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Figure 1. We present an approach to approximating image processing operators. This figure shows the results for five operators: L0

gradient minimization, multiscale tone manipulation, photographic style transfer, nonlocal dehazing, and pencil drawing. All operators are
approximated by the same model, with the same set of parameters and the same flow of computation.

Abstract

We present an approach to accelerating a wide variety
of image processing operators. Our approach uses a fully-
convolutional network that is trained on input-output pairs
that demonstrate the operator’s action. After training, the
original operator need not be run at all. The trained net-
work operates at full resolution and runs in constant time.
We investigate the effect of network architecture on approxi-
mation accuracy, runtime, and memory footprint, and iden-
tify a specific architecture that balances these considera-
tions. We evaluate the presented approach on ten advanced
image processing operators, including multiple variational
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models, multiscale tone and detail manipulation, photo-
graphic style transfer, nonlocal dehazing, and nonphoto-
realistic stylization. All operators are approximated by
the same model. Experiments demonstrate that the pre-
sented approach is significantly more accurate than prior
approximation schemes. It increases approximation accu-
racy as measured by PSNR across the evaluated operators
by 8.5 dB on the MIT-Adobe dataset (from 27.5 to 36 dB)
and reduces DSSIM by a multiplicative factor of 3 com-
pared to the most accurate prior approximation scheme,
while being the fastest. We show that our models general-
ize across datasets and across resolutions, and investigate
a number of extensions of the presented approach.
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1. Introduction
Research in image processing has yielded a variety of

advanced operators that produce visually striking effects.
Techniques developed in the last decade can dramatically
enhance detail [24, 69, 26, 28, 60], transform the image
by applying a master photographer’s style [7, 5], smooth
the image for the purpose of abstraction [73, 76, 79], and
eliminate the effects of atmospheric scattering [25, 35, 27,
9]. This is accomplished by a variety of algorithmic ap-
proaches, including variational methods, gradient-domain
processing, high-dimensional filtering, and manipulation of
multiscale representations.

The computational demands and running times of ex-
isting operators vary greatly. Some operators, such as bi-
lateral filtering, have benefitted from more than a decade
of concerted investment in their acceleration. Others still
take seconds or even minutes for high-resolution images.
While most existing techniques can be accelerated by ex-
perts given sufficient research and development time, such
acceleration schemes often require significant expertise and
may not generalize across operators.

One general approach to accelerating a broad range of
image processing operators is well-known: downsample the
image, execute the operator at low resolution, and upsam-
ple [45, 34, 14]. This approach suffers from two signifi-
cant drawbacks. First, the original operator must still be
evaluated on a lower-resolution image. This can be a se-
vere handicap because some operators are slow and exist-
ing implementations cannot be executed at interactive rates
even at low resolution. Second, since the operator is never
evaluated at the original resolution, its effects on the high-
frequency content of the image may not be modeled prop-
erly. This can limit the accuracy of the approximation.

In this paper, we investigate an alternative approach
to accelerating image processing operators. Like the
downsample-evaluate-upsample approach, the presented
method approximates the original operator. Unlike the
downsampling approach, the method operates on full-
resolution images, is trained end-to-end to maximize accu-
racy, and does not require running the original operator at
all. To approximate the operator, we use a convolutional
network that is trained on input-output pairs that demon-
strate the action of the operator. After training, the network
is used in place of the original operator, which need not be
run at all.

We investigate the effects of different network architec-
tures in terms of three properties that are important for ac-
celerating image processing operators: approximation ac-
curacy, runtime, and compactness. We identify a specific
architecture that satisfies all three criteria and show that
it approximates a wide variety of standard image process-
ing operators extremely accurately. We evaluate the pre-
sented approach on ten advanced image processing opera-

tors, including multiple forms of variational image smooth-
ing, adaptive detail enhancement, photographic style trans-
fer, and dehazing. All operators are approximated using an
identical architecture with no hyperparameter tuning. Five
of the trained approximators are demonstrated in Figure 1,
which shows their action on images from the MIT-Adobe
5K test set (not seen during training).

For all evaluated operators, the presented approximation
scheme outperforms the downsampling approach. For ex-
ample, the PSNR of our approximators across the ten con-
sidered operators on the MIT-Adobe test set is 36 dB, com-
pared to 25 dB for the high-accuracy variant of bilateral
guided upsampling [14]. At the same time, our approxima-
tors are faster than the fastest variant of that scheme. Our
approximators run in constant time, independent of the run-
time of the original operator.

We conduct extensive experiments that demonstrate that
our simple approach outperforms a large number of recent
and contemporary baselines, and that trained approximators
generalize across datasets and to image resolutions not seen
during training. We also investigate a number of extensions
and show that the presented approach can be used to cre-
ate parameterized networks that expose parameters that can
be used to interactively control the effect of the image pro-
cessing operator at test time; to train a single network that
can emulate many diverse image processing operators and
combine their effects; and to process video.

2. Related Work
Many schemes have been developed for accelerating im-

age processing operators. The bilateral filter in particu-
lar has benefitted from long-term investment in its accel-
eration [21, 72, 15, 59, 2, 1, 29, 8]. Another family of
dedicated acceleration schemes addresses the median filter
and its variants [72, 61, 54, 80]. Other work has exam-
ined the acceleration of variational methods [6, 62, 13, 17],
gradient-domain techniques [46], convolutions with large
spatial support [23], and local Laplacian filters [5]. (Deep
mathematical connections between these families of opera-
tors exist [57].) While many of these schemes successfully
accelerate their intended families of operators, they do not
have the generality we seek.

A general approach to accelerating image processing op-
erators is to downsample the image, evaluate the operator at
low resolution, and upsample [45, 34, 14]. This approach
accelerates a broad range of operators by approximating
them. It is largely agnostic to the operator but requires that
the operator avoid spatial transformation so that the original
image can be used to guide the upsampling. (E.g., no spa-
tial warping such as perspective correction.) Our method
shares a number of characteristics with the downsampling
approach: it targets a broad range of operators, uses an ap-
proximation, and assumes that the spatial layout of the im-



age is preserved. However, our approximation has a much
richer parameterization that can model the operator’s effect
on the high-frequency content of the image. Once trained,
the approximator does not need to execute the original op-
erator at all. We will show that our method is more accurate
than the downsampling approach on a wide range of tasks,
while being faster.

Other work on accelerating image processing consid-
ers the system infrastructure and programming language.
Given a powerful cloud backend and a bandwidth-limited
network connection, high-resolution processing can be of-
floaded to the cloud [32]. Domain-specific languages can be
used to schedule image processing pipelines to better utilize
available hardware resources [63, 36]. Our work is comple-
mentary and provides an approach to approximating a wide
variety of operators with a uniform parameterization. Such
uniform parameterization and predictable flow of compu-
tation can assist further acceleration using dedicated hard-
ware.

The closest works to ours are due to Xu et al. [75], Liu
et al. [51], and Yan et al. [77]. We review each in turn. Xu
et al. [75] used deep networks to approximate a variety of
edge-preserving filters. Our work also uses deep networks,
but differs in key technical decisions, leading to substan-
tially broader scope and better performance. Specifically,
the approach of Xu et al. operates in the gradient domain
and requires reconstructing the output image by integrating
the gradient field produced by the network. Since their net-
works produce non-integrable gradient fields, the authors
had to constrain the final image reconstruction by introduc-
ing an additional data term that forces the output to be sim-
ilar to the input. For this and other reasons, the approach
of Xu et al. only applies to edge-preserving smoothing,
has limited approximation accuracy, exhibits high running
times (seconds for 1 MP images), and requires operator-
specific hyperparameter tuning. In comparison, we train an
approximator end-to-end, pixels to pixels, using a parame-
terization that is deeper and more context-aware while being
more compact. We will demonstrate experimentally that the
presented approach yields higher accuracy and lower run-
times while fitting a much bigger family of operators.

Liu et al. [51] combined a convolutional network and a
set of recurrent networks to approximate a variety of im-
age filters. This approach is quite flexible and outperforms
the approach of Xu et al. on some operators, but does not
achieve the approximation accuracy and speed we seek. We
will show that a single convolutional network can achieve
higher accuracy, while being faster and more compact.

Yan et al. [77] also applied deep networks to image ad-
justment. This work is also related to ours in its idea of
approximating image transformations by deep networks.
However, our work differs substantially in scope, techni-
cal approach, and results. Yan et al. use a fully-connected

network that operates on each pixel separately. The net-
work itself has a receptive field of a single pixel. Contex-
tual information is only provided by hand-crafted input fea-
tures, instead of being collected adaptively by the network.
This places a substantial burden on manual feature design.
In contrast, our approximator is a single convolutional net-
work that is trained end-to-end, aggregates spatial context
from the image as needed, and does not rely on extraneous
modules or preprocessing. This leads to much greater gen-
erality, higher accuracy, and faster runtimes.

Deep networks have been used for denoising [39, 11,
3], super-resolution [10, 19, 40, 42, 41, 48, 50], de-
blurring [74], restoration of images corrupted by dirt or
rain [22], example-based non-photorealistic stylization [30,
70, 40], joint image filtering [49], dehazing [64], and demo-
saicking [31]. None of the approaches described in these
works were intended as broadly applicable replacements
for the standard downsample-evaluate-upsample approach
to image processing acceleration. Indeed, our experiments
have shown that many approaches lack in either speed, ac-
curacy, or compactness when applied across a broad range
of operators. These criteria will be explored further in the
next section.

3. Method

3.1. Preliminaries

Let I be an image, represented in the RGB color space.
Let f be an operator that transforms the content of an im-
age without modifying its dimensions: that is, I and f(I)
have the same resolution. We will consider a variety of op-
erators f that use a broad range of algorithmic techniques.
Our goal is to approximate f with another operator f̂ , such
that f̂(I) ≈ f(I) for all images I. Note that the resolution
of I is not restricted: both the operator f and its approxi-
mation f̂ are assumed to operate on variable-resolution im-
ages. Furthermore, we will consider many operators {fi}
but require that our corresponding approximations {f̂i} all
share the same parameterization: same set of parameters,
same flow of computation. The approximations will differ
only in their parameters, which will be fit for each operator
during training.

Our goal is to find a broadly applicable approach to ac-
celerating image processing operators. We have identified
three desirable criteria for such an approach. Accuracy: We
seek an approach that provides high approximation accu-
racy across a broad range of popular image processing oper-
ators. Speed: The approach must be fast, ideally achieving
interactive rates on HD images. Compactness: We seek an
approach that can potentially be deployed within the con-
straints of mobile devices. An ideal network would have
a very compact parameterization that can fit into on-chip
SRAM, and a small memory footprint [33].



Our basic approach is to approximate the operator using
a convolutional network [47]. The network must operate on
variable-resolution images and must produce an output im-
age at the same resolution as the input. This is known as
dense prediction [52]. In principle, any fully-convolutional
network architecture can be used for this purpose. Specifi-
cally, any network that has been used for a pixelwise clas-
sification problem such as semantic segmentation can in-
stead be trained with a regression loss to produce contin-
uous color rather than a discrete label per pixel. However,
not all network architectures will yield high accuracy in this
regime and most are not compact.

We have experimented with a large number of network
architectures derived from prior work in high-level vision,
specifically on semantic segmentation. We found that when
some of these high-level networks are applied to low-level
image processing problems, they generally outperform ded-
icated architectures previously designed for these image
processing problems. The key advantage of architectures
designed for high-level vision is their large receptive field.
Many image processing operators are based on global op-
timization over the entire image, analysis of global image
properties, or nonlocal information aggregation. To model
such operators faithfully, the network must collect data from
spatially distributed locations, aggregating information at
multiple scales that are ultimately large enough to provide
a global view of the image.

In Section 3.2 we describe an architecture that strikes
the best balance between the different desiderata according
to our experiments. Three alternative fully-convolutional
architectures are described in the supplement.

3.2. Context aggregation networks

Our primary architecture is the multi-scale context ag-
gregation network (CAN), developed in the context of se-
mantic image analysis [78]. Its intermediate representa-
tions and its output have the same resolution as the input.
Contextual information is gradually aggregated at increas-
ingly larger scales, such that the computation of each output
pixel takes into account all input pixels within a window of
size exponential in the network’s depth. This accomplishes
global information aggregation for high-resolution images
with a very compact parameterization. We will see that this
architecture fulfills all of the desiderata outlined above.

We now describe the parameterization in detail. The data
is laid out over multiple consecutive layers: {L0, . . . ,Ld}.
The first and last layers L0,Ld have dimensionality
m×n×3. These represent the input and output images. The
resolution m×n varies and is not given in advance.

Each intermediate layer Ls (1 ≤ s ≤ d− 1) has dimen-
sionality m×n×w, where w is the width of (i.e., the num-
ber of feature maps in) each layer. The content of interme-
diate layer Ls is computed from the content of the previous

layer Ls−1 as follows:

Ls
i = Φ


Ψs


bsi +

∑

j

Ls−1
j ∗rs Ks

i,j




 . (1)

Here Ls
i is the ith feature map of layer Ls, Ls−1

j is the jth

feature map of layer Ls−1, bsi is a scalar bias, and Ks
i,j is a

3×3 convolution kernel. The operator ∗rs is a dilated convo-
lution with dilation rs. The dilated convolution operator is
the means by which the network aggregates long-range con-
textual information without losing resolution. Specifically,
for image coordinates x:

(
Ls−1
j ∗rs Ks

i,j

)
(x) =

∑

a+rsb=x

Ls−1
j (a)Ks

i,j(b). (2)

The effect of dilation is that the filter is tapped not at
adjacent locations in the feature map, but at locations sep-
arated by the factor rs. The dilation is increased exponen-
tially with depth: rs = 2s−1 for 1 ≤ s ≤ d− 2. For Ld−1,
we do not use dilation. For the output layer Ld we use a lin-
ear transformation (1×1 convolution with no nonlinearity)
that projects the final layer into the RGB color space.

For the pointwise nonlinearity Φ, we use the leaky recti-
fied linear unit (LReLU) [55]: Φ(x) = max(αx, x), where
α = 0.2. Ψs is an adaptive normalization function, de-
scribed in Section 3.3. Additional specification of the CAN
architecture is provided in the supplement.

The network aggregates global context via full-
resolution intermediate layers. It has a large receptive field
while being extremely compact. It also has a small memory
footprint during the forward pass. Since no skip connec-
tions across non-consecutive layers are employed, only two
layers need to be kept in memory at any one time. Since
the layers are all structurally identical, two fixed memory
buffers are sufficient, with data flowing back and forth be-
tween them.

3.3. Adaptive normalization

We have found that using batch normalization improves
approximation accuracy on challenging image processing
operators such as style transfer and pencil drawing, but de-
grades performance on other image processing operators.
We thus employ adaptive normalization that combines batch
normalization and the identity mapping:

Ψs(x) = λsx+ µsBN(x), (3)

where λs, µs ∈ R are learned scalar weights and BN is the
batch normalization operator [37]. The weights {λs, µs}
are learned by backpropagation alongside all other parame-
ters of the network [67]. Learning these weights allows the
model to adapt to the characteristics of the approximated
operator, adjusting the strengths of the identity branch and
the batch normalization branch as needed.



3.4. Training

The network is trained on a set of input-output pairs that
contain images before and after the application of the orig-
inal operator: D = {Ii, f(Ii)}. The parameters of the net-
work are the kernel weights K = {Ks

i,j}s,i,j and the biases
B = {bsi}s,i. These parameters are optimized to fit the ac-
tion of the operator f across all images in the training set.
We train with an image-space regression loss:

ℓ(K,B) =
∑

i

1

Ni

∥∥f̂(Ii;K,B)− f(Ii)
∥∥2, (4)

where Ni is the number of pixels in image Ii. This loss
minimizes the mean-squared error (MSE) in the RGB color
space across the training set. Although MSE is known to
have limited correlation with perceptual image fidelity [71],
experiments will demonstrate that training an approximator
to minimize MSE will also yield high accuracy in terms of
other measures such as PSNR and SSIM.

We have also experimented with more sophisticated
losses, including perceptual losses that match feature activa-
tions in a visual perception network [10, 20, 40, 48, 16] and
adversarial training [20, 38, 48]. We found that the higher-
level feature matching losses did not increase approxima-
tion accuracy in our tasks; the image processing operators
we target are not semantic in nature and can be approxi-
mated well by directly fitting the operator’s action on the
photographic content of the image. Adversarial training is
known to be unstable [4, 56, 16] and we found that it also
did not increase the already excellent results that we were
able to obtain with an appropriate network architecture and
a direct image-space loss.

Creating the training set D only requires running the
original operator f on a set of images. Training can thus
be conducted on extremely large datasets that can be gen-
erated automatically without human intervention, although
we found that training on a few thousand images already
produces approximators that generalize well.

In order to expose the training to the effects of the op-
erator f on images of different resolutions, we use images
of varying resolution for training. Specifically, given a set
of high-resolution images, each is automatically resized to
a random resolution between 320p and 1440p (e.g., 517p)
while preserving its aspect ratio. These resized images are
used for training. Training uses the Adam solver [43] and
proceeds for 500K iterations (one randomly sampled image
per iteration). This takes roughly one day on our test work-
station.

4. Experiments

Experimental setup. We evaluate the presented ap-
proach on ten image processing operators: Rudin-Osher-
Fatemi [66], TV-L1 image restoration [58], L0 smooth-

ing [73], relative total variation [76], image enhancement
by multiscale tone manipulation [24], multiscale detail ma-
nipulation based on local Laplacian filtering [5, 60], pho-
tographic style transfer from a reference image [5], dark-
channel dehazing [35], nonlocal dehazing [9], and pencil
drawing [53]. The operators, their effect on images, and our
reference implementations are described in the supplement.

We use two image processing datasets: MIT-Adobe 5K
and RAISE [12, 18]. MIT-Adobe 5K contains 5,000 high-
resolution photographs covering a broad range of scenes,
subjects, and lighting conditions. We use the default
2.5K/2.5K training/test split. The RAISE dataset contains
8,156 high-resolution RAW images captured by four pho-
tographers over a period of three years, depicting different
scenes and moments across Europe. We use 2.5K randomly
sampled images for training and 1K other randomly sam-
pled images for testing.

We ran all ten operators on all images from the training
and test sets of both datasets. For each operator, the input-
output pairs from the MIT-Adobe training set were used for
training. The same models and training procedures were
used for all operators. The only difference between the ten
approximators is in the output images that were provided
in the training set. For each architecture, this procedure
yielded ten identically parameterized models, trained to ap-
proximate the respective operators. These approximators
are used for most of the experiments, which are conducted
on the MIT-Adobe test set.

The same procedure was performed using the RAISE
training set. This yielded models trained to approximate the
same operators on the RAISE dataset. These models will be
used to test cross-dataset generalization.

Main results. Our primary baseline is bilateral guided
upsampling (BGU) [14], the state-of-the-art form of the
downsample-evaluate-upsample scheme for accelerating
image processing operators. There are two variants of the
BGU approach, both with publicly available implementa-
tions. The first uses global optimization and is designed
to approximate the original operator as closely as possible.
The second is an approximation scheme designed to max-
imize speed, which was implemented in Halide [63] with
specific attention to parallelization, vectorization, and data
locality. We will compare to both variants of BGU, referred
to respectively as BGU-opt and BGU-fast. We use the pub-
lic implementations with the default parameters.

We also compare to a large number of baseline ap-
proaches that have used deep networks for related problems.
The closest of these are the deep edge-aware filters of Xu et
al. [75] and the recursive filters of Liu et al. [51]. Beyond
this, we also evaluate the image transformation approach of
Johnson et al. [40], which was developed for style transfer
and superresolution but can be applied more broadly. Fi-
nally, we compare to the contemporaneous work of Isola
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Figure 2. Approximation accuracy on the MIT-Adobe test set. Operators are arranged along the horizontal axis. From 1 to 10: Rudin-
Osher-Fatemi [66], TV-L1 image restoration [58], L0 smoothing [73], relative total variation [76], image enhancement by multiscale
tone manipulation [24], multiscale detail manipulation based on local Laplacian filtering [5, 60], nonlocal dehazing [9], dark-channel
dehazing [35], photographic style transfer from a reference image [5], and pencil drawing [53].

et al. [38], who proposed an approach to “image-to-image
translation” based on adversarial training. The approach of
Isola et al. differs from the other baselines in that it is not
fully-convolutional and is set up to operate at fixed resolu-
tion (256×256). We report results for two versions of this
baseline: one in which the output images are upsampled to
the original resolution by bilinear interpolation, and one in
which the output is upsampled using BGU-opt.

Approximation accuracy achieved by each approach for
each of the ten operators is visualized in Figure 2. All the
numerical results are listed in the supplement. Our default
model is a CAN with adaptive normalization, using d = 9
and w = 24 for the depth and width, respectively. This is
the model referred to as ‘Ours’ in Figure 2 and Table 1. For
each image, the output of each approach is compared to the
output of the original reference operator, and the distance
between the two images is evaluated in terms of PSNR and
SSIM [71]. For each operator, the results are averaged over
the MIT-Adobe test set. We also use a trivial baseline for
calibration, referred to as Input. This trivial baseline simply
uses the input image with no modification and thus eval-
uates the distance between the input image and the output
of the reference operator. The Input baseline shows how
a trivial approximation scheme (doing nothing) would fare
and also provides an indication of how strongly the refer-
ence operator alters the image.

Due to the high computational demands of some of the
reference operators, all images were scaled to 1080p reso-
lution (∼1.75 MP) for this comprehensive experiment. We
will evaluate cross-resolution performance in a subsequent
experiment. Note that a resolution of 1080p had no spe-
cial significance during training: the models were trained
on images with randomly sampled resolution.

Average accuracy and runtime for each approach across
all ten operators is summarized in Table 1. The runtime of

Method MSE PSNR SSIM
Time # of
(ms) param

Reference – – – 9,502 –
Input 2607.9 21.75 0.745 – –
BGU-fast [14] 521.8 24.70 0.827 320 –
BGU-opt [14] 413.5 25.27 0.865 2,378 –
Xu et al. [75] 2347.3 25.45 0.869 5,493 312K
Johnson et al. [40] 215.0 26.89 0.890 203 1,678K
Liu et al. [51] 383.8 27.56 0.879 458 152K
Isola et al. [38] 279.5 25.62 0.754 198 57,184K
Isola et al. [38]+BGU 457.2 23.07 0.805 2,352 57,184K
Ours 59.1 36.04 0.960 190 37K

Table 1. Average accuracy, runtime, and number of parameters
across all ten operators on the MIT-Adobe test set. Runtime is
measured on images at 1080p resolution (∼1.75 MP).

each approach on each specific operator is reported in the
supplement. The CAN parameterization is extremely com-
pact: the network has a total of 37K parameters. It approxi-
mates the reference operators extremely accurately, achiev-
ing SSIM above 0.99 on four of the operators and SSIM
above 0.96 on eight of them. (See the supplement for de-
tailed results on the individual operators.)

Compared to our main baselines, BGU-opt and BGU-
fast, our approach increases PNSR by 11 dB (from ∼25 to
36) and reduces DSSIM (=(1-SSIM)/2) by a multiplicative
factor of 3. The downsampling approach does not perform
well when the action of the operator at high resolution can-
not be recovered from its output at low resolution. In con-
trast, our approach models the action of the operator directly
at the original resolution. Our approach is also faster than
BGU-fast and is more than an order of magnitude faster than
BGU-opt. Runtime was measured on a workstation with an
Intel i7-5960X 3.0GHz CPU and an Nvidia Titan X GPU.
The runtime of BGU varies across operators, see the sup-
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Figure 3. Qualitative results on images from the MIT-Adobe test set. For each operator, we show the input image, the result of the original
reference operator, the result produced by our approximator, and results produced by BGU-opt [14], Xu et al. [75], and Liu et al. [51]. The
error maps show per-pixel error, measured by Euclidean distance in 0-255 RGB space. Black indicates error of 100 or higher. Additional
visualizations are provided in the supplement.

plement for detailed results. The runtime of our approach is
constant. It is 40 ms (25 fps) for 480p images, 190 ms for
1080p images, and scales linearly in the number of pixels.
We used a standard deep learning library (TensorFlow) with
no additional performance tuning.

Of the prior approaches that use deep networks, Liu et
al. [51] and Johnson et al. [40] achieve the best approxima-
tion accuracy. Our approach outperforms these baselines
by 8.5 dB in PNSR, and reduces DSSIM by a multiplicative
factor of 3. Our approach is also the fastest and has the most
compact parameterization. Qualitative results are shown in
Figure 3 and in the supplement.

Additional experiments. We now compare a num-
ber of different CAN configurations to alternative fully-
convolutional architectures. These alternative architec-
tures – Plain, Encoder-decoder [65], and FCN-8s [52, 68] –
are described in detail in the supplement. All these models
are trained by the same procedure as the CAN.

The results are summarized in Table 2. Here
CAN24+AN is our primary model, referred to as ‘Ours’
in Table 1 (d = 9, w = 24, adaptive normalization).
CAN32+AN is a more accurate but slower configuration
(d = 10, w = 32, adaptive normalization). This config-
uration benefits from a receptive field of 513×513 versus
the 257× 257 receptive field of CAN24. We also evalu-

ate two other variants of CAN32, controlling for the effect
of adaptive normalization: CAN32 (no normalization) and
CAN32+BN (BatchNorm). Finally, Table 2 also reports the
performance of a single network (CAN32+AN) that repre-
sents all ten operators; this network is described in Sec-
tion 5.

Method MSE PSNR SSIM
Time # of
(ms) param

FCN-8s 344.1 26.36 0.808 150 30,510K
Encoder-decoder 177.9 34.90 0.950 139 7,760K
Plain 369.7 32.05 0.920 118 75K
CAN32 133.4 35.52 0.956 162 75K
CAN32+BN 129.9 28.64 0.929 243 75K
CAN24+AN 59.1 36.04 0.960 190 37K
CAN32+AN 36.0 37.59 0.966 277 75K
Single network 110.3 29.86 0.931 385 78K

Table 2. Average accuracy, running time, and number of param-
eters of different network architectures over all ten operators on
the MIT-Adobe test set. Running time is measured on images at
1080p resolution (∼1.75 MP).

Cross-resolution generalization. We now test how the
trained approximators generalize across resolutions. To



keep the time of the experiment manageable, we focus on
the L0 smoothing operator for this purpose. Recall that our
approximator was trained on images resized to random res-
olutions between 320p and 1440p. We now compare the
trained model to baselines on a set of specific resolutions:
320p, 480p, 720p, 1080p, 1440p, and 2160p. For this pur-
pose, the MIT-Adobe test set was resized to each of these
resolutions, the reference operator was executed on these
images, and all methods were evaluated at each resolution.
The results are shown in the supplement. They indicate that
the accuracy of our approximator is stable and outperforms
the other approaches across resolutions. Note that the 2160p
condition (∼7 MP) tests the generalization of our model to
resolutions never seen during training. (The maximal reso-
lution used during training was 1440p.)

Cross-dataset generalization. We have also evaluated how
the trained operators generalize across datasets. To this
end, for each operator, we tested two models on the MIT-
Adobe test set: one trained on the MIT-Adobe training set
and one trained on the RAISE training set. Similarly, for
each operator, we tested two models on the RAISE test set:
one trained on the RAISE training set and one trained on
the MIT-Adobe training set. The detailed results are given
in the supplement. They indicate that the trained approxi-
mators generalize extremely well and effectively represent
the underlying action of the reference operators. The ac-
curacy in corresponding conditions (e.g., MIT → MIT and
RAISE → MIT) is virtually identical.

Ablation studies. Additional controlled experiments on
network depth and width are reported in the supplement.

5. Extensions

We now describe three extensions of the presented ap-
proach: representing parameterized operators, representing
multiple operators by a single network, and video process-
ing.

Parameterized operators. An image processing opera-
tor can have parameters that control its action. For ex-
ample, variational image smoothing operators [66, 58, 73]
commonly have a parameter λ that controls the relative
strength of the regularizer: higher λ leads to more aggres-
sive smoothing. Other operators, such as multiscale tone
manipulation, have multiple meaningful parameters that can
be used to control the operator’s effect [24]. Our approach
extends naturally to creating parameterized approximators
that expose these degrees of freedom at test time. To this
end, we add channels to the input layer. For each parameter
we wish to expose, we add an input channel that is used to
communicate the parameter’s value to the network. During
training, we apply the operator with randomly sampled pa-
rameter values, thus showing the network the effect of the
parameter on the operator. Quantitative results are reported

in the supplement and qualitative results are shown in the
video.

One network to represent them all. So far, we have
trained separate networks for different operators, albeit with
identical parameterizations. We now show that all 10 op-
erators can be represented by a single network, which can
emulate any of the individual operators at test time. This
shows that a single compact network can execute a large
number of advanced image processing effects at high accu-
racy. To this end, we augment the input layer by adding
10 additional channels, where each channel is a binary in-
dicator that corresponds to one of the 10 operators. During
training, we randomly sample an operator and an input im-
age in each iteration. Training proceeds for 500K iterations
total, as in the other experiments. For this experiment we
use the CAN32 configuration with adaptive normalization.

The approximation accuracy achieved by the trained net-
work across the 10 operators is reported in Table 2. The
accuracy on each individual operator is given in the sup-
plement. Remarkably, a single compact network that rep-
resents all 10 operators achieves high accuracy, well above
the most accurate prior approximation scheme (compare to
the results in Table 1). The trained network is demonstrated
in the supplementary video. As shown in the video, the
network can also smoothly transition between the operators
when it is given continuous values in the auxiliary input
channels, even though it was trained with one-hot vectors
only.

Video processing. We also apply the trained models to
videos from the Tanks and Temples dataset [44]. This fur-
ther demonstrates cross-dataset generalization. (The mod-
els were trained on the MIT-Adobe dataset.) We simply
apply the approximator to each frame. Although no pro-
visions are made for temporal coherence, the results are as
coherent as the original operators. The results are shown in
the supplementary video.

6. Conclusion

We have presented an approach to approximating a
wide range of image processing operators. All operators
are approximated with the same parameterization and the
same flow of computation. We have shown that the pre-
sented approach significantly outperforms prior approxima-
tion schemes.

We see the uniform and regular flow of computation in
the presented model as a strong advantage. While the model
is already faster than baselines using a generic implementa-
tion, we expect that significant further acceleration can be
achieved.
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[61] S. Perreault and P. Hébert. Median filtering in constant time.
IEEE Transactions on Image Processing, 16(9), 2007. 2

[62] T. Pock, M. Unger, D. Cremers, and H. Bischof. Fast and
exact solution of total variation models on the GPU. In CVPR
Workshops, 2008. 2

[63] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. P. Ama-
rasinghe, and F. Durand. Decoupling algorithms from sched-
ules for easy optimization of image processing pipelines.
ACM Transactions on Graphics, 31(4), 2012. 3, 5

[64] W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, and M. Yang.
Single image dehazing via multi-scale convolutional neural
networks. In ECCV, 2016. 3

[65] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolu-
tional networks for biomedical image segmentation. In MIC-
CAI, 2015. 7

[66] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total varia-
tion based noise removal algorithms. Physica D, 60(1), 1992.
5, 6, 8

[67] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-
ing representations by back-propagating errors. Nature, 323,
1986. 4

[68] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.
7

[69] K. Subr, C. Soler, and F. Durand. Edge-preserving multi-
scale image decomposition based on local extrema. ACM
Transactions on Graphics, 28(5), 2009. 2

[70] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky.
Texture networks: Feed-forward synthesis of textures and
stylized images. In ICML, 2016. 3

[71] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 13(4),
2004. 5, 6

[72] B. Weiss. Fast median and bilateral filtering. ACM Transac-
tions on Graphics, 25(3), 2006. 2

[73] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via L0 gra-
dient minimization. ACM Transactions on Graphics, 30(6),
2011. 2, 5, 6, 8

[74] L. Xu, J. S. J. Ren, C. Liu, and J. Jia. Deep convolutional
neural network for image deconvolution. In NIPS, 2014. 3

[75] L. Xu, J. S. J. Ren, Q. Yan, R. Liao, and J. Jia. Deep edge-
aware filters. In ICML, 2015. 3, 5, 6, 7

[76] L. Xu, Q. Yan, Y. Xia, and J. Jia. Structure extraction from
texture via relative total variation. ACM Transactions on
Graphics, 31(6), 2012. 2, 5, 6

[77] Z. Yan, H. Zhang, B. Wang, S. Paris, and Y. Yu. Automatic
photo adjustment using deep neural networks. ACM Trans-
actions on Graphics, 35(2), 2016. 3

[78] F. Yu and V. Koltun. Multi-scale context aggregation by di-
lated convolutions. In ICLR, 2016. 4

[79] Q. Zhang, X. Shen, L. Xu, and J. Jia. Rolling guidance filter.
In ECCV, 2014. 2

[80] Q. Zhang, L. Xu, and J. Jia. 100+ times faster weighted
median filter (WMF). In CVPR, 2014. 2



A. Operators
In this appendix, we describe in more detail the ten im-

age processing operators used in our experiments. Our ap-
proach approximates all operators using the same model.
Rudin-Osher-Fatemi. Rudin-Osher-Fatemi (ROF) [18] is
a seminal model for variational image restoration. The
model aims to remove noise while preserving veridical im-
age features by optimizing a variational objective over the
image. Let I : Ω → R be a grayscale image. A restored
image J : Ω → R can be computed by minimizing the
following objective:

∫

Ω

|∇J |+ λ

∫

Ω

(I − J)2, (1)

where λ is a free parameter that controls the smoothness of
J . The first term

∫
Ω
|∇J | is the total variation regularization

and the second term
∫
Ω
(I − J)2 is a data term that uses the

L2 norm. Equation (1) is strictly convex, so there is a unique
global minimum.
TV-L1. TV-L1 [15] is a variational image restoration model
that uses the following objective:

∫

Ω

|∇J |+ λ

∫

Ω

|I − J |. (2)

Unlike the ROF model, TV-L1 uses the more robust L1

norm in the data term. Objective (2) is convex but not
strictly convex, so the global minimizer may not be unique.
L0 smoothing. The L0 smoothing operator [21] makes use
of the L0 norm in the regularization term. This operator
globally identifies the most important edges by penalizing
the number of non-zero gradients in the image. The objec-
tive has the following form:

∫

Ω

|∇J |0 + λ

∫

Ω

(I − J)2. (3)

The objective is highly non-convex and cannot be optimized
by traditional gradient-based methods. We use the solver
provided by Xu et al. [21].

Objective (3) dates back to the work of Geman and
Geman [5] and Mumford and Shah [13]. This objec-
tive is known as the Potts model or the piecewise-constant
Mumford-Shah model. In addition to the solver of Xu et
al. [21], which we use as the reference operator in our
work, there are other recent solvers that optimize this ob-
jective [20, 14].
Relative total variation. Relative total variation
(RTV) [23] is a model for extracting image structure by sup-
pressing detail. This is also a variational model. It differs
from the preceding ones by the form of the regularizer. The
objective is

∫

Ω

(
Dx

Lx + ε
+

Dy

Ly + ε

)
+ λ

∫

Ω

(I − J)2, (4)

where Dx = G ∗ |∂xJ |, Dy = G ∗ |∂yJ |, Lx = |G ∗ ∂xJ |,
Lx = |G ∗ ∂xJ |, G is a Gaussian kernel, and ε is a small
positive number. This objective is non-convex. We use the
solver provided by Xu et al. [23].
Multiscale tone manipulation. This operator enhances
an image by boosting features at multiple scales [4]. The
method constructs a three-level image decomposition: a
base layer B and two detail layers, D1 and D2. The base
layer is simply the LAB lightness channel of the input im-
age I . The detail layers are constructed as D1 = B −Ψ(B)
and D2 = Ψ(B)−Ψ(Ψ(B)), where Ψ(·) denotes edge-
preserving smoothing via weighted least-squares optimiza-
tion. A new image can be constructed by nonlinearly com-
bining these layers:

M + S (δ0(B −M)) + S(δ1D1) + S(δ2D2), (5)

where (δ0,δ1,δ2) are parameters, M is a constant image with
the mean intensity of B, and S(·) is a sigmoid function. Dif-
ferent sets of parameters boost features at different scales.
We use the implementation of Farbman et al. [4] and use the
default parameters to generate coarse-scale, medium-scale,
and fine-scale images. These are then averaged to yield the
final output.
Detail manipulation. This is another approach to multi-
scale detail manipulation, based on local Laplacian filter-
ing [16]. We use the accelerated implementation of Aubry
et al. [1].
Style transfer. This operator transfers the photographic
style of a reference image to the input image [1]. The opera-
tor is designed to transfer both local and global contrast and
proceeds iteratively, alternating between local Laplacian fil-
tering and histogram matching. We use the implementation
of Aubry et al. [1] with their default style image.
Dark-channel dehazing. The goal of image dehazing is to
remove some of the effects of atmospheric absorption and
scattering. The standard image formation model used for
this task is

I(x) = t(x)J(x) + (1− t(x))A, (6)

where x is a pixel, I is the sensor irradiance, J is the scene
radiance, A is the global atmospheric light, and t is the
transmission factor. Equation (6) is underconstrained and
different dehazing techniques use different prior assump-
tions. Haze removal using the dark channel prior [7] is
based on the observation that the atmospheric light can of-
ten be computed by identifying color channels that would
have been dark in the absence of haze. We use the imple-
mentation of He et al. [7].
Nonlocal dehazing. This is a recent dehazing technique
that uses a nonlocal prior [2]. It is based on the observation
that pixel colors in haze-free images are clustered in color



space, and that haze spreads these clusters into radial lines.
The atmospheric light and transmission factors are recov-
ered by identifying these lines in color space, and haze is
removed using Equation (6). We use the implementation of
Berman et al. [2].

Pencil drawing. This is a nonphotorealistic image styliza-
tion technique that aims to reproduce the appearance of a
color pencil drawing while retaining the spatial structure
of the image [12]. The technique computes a stroke layer
from the gradient map and combines it with a tone layer,
computed by a parametric model that represents tone distri-
butions of pencil sketches. We use the implementation of
Lu et al. [12].

B. Context Aggregation Networks

Here we provide an illustration and a further specifica-
tion of the context aggregation network (CAN), our primary
architecture for approximating image processing operators.
The context aggregation architecture is illustrated schemat-
ically in Figure 4. For the purpose of this figure, we use
depth d = 6 and width w = 8. The dilation is increased
from r1 = 1 in L1 to r4 = 8 in L4. The commensurate
growth in the receptive field of each element in each layer
can be seen in the figure. For Ld−1 (L5 in Figure 4), we
do not use dilation. For the output layer Ld (L6 in the fig-
ure) we use a linear transformation (1×1 convolution with
no nonlinearity) that projects the final feature layer into the
RGB color space.

Figure 4 provides only a schematic visualization. The
network we use is deeper and has a much larger receptive
field. Table 3 provides a specification of the CAN32 con-
figuration, which uses d = 10 and w = 32 and provides a
receptive field of 513×513.

C. Alternative Fully-Convolutional Architec-
tures

In this appendix, we describe a number of fully-
convolutional architectures that are evaluated alongside the
CAN.

Plain. The first alternative architecture is a plain feedfor-
ward convolutional network that operates at full resolution.
Specifically, we take the context aggregation network pre-
sented above and remove dilation. The network structure is
the same, but all dilated convolutions are replaced by reg-
ular convolutions. The receptive field in the final layers of
the network is 19×19. We use this architecture as a dis-
tinct baseline for two reasons. First, it isolates the effect of
dilation (and therefore large receptive field) while retaining
all the other desirable properties of the previously presented
architecture. Second, it is analogous to an architecture that
has recently been used for demosaicking and denoising [6],

Input

L1

L2

L3

L4

L5

L6

Figure 4: Schematic illustration of the context aggregation
network. This visualization uses depth d = 6 and width
w = 8. The red pixels show the application of dilated con-
volutions [24]. The shaded gray pixels show the receptive
field of a single element. Circles show the nonlinear trans-
formation Φ. The model we use in practice is deeper and
wider than shown here.



Layer 1 2 3 4 5 6 7 8 9 10

Convolution 3×3 3×3 3×3 3×3 3×3 3×3 3×3 3×3 3×3 1×1

Dilation 1 2 4 8 16 32 64 128 1 1
Receptive field 3×3 7×7 15×15 31×31 63×63 127×127 255×255 511×511 513×513 513×513

Nonlinearity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Width 32 32 32 32 32 32 32 32 32 3

Table 3: A specification of the CAN32 configuration.

and thus illustrates the performance characteristics of this
architecture when applied to a broad range of operators.

Encoder-decoder. The next architecture highlights an al-
ternative way to achieve a large receptive field: progres-
sively reducing the resolution of the feature layers and
then increasing them back to the original resolution. Such
hourglass-shaped networks are sometimes referred to as
encoder-decoders. Of course, the high-frequency content
that is lost in the internal layers due to downsampling
must be recovered somehow. A standard solution is to
add skip connections across non-consecutive layers, for ex-
ample connecting all layers that have the same resolution
on the two sides of the hourglass. Our reference encoder-
decoder architecture is the u-net [17]. The network has 23
convolutional layers. Each encoding layer applies 3×3 con-
volutions, followed by truncation, max pooling, and down-
sampling. With each downsampling step, the number of
feature channels is doubled. The decoder performs upsam-
pling by 2×2 upconvolutions, concatenates the result with
the corresponding feature maps from one of the encoding
layers, and applies 3×3 convolutions and truncations. The
final layer applies a 1×1 convolution that projects each fea-
ture column into the RGB color space.

We make two modifications to the original u-net archi-
tecture [17]. First, to reduce computation time and memory
footprint, we use half of the filters in each layer (e.g., 32
rather than 64 in the first layer): we found that this is suffi-
cient to get high accuracy and it matches our configuration
of the other baselines. Second, we pad each layer when
necessary to make the output image match the size of the
input. This makes our implementation agnostic to aspect
ratio, whereas the original u-net requires the image to be
square.

We will see that the encoder-decoder achieves compa-
rable accuracy to the context aggregation network across
operators. Furthermore, due to the low resolution of the
intermediate layers, it is even faster. However, due to the
high width of the intermediate layers, its capacity (number
of parameters), is two orders of magnitude higher: roughly
7.7 million as opposed to 75 thousand for CAN32. Fur-
thermore, due to the skip connections across the network,
up to half of the layers must be kept in memory during the

forward pass, increasing the network’s memory footprint.
FCN-8s. As a reference baseline, we also use the fully-
convolutional setup of the VGG-16 network (specifically,
FCN-8s) [11, 19]. This network also performs downsam-
pling and then upsampling, although asymmetrically: most
of the capacity is in the downsampling layers. This network
is fast, but is far from compact: more than 30 million param-
eters. The biggest issue, however, is that its approximation
accuracy is low, due to the severe internal downsampling
and limited support for recovering the lost high-frequency
content during upsampling. This will be illustrated in the
experiments.

D. Accuracy and Runtime
Here we provide the complete quantitative results for

the approximation accuracy and runtime of different ap-
proaches. The approximation accuracy of each approach
on each operator is given in Table 4. These are the numeri-
cal results that are visualized in Figure 2 and summarized in
Table 1 in the paper. The approximation accuracy for differ-
ent CAN configurations and alternative fully-convolutional
architectures is given in Table 5; these are the numerical
results that are summarized in Table 2 in the paper.

The running time of each approach on each operator is
given in Table 6. The operators are arranged in the same
order as in Table 4. Runtime was measured on a workstation
with an Intel i7-5960X 3.0GHz CPU and an Nvidia Titan X
GPU. Our approach is faster than BGU-opt by more than an
order of magnitude. It is faster than BGU-fast on eight of
the ten operators.

E. Cross-Resolution Generalization
The cross-resolution generalization results on L0

smoothing are shown in Figure 5.

F. Cross-Dataset Generalization
Here we provide the precise results of the cross-dataset

generalization experiment. For each operator, we tested two
models on the MIT-Adobe test set: one trained on the MIT-
Adobe training set and one trained on the RAISE training
set. Similarly, for each operator, we tested two models on



Method
Rudin-Osher-Fatemi [18] TV-L1 [15] L0 smoothing [21] Relative total variation [23] Multiscale tone [4]
MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

Input 31.4 33.94 0.895 91.9 30.43 0.850 69.1 29.83 0.861 120.5 28.18 0.783 464.6 21.79 0.818

BGU-fast [3] 56.7 31.17 0.914 252.0 25.31 0.845 42.6 32.26 0.912 205.9 25.68 0.862 193.1 25.52 0.870

BGU-opt [3] 59.8 31.06 0.939 254.6 25.35 0.879 34.3 33.36 0.941 197.7 25.90 0.906 168.0 26.09 0.909

Xu et al. [22] 8.8 40.02 0.985 14.3 38.15 0.986 24.3 34.57 0.980 22.6 35.08 0.986 225.6 24.92 0.940

Johnson et al. [9] 139.6 28.93 0.945 146.8 28.63 0.940 174.8 27.21 0.922 140.5 28.93 0.952 211.1 26.49 0.894

Liu et al. [10] 13.1 37.88 0.979 25.4 35.16 0.962 52.6 31.04 0.947 35.8 33.16 0.954 83.1 29.35 0.923

Isola et al. [8] 93.6 29.82 0.903 83.4 30.09 0.919 119.7 28.55 0.883 96.1 29.56 0.938 448.3 22.70 0.620

Isola et al. [8]+BGU 159.0 26.40 0.933 175.1 26.06 0.908 129.8 27.28 0.932 136.8 27.31 0.928 555.6 20.87 0.747

Ours 0.6 51.24 0.999 4.3 42.72 0.992 14.9 36.50 0.983 4.4 42.45 0.993 6.3 40.42 0.995

Method
Detail manipulation [16] Nonlocal dehazing [2] Dark-channel dehazing[7] Style transfer [1] Pencil drawing [12]
MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

Input 712.5 19.76 0.691 1048.2 18.65 0.802 2642.2 15.55 0.788 3762.9 12.95 0.564 17 135.6 6.40 0.394

BGU-fast [3] 113.5 27.90 0.918 251.0 25.29 0.904 354.4 24.06 0.920 672.5 20.25 0.765 2521.8 14.45 0.377

BGU-opt [3] 82.7 29.19 0.940 247.9 25.47 0.911 345.3 24.20 0.940 582.4 20.86 0.825 1590.9 16.30 0.480

Xu et al. [22] 190.7 25.53 0.902 1001.7 19.50 0.875 2551.4 15.70 0.783 2701.8 14.58 0.706 16 731.5 6.45 0.543

Johnson et al. [9] 263.1 24.42 0.839 301.9 24.88 0.861 204.2 26.53 0.875 521.6 21.21 0.811 46.7 31.70 0.865

Liu et al. [10] 366.6 22.65 0.801 180.4 26.44 0.912 221.3 25.90 0.911 1732.2 15.95 0.657 1127.9 18.06 0.745

Isola et al. [8] 445.3 22.52 0.610 306.6 24.15 0.726 282.4 24.48 0.745 627.5 20.47 0.525 291.8 23.81 0.674

Isola et al. [8]+BGU 697.7 19.86 0.702 398.6 22.41 0.820 337.8 23.32 0.824 1211.5 17.69 0.667 770.3 19.51 0.586

Ours 48.0 31.52 0.965 133.2 28.25 0.965 74.6 31.24 0.965 258.4 24.37 0.880 45.7 31.70 0.861

Table 4: Approximation accuracy on the MIT-Adobe test set.

Method
Rudin-Osher-Fatemi [18] TV-L1 [15] L0 smoothing [21] Relative total variation [23] Multiscale tone [4]
MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

FCN-8s 54.6 32.39 0.946 38.8 33.42 0.958 89.1 30.05 0.918 40.2 33.65 0.972 357.9 24.30 0.714

Encoder-decoder 0.5 51.96 0.999 2.3 45.22 0.995 12.6 37.27 0.992 3.6 43.06 0.997 3.1 43.81 0.997

Plain 0.7 50.06 1.000 1.9 46.91 0.995 27.9 33.90 0.980 9.2 38.85 0.983 12.8 37.66 0.989

CAN32 0.6 51.29 0.999 3.7 43.44 0.993 12.6 37.32 0.988 3.8 42.99 0.994 3.8 42.57 0.997

CAN32+BN 69.2 31.30 0.963 86.3 30.22 0.950 136.5 27.81 0.927 95.6 29.76 0.955 128.0 28.12 0.953

CAN24+AN 0.6 51.24 0.999 4.3 42.72 0.992 14.9 36.50 0.983 4.4 42.45 0.993 6.3 40.42 0.995

CAN32+AN 0.6 51.86 0.999 3.0 44.57 0.993 12.1 37.48 0.987 3.3 43.55 0.995 4.9 41.60 0.996

CAN32+AN+Single 20.9 35.16 0.978 26.0 34.28 0.965 50.4 31.20 0.948 34.4 33.05 0.958 51.0 31.24 0.967

Method
Detail manipulation [16] Nonlocal dehazing [2] Dark-channel dehazing[7] Style transfer [1] Pencil drawing [12]
MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

FCN-8s 413.7 23.00 0.689 294.3 24.53 0.788 296.9 24.51 0.806 754.3 19.64 0.556 1101.6 18.14 0.735

Encoder-decoder 83.2 29.26 0.949 101.2 30.11 0.970 142.3 28.37 0.966 593.4 20.66 0.827 836.4 19.33 0.810

Plain 313.3 23.37 0.863 135.7 28.38 0.952 186.9 27.67 0.957 1712.0 15.99 0.689 1296.9 17.68 0.788

CAN32 19.7 35.39 0.981 102.5 30.09 0.969 154.7 28.31 0.965 298.1 23.81 0.854 577.3 21.02 0.826

CAN32+BN 116.4 28.19 0.934 281.7 25.35 0.918 192.1 27.07 0.923 146.1 27.08 0.900 47.4 31.55 0.865

CAN24+AN 48.0 31.52 0.965 133.2 28.25 0.965 74.6 31.24 0.965 258.4 24.37 0.880 45.7 31.70 0.861

CAN32+AN 29.3 33.66 0.966 84.2 30.46 0.970 53.0 32.76 0.974 129.8 27.62 0.913 39.6 32.31 0.869

CAN32+AN+Single 72.7 29.67 0.938 137.2 27.99 0.951 212.7 26.06 0.932 345.7 23.27 0.850 152.3 26.72 0.825

Table 5: Approximation accuracy of different network architectures on the MIT-Adobe test set.

the RAISE test set: one trained on the RAISE training set
and one trained on the MIT-Adobe training set. The results
for all operators are shown in Table 7. They indicate that the
trained approximators generalize extremely well. The ac-
curacy in corresponding conditions (e.g., MIT → MIT and
RAISE → MIT) is virtually identical. On the MIT test set,
the SSIM achieved by models trained on RAISE is within
1% of the SSIM achieved by models trained on the MIT
training set, for all operators. The same is true on the
RAISE test set. This indicates that our approximators rep-

resent the underlying action of the reference operators ef-
fectively.

G. Ablation Studies

Here we report the results of additional controlled exper-
iments that study different aspects of our model’s structure
and their effect on approximation accuracy. For these ex-
periments, we again use the L0 smoothing operator on the
MIT-Adobe dataset.



Method ROF [18] TV-L1 [15] L0 [21] RTV [23] Tone [4] Detail [16] Dehaze (NL) [2] Dehaze (DC) [7] Style [1] Pencil [12]

Reference 18,598 22,181 7,053 10,411 10,268 1,190 6,114 7,983 6,271 4,947
BGU-fast [3] 382 458 187 323 217 186 232 227 739 251
BGU-opt [3] 2,436 2,472 2,321 2,377 2,271 2,240 2,286 2,281 2,793 2,305
Xu et al. [22] 5,493 5,493 5,493 5,493 5,493 5,493 5,493 5,493 5,493 5,493
Johnson et al. [9] 203 203 203 203 203 203 203 203 203 203
Liu et al. [10] 458 458 458 458 458 458 458 458 458 458
Isola et al. [8] 198 198 198 198 198 198 198 198 198 198
Isola et al. [8]+BGU 2,352 2,352 2,352 2,352 2,352 2,352 2,352 2,352 2,352 2,352
Ours 190 190 190 190 190 190 190 190 190 190

Table 6: Running time (in milliseconds) on MIT-Adobe test set images at 1080p resolution (∼1.75 MP).

Train → Test
Rudin-Osher-Fatemi [18] TV-L1 [15] L0 smoothing [21] Relative total variation [23] Multiscale tone [4]
MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

MIT → MIT 0.6 51.24 0.999 4.3 42.72 0.992 14.9 36.50 0.983 4.4 42.45 0.993 6.3 40.42 0.995

RAISE → MIT 2.5 46.52 0.996 3.5 43.96 0.993 17.2 35.96 0.984 4.6 42.38 0.993 8.5 39.46 0.993

RAISE → RAISE 1.8 46.09 0.996 4.2 43.07 0.991 15.7 36.31 0.983 5.0 42.14 0.992 7.7 39.58 0.994

MIT → RAISE 1.0 49.98 0.998 5.1 41.78 0.990 15.1 36.49 0.981 5.1 41.97 0.992 6.8 40.03 0.995

Detail manipulation [16] Nonlocal dehazing [2] Dark-channel dehazing [7] Style transfer [1] Pencil drawing [12]
MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

MIT → MIT 48.0 31.52 0.965 133.2 28.25 0.965 74.6 31.24 0.965 258.4 24.37 0.880 45.7 31.70 0.861

RAISE → MIT 46.3 31.70 0.968 106.5 29.37 0.959 85.8 30.78 0.962 272.4 24.22 0.876 44.7 31.81 0.866

RAISE → RAISE 43.5 31.93 0.976 91.8 29.88 0.965 56.0 31.81 0.969 248.0 24.60 0.894 45.2 31.73 0.870

MIT → RAISE 48.7 31.44 0.972 138.8 27.89 0.967 72.2 30.87 0.968 265.7 24.34 0.889 49.8 31.38 0.863

Table 7: Cross-dataset generalization. Models were trained separately on the MIT-Adobe training set and the RAISE training
set. Each model was then tested on the MIT-Adobe test set and the RAISE test set. The approximation accuracy is virtually
identical in corresponding conditions (< 1% difference in SSIM), indicating that the trained approximators generalize well
across datasets.
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Figure 5: Cross-resolution generalization. Different ap-
proximation schemes were tested on images from the MIT-
Adobe test set resampled to different resolutions. Our ap-
proach uses the same model for all resolutions. It outper-
forms the other approaches across resolutions, including on
resolutions never seen during training.

Depth. We begin by training and testing the context ag-

gregation network with different depths d. The results are
given in Table 8. Note that smaller depth implies a smaller
receptive field. As shown in the table, the results are good
even for shallow networks: for example, the model achieves
higher SSIM than BGU-opt even with depth 4. (With this
depth, the running time on 1080p images is 67 ms.) The ac-
curacy further improves with depth and saturates at d = 9.

Depth MSE PSNR SSIM Time (ms)

4 32.6 33.14 0.964 67

5 27.6 33.86 0.974 92

6 23.4 34.57 0.980 118

7 20.0 35.23 0.982 142

8 17.1 35.91 0.982 165

9 14.9 36.50 0.983 190

10 15.5 36.36 0.983 218

11 16.4 36.10 0.983 243

Table 8: Controlled evaluation of approximation accuracy
as a function of depth d, with w = 24.

Width. We now evaluate the effect of width (the number of
feature maps in each intermediate layer) on approximation



accuracy. The experimental setup is the same as in the pre-
vious experiment. The results are reported in Table 9. The
accuracy is again good even with a network that has fairly
low capacity (8 feature maps per layer, 84 ms runtime at
1080p). Accuracy further increases with width.

Width MSE PSNR SSIM Time (ms)

8 32.3 33.12 0.954 84

16 19.7 35.30 0.979 131

24 14.9 36.50 0.983 190

32 13.5 36.93 0.986 249

48 12.6 37.26 0.988 388

64 9.9 38.30 0.989 517

Table 9: Evaluation of approximation accuracy as a function
of width w, with d = 9.

H. Parameterized Operators
Here we report in more detail the results on representing

parameterized operators. We use the L0 smoothing opera-
tor. We sample different hyperparamters λ in Equation 3:
λ = λ̄ exp(x) where x is a random variable with uniform
distribution U (− ln(10), ln(10)) and λ̄ = 0.01 is the de-
fault value, so λ ∈ [0.1λ̄, 10λ̄]. We train and test the ap-
proximator with randomly sampled parameters λ. The ap-
proximation accuracy achieved by our approach is 21.0 in
MSE, 36.2 in PSNR, and 0.984 in SSIM.

I. Qualitative Results
Extensive qualitative results are provided in a separate

supplement. Our method consistently outperforms the other
approaches. The most sophisticated prior downsample-
evaluate-upsample scheme, BGU-opt, does not perform
well when the action of the operator at high resolution can-
not be recovered from its output at low resolution. In con-
trast, our method operates directly at the original resolu-
tion. Our direct approach is also more accurate than prior
approaches that use deep networks.
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