources. Since our unified differential formulation

does not depend on a specific camera setup or a chosen re-

flectance model, the most obvious target for future work is

to move to a perspective projection, considering more com-

plex reflectance models, exploiting better the information

available in specular reflection and polarisation. In addition,

since our methods directly estimate surface height, it would

be straightforward to incorporate positional constraints, for

example provided by binocular stereo.
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