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Abstract

Analyzing data representing multifarious trajectories is central to the many fields in Science and 
Engineering; for example, trajectories representing a tennis serve, a gymnast’s parallel bar routine, 
progression/remission of disease and so on. We present a novel geometric algorithm for 
performing statistical analysis of trajectories with distinct number of samples representing 
longitudinal (or temporal) data. A key feature of our proposal is that unlike existing schemes, our 
model is deployable in regimes where each participant provides a different number of acquisitions 
(trajectories have different number of sample points or temporal span). To achieve this, we develop 
a novel method involving the parallel transport of the tangent vectors along each given trajectory 
to the starting point of the respective trajectories and then use the span of the matrix whose 
columns consist of these vectors, to construct a linear subspace in Rm. We then map these linear 
subspaces (possibly of distinct dimensions) of Rm on to a single high dimensional hypersphere. 
This enables computing group statistics over trajectories by instead performing statistics on the 
hypersphere (equipped with a simpler geometry). Given a point on the hypersphere representing a 
trajectory, we also provide a “reverse mapping” algorithm to uniquely (under certain assumptions) 
reconstruct the subspace that corresponds to this point. Finally, by using existing algorithms for 
recursive Fréchet mean and exact principal geodesic analysis on the hypersphere, we present 
several experiments on synthetic and real (vision and medical) data sets showing how group 
testing on such diversely sampled longitudinal data is possible by analyzing the reconstructed data 
in the subspace spanned by the first few principal components.

1. Introduction

In many fields of science and engineering, one encounters data in the form of trajectories 

i.e., a one parameter family of multi-variate data, where the parameter describing the family 

is most commonly time or scale but can be any other parameter pertinent to the application. 

In Computer Vision (specifically in sports vision), a common example is the actions of an 

athlete such as the serve of a tennis player, a gymnast’s routine, a golfer’s swing and so on. 

In medical applications, analyzing a time course of structural or functional images to assess 

progress or remission of a disease in response to treatment is central to effective diagnosis. 

There is abundant literature on longitudinal (time course) data analysis where features of 

choice are scalar and/or vector-valued. However, with the advent of high throughput 

computing resources, applications are increasingly using sophisticated and rich feature sets 
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such as manifold-valued features that are capable of capturing much more information 

contained in the raw imaging data than, say, scalar and vector-valued features.

There is a rigorous body of work in vision demonstrating how leveraging the structure (or 

geometry) of the data can yield advantages. For example in medical applications, papers in 

the mid-1990s already showed that the analysis of shapes [21] improved our ability to 

quantify a disease-specific signal, not otherwise possible. The interface between geometry/

structure and analysis methods has offered effective practical tools — for instance, in 

Medical imaging applications, analysis of diffusion weighted Magnetic Resonance images 

where manifold-valued features such as the diffusion tensors that are symmetric positive 

definite (SPD) matrices that capture the diffusional behavior of water molecules at each 

image voxel may be inferred from the raw diffusion MRI data. Motivated by other 

applications, we have extensions of standard statistical machine learning tools to the unit 

Hilbert sphere, probability distributions and other “structured” objects, i.e., where the 

samples are drawn from a space which satisfies a manifold characterization (e.g., covariance 

matrices). Algorithms for regression [28], principal components analysis, dictionary learning 

and others are readily available. Unfortunately, few such differential geometry inspired 

algorithms for image analysis exist for the longitudinal regime where outside of [35, 17, 40, 

27, 25], the literature remains sparse. All such methods, however, cannot cope with 

trajectories of distinct number of samples within a group or across groups that are 

commonly encountered in group-wise longitudinal data analysis problems. In Computer 

Vision, several researchers have exploited manifold valued features such as covariance 

descriptors [44, 41, 11, 45, 37], image sets as linear subspaces [43, 8, 31, 22, 39, 33] and 

many others. Several of these proposals have dealt with analysis of videos for gait analysis, 

action recognition, dynamic textures and so on. For a comprehensive survey of linear 

dynamical system based modeling to analyze videos for a various such tasks, we refer the 

reader to [4]. These techniques do not address the question of statistical group-wise analysis 

of manifold-valued trajectories, each with a different number of samples.

Goals.

Consider a setting, common across many longitudinal imaging studies or temporal data 

analysis tasks. We “track” a participant where at each visit, we acquire a manifold valued 

measurement (feature). This may be a shape (a sample on a shape manifold) or a diffusion 

tensor image which is a sample from a product space of an SPD manifold (“product” 

pertains to the number of voxels in an image). Of course, if every subject provided p 
measurements each, we can repurpose existing algorithms for this task. The difficulty is that 

in general, due to logistic or financial reasons, the number of samples from each subject are 
different. When a subject joins the study late (or drops out), we get left (or right) censored 

data; in other cases, some intermediate visits may be missing. Imputation schemes are 

limited for manifold-valued data; so a practitioner is faced with two poor choices: (a) neglect 

the geometry of the space and shoehorn off the shelf techniques (problematic, both 

theoretically and empirically) or (b) only include participants with a full set of acquisitions 

(reduced sample sizes and corresponding decrease in statistical power). What is needed are 

frameworks that enable operating on “incomplete” longitudinal manifold-valued measures 
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where incomplete refers to the nuisance of different number of samples/visits (temporal 

span) for each subject.

Contributions.

This paper presents a novel algorithm to perform statistical analysis on the space of 

trajectories of manifold-valued measurements. A trajectory is a “path” on a Riemannian 

manifold comprised of a set of longitudinally acquired samples (points on the manifold). A 

salient feature of our technique is that trajectories with different number of samples are 

allowed, i.e., the number of points on a trajectory is not assumed to be a constant across the 

cohort (subjects). Our method involves parallel transporting the tangent vectors along each 

given trajectory (not necessarily a geodesic on the known data manifold) to the starting point 

of the respective given trajectories and then using the span of the matrix whose columns 

consist of these vectors, to construct a linear subspace of distinct dimension in Rm. Then, 

using a result [13], we propose an algorithm to embed each linear subspace of distinct 

dimension (corresponding to a trajectory) into a single hypersphere. The hypersphere has a 

simple geometry which makes it more amenable than other alternatives [35, 25] to compute 

statistics. We also provide a procedure to identify the subspace which corresponds to a given 

point on the hypersphere. Within various settings (e.g., on OASIS data, Human Connectome 

project data, action recognition), we show the utility of this algorithm. Our results show that 

manifold-valued longitudinal datasets with different number of samples per subject can be 

easily handled within a flexible and efficient procedure. Further, our technique does not 

make the (restrictive) assumption that the given trajectory is a geodesic on the data manifold. 

This formulation and its analysis is the main contribution of this work.

2. Our proposed algorithms and analysis

Preliminaries.

We first define the space of trajectories and then present the theory to compute statistics on 

this space. We define a trajectory γ (see inline figure) to be a path that consists of a set of p 

points on a Riemannian manifold ℳm of dimension m (inline figure shows p = 3).

Let {γi}i = 1
N  be a set of N trajectories on ℳ, where γi has pi sample points (note that this 

allows for trajectories with different number of sample points). Further, as each trajectory 

has a ‘time” ordering (or an ordering with respect to any other variable), we can order the 

data point for γi as X1
i , ⋯Xpi

i . To facilitate presentation of our theoretical results, we make 

the following mild assumptions about the trajectories:
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Assumption.

1) For each trajectory γi, the sequence of pi data points lie on a continuous curve in ℳ.

2) Without any loss of generality, we assume that X1
i  is the starting point of γi, for all i.

3) {X1
i }i = 1

N
 lie within a “regular geodesic ball ” of radius π (2 κ), κ is the sectional 

curvature (we refer the readers to [26] for definition of regular geodesic ball). This 

assumption ensures that Fréchet mean (FM) [20] of {X1
i }i = 1

N
 exists and is unique [3].

4) For each trajectory, two consecutive data points can be joined by a geodesic, i.e., the 
Riemannian inverse exponential map [16] between two consecutive data points exists.

5) We assume pi < m for all i (usually, pi ⪡ m).

Grassmanian.

We will use Gr(r, m) to denote the Grassmannian, i.e., the manifold of r < m dimensional 

subspaces in Rm and Col(·) gives the column span operator, i.e., Col(A) returns the linear 

subspace spanned by the columns of matrix A.

Definition 1. Given a trajectory γ, i.e., a set of p points, X1, …, Xp in ℳm, we compute 
TXjℳ ∋ vj = LogXj(Xj + 1), where j = 1, …, p − 1. Log is the inverse exponential map (Log 

exists because of Assumption 4). Thus, we identify γ with a point in the product space 
Tℳ × ⋯ × Tℳ

(p − 1) times
 via γ ↦ (X1, v1, ⋯ vp−1), where Tℳ is the tangent bundle of ℳ.

The above identification has the following properties:

Properties. 1. The above identification is well-defined and is a bijection (this is trivial to 
show).

2. Since the tangent space of an m-dimensional manifold is isomorphic to Rm, hence, in the 

above definition, Tℳ × ⋯ × Tℳ
(p − 1) times

≅ ℳ × (Rm) ⊕ (p − 1)
, where ⊕ is the direct sum. Notice that 

since each TXjℳ has a different anchor point (since the base point Xj varies), one needs to 

treat vi and vj as vectors in TXiℳ and TXjℳ respectively, but not as vectors in Rm.

3. If ℳ is parallelizable [16], the isomorphism in the property above is a diffeomorphism, 
e.g., since all Lie groups [16] are parallelizable, and if ℳ is a Lie group, the above 
identification is a diffeomorphism.

4. If the manifold ℳ is translated, let γ  be the translated γ. Then, by the above identification, 

v j = vj, for all j, and X1 and X1 will be related by the translation, i.e., the above 

identification is translation invariant.
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Setting up the space of trajectories.

Now, we parallel transport each vj from TXjℳ to TX1ℳ, for all j = 2, ⋯ p − 1. With a slight 

abuse of notation, we denote the parallel transported vectors by {vj}. Since after the parallel 

transport operation, all vjs lie in TX1ℳ, i.e., lie in the same vector space (which is 

isomorphic to Rm), we form a matrix V of dimension m × (p − 1) whose jth column is ι(vj), 

where ι :TX1ℳ Rm is an isomorphism. Since we will be working with the matrix V, for 

the sake of notational simplicity, we will use vj to denote ι(vj).

Let V be the column span of V, i.e., V = Col(V ), then V ∈ Gr(r, m), where r ≤ (p − 1) is the 

rank of V. Hence, using the identification of γ in Definition 1, we can identify the space of 

trajectories with the product space of ℳ × Gr(rγ, m), where rγ is the rank of V. Moreover, 

observe that rγ may be different for different trajectories γ. In other words, different 

trajectories correspond to different dimensional subspaces in Rm. We should point out that 

although rγ can be different for different trajectories γ, they are all still subspaces in Rm, as 

all the trajectories are on ℳ (of dimension m).

Remarks about this representation.

Note that our representation of trajectories is very general and unlike the previous methods, 

does not require that each trajectory should be a geodesic path [25, 35], or consists of an 

arbitrarily fixed number of points [40]. Also, when each trajectory has 2 points, our 

identification is same as in [25,35] (as a topological space, not as a manifold as we use a 

different metric), i.e., our formulation is a generalization of [25, 35]. Moreover, by the above 

identification, we do not require linear independence of the points on a trajectory. This is a 

desirable property since, in many medical imaging problems, where a sequence of scans of a 

subject are often acquired longitudinally, the independence assumption is violated. To the 
best of our knowledge, this is the first paper dealing with such a general setting for statistical 
analysis on the space of trajectories.

Ingredients for setting up a mapping.

As each trajectory may end up residing on a product of ℳ and a Grassmann manifold of 

distinct dimension (recall that rγ may vary based on trajectory γ), we now propose a way to 

map each Vγ (note that the identification of trajectory γ is (X1
γ, Vγ) ∈ ℳ × Gr(rγ, m)) onto a 

hypersphere. Given Vγ ∈ Gr(rγ, m), the projection matrix, PV
γ  onto Vγ is defined by [12]:

PV
γ = V V TV

−1
V T , (1)

where V  is a basis of Vγ. Note that PV
γ  is a well-defined identification of Vγ as PV

γ  is 

independent of the basis of Vγ, due to the following Lemma (stated without proof).

Lemma 1. PV
γ  is independent of the choice of the basis of Vγ [12].
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2.1. Trajectories with distinct number of samples (temporal span)—Now, we 

state some properties of PV (we drop the superscript for simplicity), which will be used in 

subsequent sections ([12] includes more details about these properties).

Fact 1) PV is a symmetric positive semi-definite matrix.

Fact 2) PV is an idempotent matrix, i.e., PV
2 = PV, its eigen values are either 0 or 1.

Fact 3) The Frobenius norm of PV is r where V is an r-dimensional subspace of Rm.

Fact 4) The rank of PV is r.

Fact 3 above gives us a way to map PV (after vectorization) onto Sm2−1 of radius r. This is 

an isometric embedding as was shown in [13]. So, given Vγ1 and Vγ2 (the matrices 

constructed from the parallel transported tangent vectors corresponding to trajectories γ1 

and γ2 respectively), we can map them on Sm2−1 of radius rγ1 and rγ2 respectively. Now, 

we can scale PV
γ1 and PV

γ2 by rγ1 and rγ2 respectively to map them both onto the unit 

hypersphere, Sm2−1. The question we may ask is: Is this an injective mapping, i.e., given two 

different subspaces, Vγ1 and Vγ2 with the same starting point, i.e., X1
γ1 = X1

γ2, can they map 

onto the same point on Sm2−1? If the two subspaces are not subspaces of each other, the 

answer is no. This assumption is satisfied quite commonly in practice and we will make this 

assumption here as well. Now, we will formally state and prove the following theorem which 

shows that the above mapping is injective.

Theorem 1. Let Vγ1 and Vγ2 be two linear subspaces on Rm. Without any loss of generality, 

assume rγ1 ≤ rγ2. Assume Vγ1 is not a subspace of Vγ2. Then, the above mapping is 
injective.

Proof. Let us assume that the mapping is not injective, i.e., vec(PV
γ1) rγ1 = vec(PV

γ2) rγ2. 

Then, PV
γ1 = cPV

γ2, where c = rγ1

rγ2
. Observe that, given PV

γ1, the corresponding Vγ1 = Col(U), 

where U∑UT = eig(PV
γ1) and U is the first rγ1 columns of U. Now since, PV

γ1 = cPV
γ2, their 

eigen decompositions are the same, i.e., Vγ1 is a subspace of Vγ2 (which is a contradiction 

to the assumption). □

We will now present the forward mapping algorithm in Alg.-1 to map a trajectory γ onto the 

product space of ℳ and the unit hypersphere.
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Algorithm 1:

Algorithm to map a trajectory onto the ℳ × Sm2 − 1.

  Input: γ consists of p points on ℳ (M is of dimension m)

  Output: (X1, sγ) ∈ ℳ × Sm2 − 1

1 Let the starting point of γ be X1;

2 Compute tangent vector vj from Xj to Xj+1, j = 1, ⋯ p − 1;

3 Parallel transport all the vectors to TX1ℳ and column stack them to form a matrix V  of dimension m × (p − 1);

4 Orthonormalize V  using the Gram-Schmidt orthonormalization to get V, let the rank of V be rγ ;

5 Compute the projection matrix PV
γ

 using Eq. 1. ;

6 Compute sγ = vec(PV
γ ) rγ.

In Fig. 1, we give a pictorial description of our proposed framework. Equipped with the 

algorithm to map from the space of trajectories to ℳ × Sm2 − 1, we will now conduct 

statistical analysis on the product space, which has a simpler geometry (relative to the space 

of trajectories). We will first define a Gaussian distribution on the hypersphere, Sn. It is well-

known in differential geometry that Sn is a homogeneous space and can be identified with 

O(n + 1)/O(n) where O(n) is the compact Lie group of orthogonal matrices [23]. Now, we 

will briefly give the geometry of a homogeneous space N. For a good reference on 

homogeneous spaces, we refer the reader to [23].

2.2. Defining distributions on a homogeneous space—In this section, we will 

briefly summarize the results from [10] relating to rigorously defining a Gaussian 

distribution on a homogeneous space and then specialize it to Sn (which is identified with a 

homogeneous space). First, we will summarize the differential geometry of a homogeneous 

space N, which is needed as background material.

Let (N, g) be a Riemannian manifold with a Riemannian metric g. Let d be the metric 

induced by the Riemannian metric g. Let G be the set of all isometries of N, i.e., given g ∈ 
G, d(g.X, g.Y) = d(X, Y), for all X, Y ∈ N. Let O ∈ N and let H = Stab(O) = {h ∈ G|h.O = 

O} (Stab is abbreviation for Stabilizer). We say G acts transitively on N, iff given X, Y ∈ N, 

there exists a g ∈ G such that Y = g.X.

Definition 2. Let N be a Riemannian manifold. Let G = I(N) act transitively on N and H = 

Stab(O), O ∈ N (called the “origin” of N) is a subgroup of G. Then, N is a homogeneous 
space and can be identified with the quotient space G/H under the diffeomorphic mapping 
gH ↦ g.O,g ∈ G [23].

From the definition of a homogeneous space, we know that the Riemannian metric g at X is 

invariant under the group operation X ↦ g.X, hence the volume element dν is also 

preserved.
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The Gaussian distribution on a homogeneous space:

Let M ∈ N denote the location parameter and σ > 0 be the scale parameter. Now, we will 

define the Gaussian distribution function on a homogeneous space N with respect to an 

appropriately defined probability measure dν [36] as:

fX(M, σ) = 1
Z(σ)exp(− d2 X, M)

2σ2 ) (2)

Theorem 2. The normalization factor in Eq. 2 i.e., Z(M, σ) = ∫ fX (M, σ) dν(X) is a 
constant and is independent of M, i.e., the function in Eq. 2 is a valid probability density 
function (see [10] for a proof).

Algorithm to reconstruct a trajectory:

With a Gaussian distribution on homogeneous space (and in turn on Sm2 −1) defined as 

above, we now give an algorithm to reconstruct trajectory from a given sample in 

ℳ × Sm2 − 1 (Note that under the condition in Theorem 1 this is a well-defined mapping). We 

will assume that ℳ is a matrix Lie group. This means that ℳ is a group and is a smooth 

manifold such that the group operations (multiplication and inverses) are smooth maps. Let e 
be the identity element of Lie group ℳ. The tangent space at e, i.e., Teℳ is called the Lie 

algebra m corresponding to ℳ. Let U, V ∈ m, then the left-invariant metric, g on m is 

defined as g(U, V) = trace(UTV), i.e., m is equipped with an Euclidean metric. Moreover, 

given U ∈ m, one can parallel transport U from m to TXℳ by m ∋ U XU ∈ TXℳ. The 

Riemannian exponential map is defined as ExpX(U) = XExp(X−1U), where U ∈ TXℳ and 

Exp is the matrix exponential. The Riemannian inverse exponential map is defined as 

LogX(Y) = XLog(X−1Y), where Log is the matrix logarithm. We refer the reader to [23] for 

a good reference on Lie groups.

Now, using the Gaussian distribution defined on Lie groups in [19], and the Gaussian 

distribution on a homogeneous space (defined earlier), we can get a sample on ℳ × Sm2 − 1, 

when ℳ is a Lie group. We are now ready to develop an algorithm to obtain γ from a point 

on ℳ × Sm2 − 1.

Algorithm 2:

Algorithm to recover a trajectory corresponding to a point in ℳ × Sm2 − 1.

  Input: (X1, sγ) ∈ ℳ × Sm2 − 1
 where ℳ is a Lie group and sγ is a vectorized projection matrix

  Output: γ consists of r points on ℳ
1 Arrange sγ in a m × m matrix Y ;

2 Compute the rank of Y, let the rank be r − 1 ;
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3 Perform eigen decomposition of Y, i.e., V ΣV T = Y , then, assign V to be the first r − 1 columns of V . Note that in 
order for Y to be the projection matrix of V (using Eq. 1), we assume that each column of V, i.e., vj lies on m, so that 
the metric is the Euclidean inner product;

4 Use Xjvj ∈ TXjℳ to construct Xj+1 from Xj (using the parallel transport of vj from Teℳ to TXjℳ), j = 1, ⋯ r − 

1;

5 Return γ consisting of X1, X2, ⋯ Xr

We should point out that Alg.-2 assumes that the input is a vectorized projection matrix. But, 

any point on hypersphere may not be a vectorization of a projection matrix. We now give a 

projection algorithm which takes an arbitrary point on Sm2 − 1 and returns its closest point on 

Sm2 − 1 that has a preimage on Gr(·, m). Note that, Alg.-2 can be applied to this closest point. 

Algorithm 3 is a projection algorithm from a square matrix to its closest symmetric positive 

semi-definite idempotent matrix. One can prove that this algorithm returns the closest 

projection matrix by an argument similar to Theorem 2 in [42]. Now, we will give 

expressions for the Riemannian exponential (denoted by Exp) and inverse exponential 

(denoted by Log) maps which will be required throughout the rest of the paper. Given x, y ∈ 
Sn, the geodesic distance between x and y, denoted by d(x,y) = arccos(xty). The exponential 

map at x is given by Expx(v) = cos( ∥ v ∥ )x + sin( ∥ v ∥ )v
v , where v ∈ TxSn. The inverse 

exponential map between x and y as Logx(y) = θ
sin(θ) (y − x cos(θ)), where θ = d(x, y).

Algorithm 3:

The projection algorithm.

  Input: s ∈ Sm2 − 1

  Output: sγ ∈ Sm2 − 1 which is an input of Alg.-2

1 Arrange s in a m × m matrix Y ;

2 Compute the rank of Y, let the rank be r ;

3 Perform the eigen decomposition of Y, i.e., V ΣV T = Y , then, assign V to be the first r columns of V  ;

4 Compute P = VVT ;

5 Vectorize P and divide by r to get sγ.

MLE of M:

Given {xi}i = 1
N ⊂ Sn, the Fréchet mean (FM) [20], μ is defined as 

μ = arg minz ∈ SnΣi = 1
N d2(z, xi). The existence and uniqueness of FM is guaranteed if the 

samples lie within a “regular geodesic ball” of radius π/2 [3] (we refer the readers to[26] for 

definition of regular geodesic ball). We will now state (proof is in the supplementary 

section) that maximum likelihood estimator (MLE) of M defined above is the FM.

Lemma 2. Given {xi}i = 1
N ⊂ Sn i.i.d. samples drawn from the Gaussian distribution whose 

support is within a geodesic ball of radius < π/2, the MLE of M (defined in Eq. 2) is the FM 

of {xi}i = 1
N .
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Note that, although Alg.-2 assumes ℳ to be a Lie group, it is also applicable to other special 

manifolds, e.g., space of symmetric positive definite matrices (SPD) and the hypersphere. 

The reason for assuming the Lie group structure is two fold (i) On a Lie group, the tangent 

space at e, i.e., m or the Lie algebra is equipped with Euclidean metric, hence using XXT to 

get projection matrix is meaningful on m. (ii) After getting tangent vectors on m, we can do 

simple matrix multiplication to transport vj into TXjℳ in the Alg.-2.

Now, we will show that both these properties are satisfied for the manifold of SPD matrices 

(with the GL-invariant metric) [24] and the hypersphere (with the arc-length metric). Let ℳ
be a space of m × m SPD matrices, we can define GL-invariant metric, gx on this manifold 

as gx(U, V) = trace (X−1UX−1V, where U, V ∈ TXℳ. So, if X is the identity matrix, clearly, 

gx is the Euclidean inner product, hence the property (i) above is satisfied. Moreover, as the 

m × m invertible matrix (as a general linear group, GL(m)) acts on ℳ, the parallel transport 

is just a group operation. Hence, Alg.-2 is applicable to the SPD-manifold with a GL-

invariant metric.

Let us consider the hypersphere Sn. Any vector v ∈ Rn can be projected onto TxSn by the 

following operation v ↦ v − (vtx)x. Moreover, the parallel transport on Sn is in an analytic 

form, hence we can apply Alg.-2 on Sn. As a side note, we would like to point out that 

equipped with the Log-Euclidean metric, the SPD manifold has a Lie group structure as 

shown in [5] and S0, S1 and S3 are the only hyperspheres which are Lie groups.

In the experiments, we have assumed ℳ to be either a hypersphere or an SPD-manifold. We 

will use the incremental/recursive FM computation algorithm proposed in [38] to compute 

FM of samples on Sm2−1 and on the SPD-manifold, we will use the recursive algorithm for 

FM computation proposed in [24]. Later, we will perform principal geodesic analysis (PGA) 

on the space of trajectories by using exact-PGA on Sm2 − 1, presented in [9]. Both of these 

methods are extremely efficient and the consistency of the incremental/recursive FM 

estimator was proved in [38, 24].

3. Experiments

In this section, we demonstrate the application of the framework to answer three important 

questions that arise in neuroimaging and vision applications. (1) Can principal geodesics 

(PGs) offer efficient representations in detecting group differences in longitudinal 

neuroimaging studies? (2) How robust is our framework to missing temporal data or 

temporal data with varying number of time points? (3) Do principal geodesics offer features 

that are independent of the temporal spans of videos? Before we dive into the experiments to 

evaluate these questions, we present experiments using synthetic data computing the Fréchet 

mean estimation of trajectories.

FM computation of trajectories for synthetic data:

We randomly generate geodesics on S2. We show the mean trajectory for these synthetic 

experiments in Fig. 2. We compared the results with [25], and as expected since all the 

trajectories are geodesic paths, our proposed method yields similar mean trajectory as that 
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from the method in [25]. This serves as a sanity check showing that for simulated data, our 

results are consistent with an existing method from the literature.

Efficient representation:

We use OASIS data [2] to demonstrate that using our framework, we can use PG to detect 

class/group structure. OASIS data [2] contains MR scans of demented, non-demented and 

“converted” patients. Patients who are labelled as “converted” are those who progressed 

from non-demented to demented during the study. This dataset contains at least two MR 

brain scans of 150 subjects, aged between 60 to 96 years old. For each patient, scans are 

separated by at least one year. The dataset includes patients of both sexes. In order to avoid 

gender effects, we use MR scans of female patients from 2–5 visits, which results in a 

dataset containing MR scans of 11 subjects with dementia (denoted by the letter ‘D’) and 12 

subjects without dementia (denoted by ‘ND’) and 7 subjects of “converted” (denoted by the 

letter ‘C’) group. We first compute an atlas (using the method in [6]) from the MR scans of 

patients without dementia. After rigidly registering each MR scans to the atlas, we only 

consider intensity values in a prespecified region of interest (ROI), namely the corpus 

callosum (CC) that is known to be effected most by the disease process, from each image. 

Then, using the Scrodinger distance transform (SDT) [15] applied to the ROI, we map the 

CC shape to point on S2332. For each subject, we have 2-5 time points, i.e., the trajectories 

constitue varying # of time points.

We performed Principal geodesic analysis (PGA) to evaluate classification accuracy and 

group differences on the OASIS data. We take the first 10 principal geodesics (PGs) and 

perform reconstruction of the data. On the reconstructed data, we perform a pairwise group 

testing as follows. We first choose two classes and compute the distance between the two 

mean trajectories (mean trajectory from each class). Then, we randomly permute the class 

labels 10000 times. We then count the fraction of the times the distance between two group 

means computed with these random permutations is larger than the distance on the data with 

with correct permutation (class labels). This gives an approximation of the p-value which is 

reported in Table 1a. Note that a smaller value signifies that there is indeed a class structure 

preserved in the reconstructed data. We can see from the table that our framework preserves 

better class structure in the reconstructed data using the first 10 PGs since, the p-value is 

significantly smaller than that of [25]. Next, we will perform a pairwise leave-one-out 

classification with the PGs to see if our framework indeed gives better classification 

accuracy.

We use a linear SVM classifier on the PGs and report sensitivity (denoted by ‘sn’), 

specificity (denoted by ‘sp’) and classification accuracy (denoted by ‘ac’) in Table 2. It is 

clear from the table that we achieve a better classification accuracy than [25].

Robustness to data with varying time points:

In this section, we will demonstrate the performance of our framework to do statistical 

analysis on temporal data with varying time points or on temporal data with missing entries. 

OASIS data already included varying # of time points. In this section, we also use data from 

the Human Connectome project (HCP) to extract trajectories with missing time points. 
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Before going into the details, we briefly describe the HCP data and how we extract the 

trajectories.

All subjects in the main HCP cohort were scanned on a dedicated 3 Tesla (3T) scanner. We 

analyzed the high-quality curated diffusion MR imaging (dMRI) data made publicly 

available on over 840 healthy adults from the WU-Minn consortium [46]. We obtained 

diffusion tensor images (DTI) from the dMRI data by non-linear fitting of the tensors to the 

diffusion weighted (b = 1000 s/mm2) images. These DTI images were spatially normalized 

using DTI-TK [48], a non-linear diffeomorphic registration and template estimation 

pipeline, that can directly operate on the diffusion tensors using a log-Euclidean framework. 

Seventeen major white matter pathways were obtained by registering the publicly available 

IIT white matter atlas [47] to the HCP template using the ANTS software [6]. We analyzed 

DTI data from the fornix and the cingulum bundle.

Now, from this data, we build the trajectories as follows. We first divide ages of the subjects 

into the following bins: [22, 25], [26, 29], [30, 33] and [34, .). Next, we sample 20 subjects 

from each bin, for all bins. The average of these 20 gives us a virtual subject who is tracked 

across the bins. This is a single trajectory sample with each point on the trajectory belonging 

to a product space of 228, 3 × 3 SPD matrices. We replicate this process 500 times to get 

500 virtual subjects who are tracked across all bins. Then, we randomly choose 2-4 bins for 

each subject to simulate a situation where we have missing entries corresponding to some 

time points. For a pictorial depiction of the trajectory generation for the connectome data, 

see Fig. 3.

One of the major tools to do statistical analysis is to perform regression between a set of 

independent and dependent variables. Now, we will analyze performance of a regressor in 

the situation where the data has varying time points or has missing entries. We will compare 

the performance between our formulation and the formulation proposed in [25] on both 

OASIS and HCP data.

For OASIS data, an important question to ask is: Is there any relationship between the 
structure of corpus callosum and age?. Recently, in [7], the authors have shown that there is 

indeed a relationship. Motivated by this result, here we ask the following question: Is there 
any relationship between the changes in the structure of the corpus callosum and age? 
Further, for different patients, we measured the changes on varying number of time points. 

We use the manifold-valued kernel regression (MVKR) technique proposed in [7] as the 

non-linear regressor. In order to evaluate the performance, we chose the R2 statistic on 

Riemannian manifolds as defined in [18] as a measure. An R2 statistic value close to 1 

implies better regression performance. The comparative results are reported in Table 1b 

which clearly suggest that the regressor gives better R2 statistic using our framework. 

Moreover, as the regression relationship is complex, so the approximation of a trajectory by 

a geodesic is a probable reason behind the poor R2 statistics value given by [25]. Now, we 

perform a t-test with 1000 independent runs to check the statistical significance of the 

regression result. We reject the null hypothesis “H0 = mean of the unexplained variance is 

not less than the mean of the data variance” with a significance level of 0.05. From the t-test 

result we can see that our results are statistically significant.
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Recall that in the HCP data, we have trajectories with missing entries. For this data, it is 

meaningful to ask how the behavioral measure of a person relates to the changes in the brain 

scans, i.e., on the virtual subject, as we track the changes of brain scans, can we predict the 

behavioral scores. We have two such scores namely, ProcSpeed_Unadj (denoted by ‘pU’) 

and ListSort_Unadj (denoted by ‘lU’). These scores measure processing speed of subjects in 

sorting a list of items. As before, we perform kernel regression (MVKR) and compute the R2 

statistic. The comparative results are reported in Table 3. The results indicate a good R2 

statistic value using our method and an unsatisfactory performance by the method in [25]. 

As before, we also perform a t-test on 1000 independent runs to check how statistically 

significant is the R2 statistic value. We choose the null hypothesis as in the case of OASIS 

data and reject with significance level 0.05. Moreover, in contrast to the baseline, our 

method yields statistically significant results. We suspect that this is because in the HCP 

data, trajectories are “complicated”, i.e., deviate from a geodesic; so, using a geodesic-based 

formulation may not be appropriate for regression on this data.

Length (of time) invariant representation:

In computer vision, a common type of temporal data analysis is in calculating statistical 

summaries of video data. In this section, we deal with videos of gymnastic routines from 

2012 London Olympics [1]. Moreover, this data is of varying temporal span, so it would be 

interesting to statistically summarize this data. Each video is of dimension of 640 × 360 and 

the frame rate is 30 fps. We collected videos of 5 Gymnastic activities, where each activity is 

performed by 8 gymnasts. We sampled this video using 1/3 fps.

From each frame, we extracted HOG features [14], using the following parameter values: 

Blocksize = 2, Cellsize = 16, Blockoverlap = 4, Number of Bins = 9. We normalize the HOG 

features to map it to S1763. We construct the trajectory from each gymnast’s video by taking 

each frame as a point on the trajectory. Due to the varying time span of the videos, we get 

trajectories of varying number of time points. A sample trajectory from each act is shown in 

Fig. 5.

We report results of groupwise statistical summarization of the Gymnastics routines from 

several gymnasts across the world. The summarization is depicted in the form of a biplot 

showing ability of a method employed to group gymnasts within groups. In this experiment, 

we performed PGA on the trajectories representing gymnast routines, using our formulation. 

We summarize the data, in R2 by taking the component along the first two PGs. In addition 

to a comparison with [25], we also compared results from using space-time features. We first 

used Harris3D detector [30] to extract spatio-temporal interest point from each video. Then 

from each interest point, we calculate HOG and HOF features [32]. We use the 

implementation available on-line [29] with standard parameter settings. Then, we use kernel-

PCA[34](with a Gaussian kernel) on the feature vector to get the first two PCs. The 

comparison is depicted in Fig. 4, where, we can see that our formulation yields the best 

summary in terms of preserving better structure within the same activity.
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4. Conclusions

We presented a novel geometric framework and algorithms for computing statistics on the 

space of trajectories representing longitudinal data. The salient features of our algorithm are: 

(i) it can seamlessly cope with trajectories of distinct temporal spans and (ii) the framework 

maps each trajectory of varying # of time points represented by a linear subspace of Rm on 

to a single finite dimensional hypersphere. Since, the geometry of the hypersphere is simple 

and yields analytic expressions for most geometric quantities of interest here, it gives our 

algorithm an edge over the competition. Finally, unlike most existing methods for trajectory 

modeling, our method does not require that all the sample points of a trajectory lie on a 

geodesic. We presented experiments demonstrating how group testing on longitudinal data 

with different number of time samples is possible by analyzing the reconstructed data in the 

subspace spanned by the first few PGs. We also presented experiments demonstrating 

robustness of our framework to missing time points. Finally, we performed a statistical 

summarization of temporal data of varying time spans and compared the performance with 

the state-of-the-art.
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Figure 1: 
The pictorial description of the framework to map trajectories with different number of 

sample points.
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Figure 2: 
Trajectories are shown in black and the mean trajectories (using proposed method and 

method in [25]) are shown in green and blue respectively. The results from both methods are 

similar suggesting that our representation is reasonable.
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Figure 3: 
Trajectory generation for the connectome data (each bubble shows the number of samples).
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Figure 4: 
Summarization of the Gymnastics data (five gymnastic activities) using Left: Our method, 

Middle: [30] and Right: [25]. Note the clear class separation obtained by our method.
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Figure 5: 
Sample trajectories and corresponding legends used in Fig. 4.
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Table 1:

Statistical analysis on OASIS data.

(a) Comparison of approximated p-values.

Class names Our Method [25]

C vs. D 0.065 0.53

C vs. ND 0.035 0.38

D vs. ND 0.051 0.46

(b) Comparison of regression results

Our Method [25]

R2 statistics 0.64 0.37

p-value 0.032 0.087
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Table 2:

Classification on OASIS data.

Class Names
Our Method [25]

sn sp ac (%) sn sp ac (%)

C vs. D 0.86 0.91 88.89 0.86 0.82 83.33

C vs. ND 0.86 1.00 94.73 0.71 0.83 78.95

D vs. ND 0.91 0.92 91.31 0.91 0.83 86.96
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Table 3:

Regression results on HCP data.

Behavioral Scores

Our Method [25]

R2 statistics p-value R2 statistics p-value

pU 0.78 0.017 0.02 0.83

lU 0.75 0.021 0.16 0.75
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