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Abstract

Despite the substantial progress in recent years, the im-
age captioning techniques are still far from being perfect.
Sentences produced by existing methods, e.g. those based
on RNNs, are often overly rigid and lacking in variabil-
ity. This issue is related to a learning principle widely
used in practice, that is, to maximize the likelihood of train-
ing samples. This principle encourages high resemblance
to the “ground-truth” captions, while suppressing other
reasonable descriptions. Conventional evaluation metrics,
e.g. BLEU and METEOR, also favor such restrictive meth-
ods. In this paper, we explore an alternative approach,
with the aim to improve the naturalness and diversity – two
essential properties of human expression. Specifically, we
propose a new framework based on Conditional Generative
Adversarial Networks (CGAN), which jointly learns a gen-
erator to produce descriptions conditioned on images and
an evaluator to assess how well a description fits the visual
content. It is noteworthy that training a sequence generator
is nontrivial. We overcome the difficulty by Policy Gradient,
a strategy stemming from Reinforcement Learning, which
allows the generator to receive early feedback along the
way. We tested our method on two large datasets, where
it performed competitively against real people in our user
study and outperformed other methods on various tasks.

1. Introduction
Generating descriptions of images has been an impor-

tant task in computer vision. Compared to other forms of
semantic summary, e.g. object tagging, linguistic descrip-
tions are often richer, more comprehensive, and a more
natural way to convey image content. Along with the re-
cent surge of deep learning technologies, there has been re-
markable progress in image captioning over the past few
years [11, 29–32]. Latest studies on this topic often adopt
a combination of an LSTM or its variant and a CNN. The
former is to produce the word sequences while the latter is
to capture the visual features of the images.

The advance in image captioning has been marked as a
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A cow standing in a field next to houses

A cow standing in a field with houses

A cow standing in a field of grass

Many cows grazing in the grass field in front of houses

Several cows grazing on grassy area in a pasture

A heard of cattle grazing on a lush green field

Grey cow walking in a large green field in front of house

A cow in a large open field with a house in the background

A cow standing in a large open grass field

A train that is pulling into a station

A train that is going into a train station

A train that is parked in a train station

A passenger train is going down the tracks

A beige blue and white train blocking a train track

A large long train is going down the tracks in a waiting area

A train pulling into a station outside during the day

A passenger train moving through a rail yard

A long passenger train pulling up to a station

Figure 1: This figure shows two images with descriptions gener-
ated by humans, an LSTM net trained with our GAN-based frame-
work (G-GAN), and an LSTM net trained with MLE (G-MLE).
The last two columns compare the metric values of BLEU-3 and
E-GAN, the evaluator trained using our method. As we can see,
the sentences generated by G-GAN are more natural and demon-
strate higher variability, as compared to those by G-MLE. Also,
the E-GAN metrics are more consistent with human’s evaluations,
while BLEU only favors those that significantly overlap with the
training samples in detailed wording.

prominent success of AI1. It has been reported [29, 30] that
with certain metrics, like BLEU [23] or CIDEr [28], state-
of-the-art techniques have already surpassed human’s per-
formance. A natural question to ask is then: has the problem
of generating image descriptions been solved? Let us take
a step back, and look at a sample of the current results. Fig-
ure 1 shows two vivid scenes together with three sentences
produced by the Encoder-and-Decoder model [29] (marked
as “G-MLE”), a state-of-the-art caption generator. Though
faithfully describing the content of the images, these sen-
tences feel rigid, dry, and lacking in vitality.

This is not surprising. Our brief survey (see Section 2)

1ARTIFICIAL INTELLIGENCE AND LIFE IN 2030, https://
ai100.stanford.edu/2016-report
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shows that existing efforts primarily focus on fidelity, while
other essential qualities of human languages, e.g. natu-
ralness and diversity, have received less attention. More
specifically, mainstream captioning models, including those
based on LSTMs [8], are mostly trained with the (condi-
tional) maximum likelihood objective. This objective en-
courages the use of the n-grams that appeared in the training
samples. Consequently, the generated sentences will bear
high resemblance to training sentences in detailed wording,
with very limited variability in expression [4]. Moreover,
conventional evaluation metrics, such as BLEU [23], ME-
TEOR [14], ROUGE [18], and CIDEr [28], tend to favor
this “safe” but restricted way. Under these metrics, sen-
tences that contain matched n-grams would get substantially
higher scores than those using variant expressions [1]. This
issue is manifested by the fact that human descriptions get
considerably lower scores.

Motivated to move beyond these limitations, we explore
an alternative approach in this work. We wish to pro-
duce sentences that possess three properties: (1) Fidelity:
the generated descriptions should reflect the visual content
faithfully. Note that we desire the fidelity in semantics in-
stead of wording. (2) Naturalness: the sentences should
feel like what real people would say when presented with
the image. In other words, when these sentences are shown
to a real person, she/he would ideally not be able to tell
that they are machine-generated. (3) Diversity: the genera-
tor should be able to produce notably different expressions
given an image – just like human beings, different people
would describe an image in different ways.

Towards this goal, we develop a new framework on
top of the Conditional GAN [22]. GAN has been suc-
cessfully used in image generation. As reported in previ-
ous works [9, 24], they can produce natural images nearly
indistinguishable from real photos, freely or constrained
by conditions. This work studies a different task for the
GAN method, namely, generating natural descriptions con-
ditioned on a given image. To our best knowledge, this is
the first time the GAN method is used for image description.

Applying GANs to text generation is nontrivial. It comes
with two significant challenges due to the special nature of
linguistic representation. First, in contrast to image genera-
tion, where the transformation from the input random vector
to the produced image is a deterministic continuous map-
ping, the process of generating a linguistic description is
a sequential sampling procedure, which samples a discrete
token at each step. Such operations are non-differentiable,
making it difficult to apply back-propagation directly. We
tackle this issue via Policy Gradient, a classical method
originating from reinforcement learning [27]. The basic
idea is to consider the production of each word as an ac-
tion, for which the reward comes from the evaluator. By ap-
proximating the stochastic policy with a parametric function

approximator, we allow gradients to be back-propagated.
Second, in the conventional GAN setting, the generator

would receive feedback from the evaluator when an entire
sample is produced. For sequence generation, this would
lead to several difficulties in training, including vanishing
gradients and error propagation. To mitigate such difficul-
ties, we devise a mechanism that allows the generator to get
early feedback. Particularly, when a description is partly
generated, our framework would calculate an approximated
expected future reward through Monte Carlo rollouts [34].
Empirically, we found that this significantly improves the
efficiency and stability of the training process.

Overall, our contributions can be briefly summarized as
follows: (1) We explore an alternative approach to gener-
ate image descriptions, which, unlike most of the previous
work, encourages not only fidelity but also naturalness and
diversity. (2) From a technical standpoint, our approach re-
lies on the conditional GAN method to learn the genera-
tor, instead of using MLE, a paradigm widely adopted in
state-of-the-art methods. (3) Our framework not only re-
sults in a generator that can produce natural and diverse ex-
pressions, but also yields a description evaluator at the same
time, which, as we will show in our experiments, is substan-
tially more consistent with human evaluation.

2. Related Work
Generation. Generating descriptions for images has been
a long standing topic in computer vision. Early studies
mostly adopted detection-based approaches. Such methods
first detect visual concepts (e.g. object categories, relation-
ships, and attributes) using CRFs [2, 6, 12], SVMs [16], or
CNNs [5,17], then generate descriptions thereon using sim-
ple methods, such as sentence templates [12, 16], or by re-
trieving relevant sentences from existing data [5, 6, 13, 15].

In recent years, the Encoder-and-Decoder paradigm pro-
posed in [29] became increasingly popular. Many state-of-
the-art frameworks [21, 29–32, 35] for this task adopt the
maximum likelihood principle for learning. Such a frame-
work usually works as follows. Given an image I , it first
derives a feature representation f(I), and then generates the
words w1, . . . , wT sequentially, following a Markov pro-
cess conditioned on f(I). The model parameters are learned
via maximum likelihood estimation (MLE), i.e. maximizing
the conditional log-likelihood of the training samples, as:

∑
(Ii,Si)∼D

Ti∑
t=0

log p
(
w

(t)
i |f(I), w

(t−1)
i , . . . , w

(t−n)
i

)
(1)

Here, Ii and Si = (w
(0)
i , . . . , w

(Ti)
i ) are the image and

the corresponding descriptive sentence of the i-th sample,
and n is the order of the Markov chain – the distribution
of the current word depends on n preceding words. Along



A street sign mounted to a white light pole

A street sign in front of a multistory building

A street sign on a white lamp post says Ellis

A bike parked in front of a wooden structure

A graffiti covered truck parked in front of a building

A man standing in front of a stone wall
…

…

…

A street sign in front of a building

Input:

Have seen similar image before Sample following similar patterns

Output:

One windowed building acts as a mirror 
to show another building

• This is a building on the corner of Trinity 
and 4th Street
• A street sign on a street and a building 
with many windows behind it
• A green sign is in front of a large 
building
• Trinity and 4th street sign with stop sign
near glass building

A street sign in front of a building

Description 2:

Description 1:

Reference annotations:

(a) Generation (b) Evaluation

Figure 2: We illustrate the procedures of image description gen-
eration and evaluation for state-of-the-art approaches. While the
generation procedure tends to follow observed patterns, the evalu-
ation procedure also favors this point. Best viewed in color.

a woman holding a skateboard on a street

0.71 0.61 0.75 0.36 1.49 0.28 0.05

B3 B4 ROUGE METEOR CIDEr SPICE E-GAN

0.25 0.01 0.48 0.19 0.36 0.14 0.37

three women one with a skateboard outside a store

a baseball player swinging a bat at a ball

0.71 0.65 0.78 0.39 2.21 0.28 0.48

B3 B4 ROUGE METEOR CIDEr SPICE E-GAN

0.01 0.01 0.31 0.23 0.82 0.25 0.82

the umpire stands over a catcher as the batter swings

a man holding a tennis racquet on a tennis court

0.99 0.99 1.0 1.0 3.53 0.58 0.69

B3 B4 ROUGE METEOR CIDEr SPICE E-GAN

0.01 0.01 0.48 0.28 1.03 0.2 0.67

a man getting ready to serve a tennis ball

Figure 3: Examples of images with two semantically similar de-
scriptions, selected from ground-truth annotations. While existing
metrics assign higher scores to those with more matched n-grams,
E-GAN gives scores consistent with human evaluation.

with the popularity of deep neural networks, latest studies
often adopt neural networks for both image representation
and language modeling. For example, [30] uses a CNN for
deriving the visual features f(I), and an LSTM [8] net to
express the sequential relations among words. Despite the
evolution of the modeling choices, the maximum likelihood
principle remains the predominant learning principle.

As illustrated in Figure 2, when similar images are pre-
sented, the sentences generated by such a model often con-
tain repeated patterns [3]. This is not surprising – under the
MLE principle, the joint probability of a sentence is, to a
large extent, determined by whether it contains the frequent
n-grams from the training set. Therefore, the model trained
in this way will tend to produce such n-grams. In partic-
ular, when the generator yields a few of words that match
the prefix of a frequent n-gram, the remaining words of that
n-gram will likely be produced following the Markov chain.

Evaluation. Along with the development of the genera-
tion methods, various evaluation metrics have been pro-
posed to assess the quality of the generated sentences. Clas-
sical metrics include BLEU [23] and ROUGE [18], which
respectively focuses on the precision and recall of n-grams.
Beyond them, METEOR [14] uses a combination of both
the precision and the recall of n-grams. CIDEr [28] uses
weighted statistics over n-grams. As we can see, such met-
rics mostly rely on matching n-grams with the “ground-
truths”. As a result, sentences that contain frequent n-grams
will get higher scores as compared to those using variant
expressions, as shown in Figure 3. Recently, a new met-
ric SPICE [1] was proposed. Instead of matching between
n-grams, it focuses on those linguistic entities that reflect
visual concepts (e.g. objects and relationships). However,
other qualities, e.g. the naturalness of the expressions, are
not considered in this metric.

Our Alternative Way. Previous approaches, including
both generation methods and evaluation metrics, primarily
focus on the resemblance to the training samples. While this
is a safe way to generate plausible descriptions, it is limited.
For example, when presented an image, different people
would probably give different descriptions that do not over-
lap much in the wording patterns. This diversity in expres-
sion is an essential property of human languages, which,
however, is often overlooked in previous works (both gen-
eration and evaluation). In this work, we explore an alter-
native approach – instead of emphasizing n-gram matching,
we aim to improve the naturalness and diversity, i.e. gen-
erating sentences that feel like what real people would say,
rather than focusing on word-by-word matching. Specifi-
cally, our approach jointly trains a generator G and an eval-
uatorE in an adversarial way, whereG is to produce natural
descriptions, while E is to distinguish irrelevant or artificial
descriptions from natural ones.

From a technical standpoint, our approach is based on
the conditional GAN approach. GANs [7] and conditional
GANs [22] are popular formulations for learning genera-
tors. For computer vision, GAN was originally introduced
to generate images [24]. In a recent work [34], a text gener-
ator based on the GAN method was proposed. Note that this
is an unconstrained generator that does not take into account
any conditions. Hence, it can not be directly used for gen-
erating descriptions for images – in this task, the relevance
of the generated text to the given image is essential. To our
best knowledge, this is the first study that explores the use
of conditional GAN in generating image descriptions.

3. Framework

We propose a new framework for generating image de-
scriptions based on the conditional GAN [22] method,
which consists of a generator G, and an evaluator E. Given
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(c) G for paragraph generation

Sentence 3

Figure 4: The structures of the generator G for both single sentences and paragraphs, and the evaluator E for single sentences.

an image I , the former is for generating natural and seman-
tically relevant descriptions; while the latter is for evaluat-
ing how well a sentence or paragraph describes I . We start
with generating single sentences as descriptions, and then
extend our framework to paragraph generation.

3.1. Overall Formulation

Our framework contains a generator G and a evaluator
E, whose structures are respectively shown in Figure 4 (a)
and (b). It is worth noting that our framework is orthog-
onal to works that focus on architectural designs of the G
and the E. Their structures are not restricted to the ones
introduced in this paper. In our framework, given an image
I , the generator G takes two inputs: an image feature f(I)
derived from a convolutional neural network (CNN) and a
random vector z. In particular, we follow the setting in Neu-
ralTalk22, adopting VGG16 [26] as the CNN architecture.
The random vector z allows the generator to produce differ-
ent descriptions given an image. One can control the diver-
sity by tuning the variance of z. With both f(I) and z as the
initial conditions, the generator relies on an LSTM [8] net as
a decoder, which generates a sentence, word by word. Par-
ticularly, the LSTM net assumes a sequence of latent states
(s0, s1, . . .). At each step t, a word wt is drawn from the
conditional distribution p(w|st).

The evaluator E is also a neural network, with an archi-
tecture similar to G but operating in a different way. Given
an image I and a descriptive sentence S = (w0, w1, . . .),
it embeds them into vectors f(I) and h(S) of the same di-
mension, respectively via a CNN and an LSTM net. Then
the quality of the description, i.e. how well it describes I , is
measured by the dot product of the embedded vectors, as

rη(I, S) = σ (〈f(I,ηI),h(S,ηS)〉) . (2)

Here, η = (ηI ,ηS) denotes the evaluator parameters, and σ
is a logistic function that turns the dot product into a prob-
ability value in [0, 1]. Note that while the CNN and the
LSTM net in E have the same structure as those in G, their
parameters are not tied with each other.

2https://github.com/karpathy/neuraltalk2

For this framework, the learning objective of G is to
generate descriptions that are natural, i.e. indistinguishable
from what humans would say when presented with the same
image; while the objective of E is to distinguish between
artifical descriptions (i.e. those from G) and the real ones
(i.e. those from the training set). This can be formalized
into a minimax problem as follows:

min
θ

max
η
L(Gθ, Eη). (3)

Here, Gθ and Eη are a generator with parameter θ and an
evaluator with parameter η. The objective function L is:

ES∼PI
[log rη(I, S)] + Ez∼N0

[log(1− rη(I,Gθ(I, z)))] .
(4)

Here, PI denotes the descriptive sentences for I provided
in the training set, N0 denotes a standard normal distribu-
tion, and Gθ(I, z) denotes the sentence generated with I
and z. The overall learning procedure alternates between
the updating of G and E, until they reach an equilibrium.

This formulation reflects an essentially different philos-
ophy in how to train a description generator as opposed
to those based on MLE. As mentioned, our approach aims
at the semantical relevance and naturalness, i.e. whether
the generated descriptions feel like what human would say,
while the latter focuses more on word-by-word patterns.

3.2. TrainingG: Policy Gradient & Early Feedback

As mentioned, unlike in conventional GAN settings,
the production of sentences is a discrete sampling process,
which is nondifferentiable. A question thus naturally arises
- how can we back-propagate the feedback from E under
such a formulation? We tackle this issue via Policy Gradi-
ent [27], a technique originating from reinforcement learn-
ing. The basic idea is to consider a sentence as a sequence
of actions, where each word wt is an action. The choices of
such “actions” are governed by a policy πθ.

With this interpretation, the generative procedure works
as follows. It begins with an empty sentence, denoted
by S1:0, as the initial state. At each step t, the pol-
icy πθ takes the conditions f(I), z, and the preceding
words S1:t−1 as inputs, and yields a conditional distribu-
tion πθ(wt|f(I), z, S1:t−1) over the extended vocabulary,

https://github.com/karpathy/neuraltalk2


namely all words plus an indicator of sentence end, denoted
by e. This computation is done by moving forward along
the LSTM net by one step. From this conditional distribu-
tion, an action wt will be sampled. If wt = e, the sentence
will be terminated, otherwise wt will be appended to the
end. The reward of this sequence of actions S is rη(I, S),
the score given by the evaluator E.

Now, we have defined an action space, a policy, and a
reward function, and it seems that we are ready to apply the
reinforcement learning method. However, there is a serious
issue here – a sentence can only be evaluated when it is
completely generated. In other words, we can only see the
reward at the end. We found empirically that this would lead
to a number of practical difficulties, e.g. gradients vanishing
along a long chain and overly slow convergence in training.

We address this issue through early feedback. To be
more specific, we evaluate an expected future reward as de-
fined below when the sentence is partially generated:

Vθ,η(I, z, S1:t) = ESt+1:T∼Gθ(I,z)[rη(I, S1:t ⊕ St+1:T )].
(5)

where ⊕ represents the concatenation operation. Here, the
expectation can be approximated using Monte Carlo roll-
outs [34]. Particularly, when we have a part of the sentence
S1:t, we can continue to sample the remaining words by
simulating the LSTM net until it sees an end indicator e.
Conducting this conditional simulation for n times would
result in n sentences. We can use the evaluation score av-
eraged over these simulated sentences to approximate the
expected future reward. To learn the generator Gθ, we use
maximizing this expected reward Vθ,η as the learning ob-
jective. Following the argument in [27], we can derive the
gradient of this objective w.r.t. θ as:

Ẽ

[
Tmax∑
t=1

∑
wt∈V

∇θπθ(wt|I, z, S1:t−1) · Vθ′,ψ(I, z, S1:t ⊕ wt)

]
.

(6)
Here, V is the vocabulary, Tmax is the max length of a de-
scription, and Ẽ is the mean over all simulated sentences
within a mini-batch. θ′ is a copy of the generator parameter
θ at the begining of the update procedure of the generator.
During the procedure, the generator will be updated multi-
ple times, and each update will use the same set of parame-
ters (θ′) to compute Eq (5).

Overall, using policy gradients, we make the generator
trainable with gradient descent. Using expected future re-
ward, we can provide early feedback to the generator along
the way, thus substantially improving the effectiveness of
the training process. Note that policy gradients have also
been used in image description generation in [20,25]. These
works, however, adopt conventional metrics, e.g. BLEU and
CIDEr as rewards, instead of relying on GAN. Hence, their
technical frameworks are fundamentally different.

3.3. Training E: Naturalness & Relevance

The primary purpose ofE is to determine how well a de-
scription S describes a given image I . A good description
needs to satisfy two criteria: natural and semantically rel-
evant. To enforce both criteria, inspired by [24] we extend
Eq (4) to consider three types of descriptions for each train-
ing image I: (1) SI : the set of descriptions for I provided
by human, (2) SG: those from the generator Gθ, and (3)
S\I : the human descriptions for different images, which is
uniformly sampled from all descriptions that are not associ-
ated with the given image I . To increase the scores for the
descriptions in SI while suppressing those in the others, we
use a joint objective formulated as:

max
η

LE(η) =
1

N

N∑
i=1

LE(Ii;η). (7)

Here, N is the number of training images. The term for
each image Ii is given by:

LE(I;η) = ES∈SI log rη(I, S)

+ α · ES∈SG log(1− rη(I, S))
+ β · ES∈S\I log(1− rη(I, S)). (8)

The second term forces the evaluator to distinguish between
the human descriptions and the generated ones, which
would in turn provide useful feedbacks to Gθ, pushing it to
generate more natural descriptions. The third term, on the
other hand, ensures the semantic relevance, by explicitly
suppressing mismatched descriptions. The coefficients α
and β are to balance the contributions of these terms, whose
values are empirically determined on the validation set.

3.4. Extensions for Generating Paragraphs

We also extend our framework to generate descrip-
tive paragraphs by adopting a Hierarchical LSTM design.
Specifically, our extended design is inspired by [11]. As
shown in part (c) of Figure 4, it comprises two LSTM levels
– a sentence-level LSTM net and a word-level LSTM net.
Given the conditions f(I) and z, to produce a paragraph, it
first generates a sequence of vectors based on f(I), each en-
coding the topics of a sentence. Then for each sentence, it
generates the words conditioned on the corresponding topic
and the random vector z.

For evaluating a paragraph, the evaluatorE also adopts a
hierarchical design, but reversing the steps. Given an image
I and a paragraph P , it first embeds each sentence into a
vector via a word-level LSTM net, and then embeds the en-
tire paragraph by combining the sentence embeddings via a
sentence-level LSTM net. Finally, it computes the score by
taking the dot product between the paragraph embedding
p and the image representation f(I), and turning it into a
probability as σ(pT f(I)), where σ is the logistic function.
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Figure 5: The figure shows the human comparison results be-
tween each pair of generators. With names of the generators
placed at each side of the comparison, the blue and orange areas
respectively indicate percentages of the generator in the left and
right being the better one.

After pretraining, we fix the sentence-level LSTM net of
G and only update the word-level LSTM net ofG during the
CGAN learning procedure. This can effectively reduce the
cost of Monte Carlo rollouts. With a fixed sentence-level
LSTM net, the policy gradients for each sentence will be
computed separately, following the steps in Sec 3.2. Other
parts of the training procedure remain the same.

4. Experiment

Datasets We conducted experiments to test the proposed
framework on two datasets: (1) MSCOCO [19], which con-
tains 82, 081 training images and 40, 137 validation images.
(2) Flickr30k [33], which contains 31, 783 images in total.
We followed the split in [10], which has 1, 000 images for
validation, 1, 000 for testing, and the rest for training. In
both datasets, each image has at least 5 ground truth sen-
tences. Note that our experiments involve comparison be-
tween human descriptions and model-generated ones. As
we have no access to the ground-truth annotations of the
testing images in MSCOCO, for this dataset, we use the
training set for both training and validation, and the valida-
tion set for testing the performance.

Experimental settings To process the annotations in each
dataset, we follow [10] to remove non-alphabet characters,
convert all remaining characters to lower-case, and replace
all the words that appeared less than 5 times with a spe-
cial word UNK. As a result, we get a vocabulary of size
9, 567 on MSCOCO, and a vocabulary of size 7, 000 on
Flickr30k. All sentences are truncated to contain at most
16 words during training. We respectively pretrain G using
standard MLE [29], for 20 epoches, and E with supervised
training based on Eq (8), for 5 epoches. Subsequently, G
and E are jointly trained, where each iteration consists of
one step of G-update followed by one step of E-update. We
set the mini-batch size to 64, the learning rate to 0.0001,
and n = 16 in Monte Carlo rollouts. When testing, we use
beam search based on the expected rewards from E-GAN,
instead of the log-likelihoods, which we found empirically
leads to better results.

Models We compare three methods for sentence gen-
eration: (1)Human: a sentence randomly sampled from
ground-truth annotations of each image is used as the out-
put of this method. Other human-provided sentences will
be used as the references for metric evaluation. This base-
line is tested for the purpose of comparing human-provided
and model-generated descriptions. (2)G-MLE: a generator
trained based on MLE [29] is used to produce the descrip-
tions. This baseline represents the state-of-the-art of main-
stream methods. (3)G-GAN: the same generator trained by
our framework proposed in this paper, which is based on the
conditional GAN formulations.

For both G-MLE and G-GAN, VGG16 [26] is used as the
image encoders. Activations at the fc7 layer, which are of
dimension 4096, are used as the image features and fed to
the description generators. Note that G-GAN also takes a
random vector z as input. Here, z is a 1024-dimensional
vector, whose entries are sampled from a standard normal
distribution.

Evaluation metrics We consider multiple evaluation
metrics, including six conventional metrics BLEU-3 and
BLEU-4 [23], METEOR [14], ROUGE L [18], CIDEr [28],
SPICE [1], and two additional metrics relevant to our for-
mulation: E-NGAN and E-GAN. Particularly, E-GAN refers
to the evaluator trained using our framework, E-NGAN
refers to the evaluator trained according to Eq (8) without
updating the generator alternatively. In other words, it is
trained to distinguish between human-provided sentences
and those generated by an MLE-based model.

Table 1 lists the performances of different generators
under these metrics. On both datasets, the sentences pro-
duced by G-MLE receive considerably higher scores than
those provided by human, on nearly all conventional met-
rics. This is not surprising. As discussed earlier, such
metrics primarily focus on n-gram matching w.r.t. the ref-
erences, while ignoring other important properties, e.g. nat-
uralness and diversity. These results also clearly suggest
that these metrics may not be particularly suited when eval-
uating the overall quality of the generated sentences. On
the contrary, E-GAN regards Human as the best generator,
while E-NGAN regards G-GAN as the best one. These two
metrics obviously take into account more than just n-gram
matching.

User study & qualitative comparison To fairly evaluate
the quality of the generated sentences as well as how consis-
tent the metrics are with human’s perspective, we conducted
a user study. Specifically, we invited 30 human evaluators
to compare the outputs of different generators. Each time,
a human evaluator would be presented an image with two
sentences from different methods and asked to choose the
better one. Totally, we collected about 3, 000 responses.

The comparative results are shown in Figure 5: From
human’s views, G-GAN is better than G-MLE in 61% of



BLEU-3 BLEU-4 METEOR ROUGE L CIDEr SPICE E-NGAN E-GAN

C
O

C
O human 0.290 0.192 0.240 0.465 0.849 0.211 0.527 0.626

G-MLE 0.393 0.299 0.248 0.527 1.020 0.199 0.464 0.427
G-GAN 0.305 0.207 0.224 0.475 0.795 0.182 0.528 0.602

Fl
ic

kr human 0.269 0.185 0.194 0.423 0.627 0.159 0.482 0.464
G-MLE 0.372 0.305 0.215 0.479 0.767 0.168 0.465 0.439
G-GAN 0.153 0.088 0.132 0.330 0.202 0.087 0.582 0.456

Table 1: This table lists the performances of different generators on MSCOCO and Flickr30k. On BLEU-{3,4}, METEOR,
ROUGE L, CIDEr, and SPICE, G-MLE is shown to be the best among all generators, surpassing human by a significant
margin. While E-NGAN regard G-GAN as the best generator, E-GAN regard human as the best one.

𝒛1
a baseball player holds a bat
up to hit the ball

a man riding a snowboard
down a slope

a group of people sitting around a 
table having a meal in a restaurant

a group of men dressed in
suits posing for a photo

𝒛2
a baseball player holding
white bat and wear blue
baseball uniform

a person standing on a
snowboard sliding down a
hill

a young man sitting at a table with 
coffee and a lot of food

a couple of men standing
next to each other wearing
glasses

𝒛3
a professional baseball
player holds up his bat as
he watches

a man is jumping over a
snow covered hill

a pretty young man sitting
next to two men in lots of people

some people dressed in 
costume and cups

Figure 6: This figure shows example images with descriptions generated by G-GAN with different z.

R@1 R@3 R@5 R@10

S
G-MLE 5.06 12.28 18.24 29.30
G-GAN 14.30 30.88 40.06 55.82

P
G-MLE 9.88 20.12 27.30 39.94
G-GAN 12.04 23.88 30.70 41.78

Table 2: The recalls of image rankings for different generators.
Here recalls is the ratio of the original image being in the top-
k in the ranked lists. The ranks are based on the similarities (S)
between a image and a description, estimated by E-GAN, as well
as the log-likelihoods (P), computed by different generators.

all cases. In the comparison between human and models,
G-MLE only won in 9% of the cases, while G-GAN won
in over 24%. These results clearly suggest that the sen-
tences produced by G-GAN are of considerably higher qual-
ity, i.e. being more natural and semantically relevant. The
examples in Figure 7 also confirm this assessment. Partic-
ularly, we can see when G-MLE is presented with similar
images, it tends to generate descriptions that are almost the
same. On the contrary, G-GAN describes them with more
distinctive and diverse ones. We also varied z to study the
capability of G-GAN in giving diverse descriptions while
maintaining the semantical relatedness. The qualitative re-
sults are listed in Figure 6.

For the evaluation metrics, the assessments provided by
E-GAN are the most consistent with human’s evaluation,
where the Kendall’s rank correlation coefficient between E-

GAN and HE is 0.14, while that for CIDEr and SPICE are
-0.30 and -0.25. Also note that E-GAN yields a larger nu-
merical gap between scores of human and those of other
generators as compared to E-NGAN, which suggests that
adversarial training can improve the discriminative power
of the evaluator.
Evaluation by retrieval To compare the semantic rele-
vance, we conducted an experiment using generated de-
scriptions for retrieval. Specifically, we randomly select
5, 000 images from the MSCOCO validation set; and for
each image, we use the generated description as a query,
ranking all 5, 000 images according to the similarities be-
tween the images and the descriptions, computed by E-
GAN, as well as the log-likelihoods. Finally, we compute
the recall of the original image that appeared in the top-k
ranks. The results for k = 1, 3, 5, 10 are listed in Table 2,
where G-GAN is shown to provide more discriminative de-
scriptions, outperforming G-MLE by a large margin across
all cases.
Failure Analysis We analyzed failure cases and found
that a major kind of errors is the inclusion of incorrect de-
tails. e.g. colors (red/yellow hat), and counts (three/four
people). A possible cause is that there are only a few sam-
ples for each particular detail, and they are not enough to
make the generator capture these details reliably. Also, the
focus on diversity and overall quality may also encourage
the generator to include more details, with the risk of some



G-MLE
a group of people standing
around a boat

a group of people sitting
around a table

a group of people sitting at
a table

a group of people sitting
around a living room

G-GAN
the bench is sitting on the
ground by the water

a group of people watching
each other

a table with a lot of stuff on
it

furnished living room with
furniture and built area

G-MLE
a man flying through the air
while riding a snowboard

a man flying through the air
while riding a snowboard

a man flying through the air
while riding a snowboard

a man flying through the air
while riding a skateboard

G-GAN
a man on a skateboard in a
snowy park

a man skiing down the
slope near a mountain

a man performing a grind
trick on a skateboard ramp

a man with stunts on his
skis in the snow

Figure 7: This figure lists some images and corresponding descriptions generated by G-GAN and G-MLE. G-MLE tends to
generate similar descriptions for similar images, while G-GAN generates better distinguishable descriptions for them.

human G-GAN, 𝒛𝟏 G-GAN, 𝒛𝟐 G-MLE

people are on motorcycles. there 
are green cars behind them. the 
signs are all brown with chinese
written on it.

men are riding on a 
motorcycle. the man is 
wearing tan boots, and a 
white and blue jacket with 
beige stripes on. the street is 
made of cobblestone. there 
are tall bright green trees on 
the sidewalk.

two people are riding 
motorcycles. there are 
many trees on the 
sidewalk. there is a red 
and white painted letter 
on the side of the ledge. 
tall buildings are on the 
background.

a man is riding a bike. 
there are trees on the 
sidewalk. there are 
people walking on the 
sidewalk. there is a tall 
building in the 
background.

A baseball player is swinging a 
bat. He is wearing a black helmet 
and a black and white uniform. A 
catcher is behind him wearing a 
gray uniform. The catcher has a 
brown glove on his hand. Two 
men can be seen standing behind 
a green fence.

a baseball player in a white 
and blue uniform is holding 
a white bat. there is a 
umpire behind the batter in 
the blue and white uniform. 
he is getting ready to catch 
the ball. there is a crowd of 
people behind him watching 
him.

men are on a baseball 
field on a sunny day. the 
player is wearing a black 
and white uniform. there 
is a catcher behind him. 
the field is green with 
brown dirt and white 
shiny lines.

a baseball player is 
standing on a baseball 
field. he is wearing a blue 
helmet on his head. the 
catcher is wearing a black
and gray uniform. the 
court is green with white 
lines. 

Figure 8: Examples of images with different descriptive paragraphs generated by a human, G-GAN with different z, and G-MLE.

details being incorrect.

Paragraph Generation We also tested our framework on
paragraph generation (See Sec 3.4). We use the dataset
provided by [11], which contains 14, 575 training images,
2, 487 validation images, and 2, 489 testing images. Exam-
ple results are shown in Figure 8. Again, we found that G-
GAN can produce diverse and more natural descriptions as
compared to G-MLE, which tends to follow similar patterns
across sentences.

5. Conclusion
This paper presented an alternative approach to gener-

ating image descriptions. Compared to existing methods,
which are mostly focused on the match of detailed wording,
our approach, instead, aims to improve the overall quality,
which involves semantic relevance, naturalness, and diver-

sity. Some of these properties are often overlooked in pre-
vious efforts. We proposed a formulation based on condi-
tional GAN that jointly trains a generator G and an evalu-
ator E, and applied Policy Gradient and early feedbacks to
tackle the technical challenges in end-to-end training. On
both MSCOCO and Flickr30k, the proposed method pro-
duced descriptions that are more natural, diverse, and se-
mantically relevant as compared to a state-of-the-art MLE-
based model. This is clearly demonstrated in our user stud-
ies, qualitative examples, and retrieval applications. Our
framework also provides an evaluator that is more consis-
tent with human’s evaluation.
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