
Domain-adaptive deep network compression

Marc Masana, Joost van de Weijer, Luis Herranz
CVC, Universitat Autònoma de Barcelona

Barcelona, Spain
{mmasana,joost,lherranz}@cvc.uab.es

Andrew D. Bagdanov
MICC, University of Florence

Florence, Italy
andrew.bagdanov@unifi.it

Jose M Álvarez
Toyota Research Institute
jose.alvarez@tri.global

Abstract

Deep Neural Networks trained on large datasets can be
easily transferred to new domains with far fewer labeled
examples by a process called fine-tuning. This has the ad-
vantage that representations learned in the large source do-
main can be exploited on smaller target domains. However,
networks designed to be optimal for the source task are of-
ten prohibitively large for the target task. In this work we
address the compression of networks after domain transfer.

We focus on compression algorithms based on low-rank
matrix decomposition. Existing methods base compression
solely on learned network weights and ignore the statis-
tics of network activations. We show that domain trans-
fer leads to large shifts in network activations and that it
is desirable to take this into account when compressing.
We demonstrate that considering activation statistics when
compressing weights leads to a rank-constrained regression
problem with a closed-form solution. Because our method
takes into account the target domain, it can more optimally
remove the redundancy in the weights. Experiments show
that our Domain Adaptive Low Rank (DALR) method sig-
nificantly outperforms existing low-rank compression tech-
niques. With our approach, the fc6 layer of VGG19 can be
compressed more than 4x more than using truncated SVD
alone – with only a minor or no loss in accuracy. When
applied to domain-transferred networks it allows for com-
pression down to only 5-20% of the original number of pa-
rameters with only a minor drop in performance.

1. Introduction
One of the important factors in the success of deep learn-

ing for computer vision is the ease with which features,
pre-trained on large datasets such as Imagenet [6, 31] and
Places2 [37], can be transferred to other computer vision

: input fc6 (size 25088)

:input fc7 (size 4096)

+

+

output fc7 (size 4096)

: input fc6 (size 25088)

:input fc7 (size 4096)

+

+

output fc7 (size 4096)

T
6 6 6 6 6W X A B X

6A

T
6B

T
7 7 7 7 7W X A B X T

7B

7A

7X 7X

6X 6X

Figure 1. Example of compressing last two layers of the VGG-16
network (fc6, fc7). The original weight matrix is approximated by
two matrices. The main novelty in this paper is that we consider
the input X of each layer when compressing the corresponding
weight matrix W . This is especially relevant when doing domain
transfer from pre-trained networks where activation statistics can
be significantly skewed in the target domain.

domains. These new domains often have far fewer labeled
samples available but which, due to the high correlation
which exists between visual data in general, can exploit an
already learned representation trained on large datasets. The
most popular method to transfer the representations is by
means of fine-tuning, where the network is initialized with
the pre-trained network weights, after which they are fur-
ther adjusted on the smaller target domain [26]. These fine-
tuned networks, which have the same size as the originally
trained network, can then be applied to the task of the tar-
get domain. However, one must question whether a target
domain task requires such a large network and whether the
resulting network is not highly redundant.

1

ar
X

iv
:1

70
9.

01
04

1v
2

 [
cs

.C
V

]
 6

 S
ep

 2
01

7

A drawback of Convolutional Neural Networks (CNNs)
is that they generally require large amounts of memory and
computational power (often provided by GPU). As a result
they are less suitable for small devices, like cell phones,
where requirements for energy efficiency limit CPU, GPU,
and memory usage. This observation has motivated much
research into network compression. Approaches include
methods based on weight quantization [13, 27], weight
removal from fully-connected [38] or convolutional lay-
ers [2], compact representations of convolutional layers
through tensor decompositions [7, 18, 1], as well as train-
ing of thinner networks from predictions of a larger teacher
network [16, 30].

One efficient method for the compression of fully con-
nected layers is based on applying singular value decompo-
sition (SVD) to the weight matrix [21, 7, 38]. Compression
is achieved by removing columns and rows related to the
least significant singular values. Then, the original layer is
replaced by two layers which have fewer parameters than
the original layer. The method has been successfully ap-
plied to increase efficiency in detection networks like Fast
R-CNN [9]. In these networks the truncated SVD approach
is applied to the fc6 and fc7 layers, and the authors showed
that with only a small drop in performance these layers can
be compressed to 25% of their original sizes. In the original
paper [21, 7, 38] the compression is always applied on the
source domain, and no analysis of its efficiency for domain
transfer exists.

In this work we investigate network compression in the
context of domain transfer from a network pre-trained on
a large dataset to a smaller dataset representing the target
domain. To the best of our knowledge we are the first to
consider network compression within the context of do-
main transfer, even though this is one of the most com-
mon settings for the application of deep networks. Our ap-
proach is based on weight matrix decomposition that takes
into account the activation statistics of the original network
on the target domain training set1. We first adapt a pre-
trained network with fine-tuning to a new target domain
and then proceed to compress this network. We argue that,
because the statistics of the activations of network layers
change from the source to the target domain, it is bene-
ficial to take this shift into account. Most current com-
pression methods do not consider activation statistics and
base compression solely on the values in the weight matri-
ces [20, 21, 7, 13, 27]. We show how the activation statistics
can be exploited and that the resulting minimization can be
written as a rank-constrained regression problem for which
there exists a closed-form solution. We call our approach
Domain Adaptive Low Rank (DALR) compression, since
it is a low-rank approximation technique that takes into ac-

1With activation statistics we refer to their direct usage during com-
pression, but we do not explicitly model the statistical distribution.

count the shift in activation statistics that occurs when trans-
ferring to another domains. As an additional contribution,
we show that the original SVD algorithm can be improved
by compensating the bias for the activations.

The paper is organized as follows. In the next section
we discuss work from the literature related to network com-
pression. In section 3 we discuss in detail the motivation
behind our network compression approach, and in section 4
we show how network compression can be formulated as a
rank constraint regression problem. In section 5 we report
on a range of compression experiments performed on stan-
dard benchmarks. Finally, we conclude with a discussion of
our contribution in section 6.

2. Related Work
Network compression has received a great deal of atten-

tion recently. In this section we briefly review some of the
works from the literature relevant to our approach.

Network pruning. A straight forward way to reduce the
memory footprint of a neural network is by removing unim-
portant parameters. This process can be conducted while
training [2, 38, 14, 20], or by analyzing the influence of
each parameter once the network has been trained [22]. For
instance, in [38], the authors use tensor low rank constraints
to (iteratively) reduce the number of parameters of the fully
connected layer.

Computationally efficient layer representations. Sev-
eral approaches have addressed the problem of reducing
computational resources by modifying the internal repre-
sentation of each layer taking into account the inherent re-
dundancy of its parameters. Common approaches exploit
linear structures within convolutional layers and approach
each convolutional kernel using low-rank kernels [7, 18, 1].
The main idea relies on the fact that performing a convo-
lution with the original kernels is equivalent to convolv-
ing with a set of base filters followed by a linear combi-
nation of their output. In [19], the authors propose two net-
work layers that are based on dictionary learning to perform
sparse representation learning, directly within the network.
In general, these approaches show significant reduction in
the computational needs with a minimum drop of perfor-
mance.

Parameter quantization. Previous works mentioned
above on efficient representations focus on modifying the
representation of a complete layer. Parameter quantization
is slightly different as it aims at finding efficient representa-
tions of each parameter individually (ie, representing each
parameter with fewer bits). A common practice to minimize
the memory footprint of the network and reduce the compu-
tational cost during inference consists of training using 32
bit to represent the parameters while performing inference
more efficiently using 16-bits without significantly affecting

the performance. More aggressive quantization processes
have been also analyzed in [11] where the authors propose
an approach to directly thresholding values at 0 resulting
in a decrease of the top-1 performance on ImageNet by less
tan 10%. More recently, several works have adopted quanti-
zation schemes into the training process [27]. For instance,
in [27], the authors propose an approach to train a network
directly using binary weights resulting in very efficient net-
works with a very limited accuracy.

In [13] the authors propose an approach to combine
pruning, quantization and coding to reduce the computa-
tional complexity of the network. The authors first analyze
the relevance of each parameter pruning the irrelevant ones
and then, after fine-tuning the pruned network, the remain-
ing parameters are quantized. Results show a significant
reduction in the number of parameters (up to 35x) without
affecting the performance of the network.

Network distillation. These approaches aim at mimick-
ing a complicated model using a simpler one. The key idea
consists of training an ensemble of large networks and then
use their combined output to train a simpler model [5]. Sev-
eral approaches have built on this idea to train the network
based on the soft output of the ensemble [17], or to train the
network mimicking the behavior not only of the last layer
but also of intermediate ones [30].

All these methods for pruning, quantization, or compres-
sion in general, have shown results for reducing the foot-
print of networks and for reducing its computational com-
plexity. However, they are usually applied to the same target
domain as the one used for training the original network. In
contrast, in this paper we investigate network compression
in the context of domain transfer. That is, compressing a
network that has been trained on a generic large dataset in
order to reduce its computational complexity when used in a
different target domain using a smaller dataset. In this con-
text, the most related work is the approach presented in [12]
exploring non-negative matrix factorization to identify an
interesting set of variables for domain transfer. However,
the work in [12] does not consider network compression
and focuses on unsupervised tasks.

3. Motivation

Training networks for a specific task starting from a net-
work pre-trained on a large, generic dataset has become
very common practice, and to the best of our knowledge
we are the first to consider compression of these types of
domain-adapted networks. We investigate the compression
of fully connected layers by means of matrix decomposi-
tion. The basic principle is to decompose a weight matrix
into two matrices which contain fewer parameters than the
original weight matrix. This decomposition can then be ap-
plied to the network by replacing the original layer with

two new layers (see Fig. 1). An existing approach is based
on truncated Singular Value Decomposition [21, 7]. The
decomposition of that method is determined solely by the
weight matrix and ignores the statistics of layer activations
in the new domain.

To gain some insight into this shifting of the activation
distributions in deep networks when changing domain, we
take a closer look at the inputs to the two fully connected
layers fc6 and fc7 (which are the output of pool5 and fc6,
respectively), of the VGG19 network [32]. We analyze the
activation rate of neurons which is the fraction of images
in which a neuron has non-zero response. A value of 0.3
means that the neuron is activated in 30% of the images
in the data set. In Fig. 2 we show the activation rates of the
VGG19 network on ImageNet, on the CUB-200-2011 Birds
dataset [34], on the Oxford 102 Flowers dataset [25] and on
the Stanford 40 actions dataset [35].

The first thing to observe is that the activation rate is
fairly constant across all the input dimensions (i.e. activa-
tion rate of neurons in the previous layer) when computed
on the ImageNet dataset (i.e. source domain). Apparently
the network has optimized its efficiency by learning repre-
sentations which have a similar frequency of occurrence in
the ImageNet dataset. However, if we look at the activation
rates in the three target domains we see that the distributions
are significantly skewed: a fraction of neurons is much more
frequent than the rest, and the activation rates are lower than
in the source domain. This is especially clear for the input
to fc7 where activation rates vary significantly. If we con-
sider the percentage of input dimensions which accumulates
50% of the activations (which is the point where the area
under the curve to the left is equal to the area under the
curve to the right), we see a clear shift from ImageNet with
41.38% to 19.51% in Flowers, 24.93% in Birds and 29.44%
in Stanford (and from 32.29% to 14.61%, 19.13% and 25%
for fc6, respectively). This clearly shows that there exists
a significant change in the relative importance of neurons
from previous layers, optimized for a source domain, when
applied on new domains. Given this significant shift, we
believe that it is important to take these activation statistics
into account when compressing network layers after domain
transfer. Keeping lower weights connected to high activa-
tion neurons can lead to more efficient compression rather
than only focusing on the value of the weights themselves
as is done by current compression methods.

4. Compression by matrix decomposition

We start by introducing some notations. Consider a sin-
gle fully connected layer, with input and bias x, b ∈ Rn, the
output y ∈ Rm and the layer weights W ∈ Rm×n, related
according to:

y = Wx+ b, (1)

0.5 1 1.5 2 2.5

Filter (ranked in descending order) 10 4

0

20

40

60

80

100

A
c
ti
v
a

ti
o

n
 r

a
te

 (
%

)

Input fc6

ILSVRC2012 (val)

Birds (test)

Flowers (test)

Stanford (test)

1000 2000 3000 4000

Filter (ranked in descending order)

0

20

40

60

80

100

A
c
ti
v
a

ti
o

n
 r

a
te

 (
%

)

Input fc7

ILSVRC2012 (val)

Birds (test)

Flowers (test)

Stanford (test)

Figure 2. Activation rates (ranked in decreasing order) of the input
to (top) fc6, and (bottom) fc7 for the Birds, Flowers and Stanford
datasets in the VGG19 trained on ILSVRC2012. The dimensions
of the inputs are 7× 7× 512 = 25088 (output of pool5) and 4096
(output of fc6), respectively. Note the more uniform distribution
for ILSVRC2012 (no domain change). Best viewed in color.

or when considering a set of p inputs to the layer:

Y = WX + b1Tp , (2)

where 1p is a vector with ones of size p × 1, Y ∈ Rm×p is
the set of outputs, and X ∈ Rn×p is the set of p inputs to
the layer.

Several compression works have focused on compress-
ingW into Ŵ so that ||W−Ŵ ||F is minimized [20, 21, 7].
The novelty of our work is that we also consider the inputs
X . As a consequence we will focus on compressingW into
Ŵ in such a way that ||Y − Ŷ ||F is minimal.

4.1. Truncated SVD and Bias Compensation (BC)

One approach to compression is to apply SVD such
that W = USV T where U ∈ Rm×m, S ∈ Rm×n,
V ∈ Rn×n [20, 21]. The layer weights W can be approx-
imated by keeping the k most significant singular vectors,

Ŵ = Û ŜV̂ T where Û ∈ Rm×k, Ŝ ∈ Rk×k, V̂ ∈ Rn×k.
Compression is obtained by replacing the original layer by
two new ones: the first with weights ŜV̂ T and the second
with weights Û . Note it is crucial that the two new layers
contain fewer parameters than the original network (i.e. that
nm > (n+m)k).

In this truncated SVD approach the bias term b of the
original network is added to the second layer. We propose
an alternative bias term which takes into account the inputs

X . We define W = Ŵ +
^

W , where
^

W is the residual
which is lost due to the approximation. We want to find
the new bias that minimizes ||Y − Ŷ ||F given inputs X .
Accordingly:

||Y − Ŷ ||F = ||WX + b1Tp − (ŴX + b̂1Tp)||F

= ||b̂1Tp − (b1Tp +
^

WX)||F . (3)

The bias which minimizes this is then:

b̂ = b+
^

WX1p = b+
^

Wx̄ (4)

where x̄ = X1p is the mean input response. Note that if X
were zero centered, then x̄ would be zero and the optimal
bias b̂ = b. However, since X is typically taken right after
a ReLU layer, this is generally not the case and SVD can
introduce a systematic bias in the output which in our case
can be compensated for using Eq. 4.

4.2. Domain Adaptive Low Rank Matrix Decompo-
sition (DALR)

In the previous subsection we considered the inputs to
improve the reconstruction error by compensating for the
shift in the bias. Here, we also take into account the inputs
for the computation of the matrix decomposition. In con-
trast, the SVD decomposition does not take them into ac-
count. Especially in the case of domain transfer, where the
statistics of the activations can significantly differ between
source and target domain, decomposition of the weight ma-
trix should consider this additional information. A network
trained on ImageNet can be highly redundant when applied
to for example a flower dataset; in this case most features
important for man-made objects will be redundant.

The incorporation of input X is done by minimizing
||Y − Ŷ ||F . We want to decompose the layer with weights
W into two layers according to:

W ≈ Ŵ = ABT , (5)

where Ŵ ∈ Rm×n, A ∈ Rm×k and B ∈ Rn×k again
chosen in such a way that m× n > (m+ n)× k.

We want the decomposition which minimizes:

min
A,B
||Y − Ŷ ||F = min

A,B
||WX −ABTX||F , (6)

where we have set b̂ = b and subsequently removed it from
the equation. Eq. 6 is a rank constrained regression problem
which can be written as:

arg min
C

||Z − CX||2F +λ||C||2F
s.t. rank(C) ≤ k,

(7)

whereC = ABT andZ = WX , and we have added a ridge
penalty which ensures that C is well-behaved even when X
is highly co-linear.

We can rewrite Eq 7 as:

arg min
C

||Z∗ − CX∗||2F
s.t. rank(C) ≤ k,

(8)

where we use

X∗
n×(p+n) =

(
X
√
λI

)
, and (9)

Z∗
m×(p+n) =

(
Z 0

)
. (10)

In Ashin [24] the authors show that there is a closed form
solution for such minimization problems based on the SVD
of Z. Applying SVD we obtain Z = USV T . Then the
matrices A and B in Eq. 5 which minimize Eq. 8 are:

A = Û

B = ÛTZXT
(
XXT + λI

)−1 (11)

where Û ∈ Rm×k consists of the first k columns of U .
Network compression is obtained by replacing the layer

weights W by two layers with weights B and A, just as
in the truncated SVD approach. The first layer has no bi-
ases and the original biases b are added to the second layer.
Again we could apply Eq. 4 to compensate the bias for the
difference betweenW and Ŵ . However, this was not found
to further improve the results.

4.3. Reconstruction error analysis

We discussed three different approaches to compressing
a weight matrixW . They lead to the following approximate
outputs Ŷ :

SVD : Ŷ = Û ŜV̂ TX + b

SVD + BC : Ŷ = Û ŜV̂ TX + b̂

DALR : Ŷ = ABTX + b (12)

To analyze the ability of each method to approximate the
original output Y we perform an analysis of the reconstruc-
tion error given by:

ε = ||Y − Ŷ ||F . (13)

We compare the reconstruction errors on the CUB-200-
2011 Birds and the Oxford-102 Flowers datasets. The re-
construction error is evaluated on the test set, whereas the

Figure 3. Reconstruction error as a function of dimensions kept k
for (top) fc6 and (bottom) fc7 layers on CUB-200-2011 Birds and
Oxford-102 Flowers depending on the degree of compression.

inputs and outputs of the layers are extracted from the train-
ing set for computing the matrix approximations Ŷ . We
provide results for fc6 and fc7, the two fully connected lay-
ers of the VGG19 network.

In Figure 3 we show the results of this analysis. We see
that bias compensation provides a drop in error with respect
to SVD for layer fc6, however the gain is insignificant for
layer fc7. Our DALR method obtains lower errors for both
layers on both datasets for most of the compression set-
tings. This shows the importance of taking activation statis-
tics into account during compression.

5. Experimental results

Here we report on a range of experiments to quantify the
effectiveness of our network compression strategy. Code is
made available at https://github.com/mmasana/DALR.

5.1. Datasets

We evaluate our DALR approach to network compres-
sion on a number of standard datasets for image recognition
and object detection.

https://github.com/mmasana/DALR

CUB-200-2011 Birds: consists of 11,788 images (5,994
train) of 200 bird species [34]. Each image is annotated
with bounding box, part location (head and body), and at-
tribute labels. Part location and attributes are not used in
the proposed experiments. However, bounding boxes are
used when fine-tuning the model from VGG19 pre-trained
on ImageNet in order to provide some data augmentation
for the existing images.

Oxford 102 Flowers: consists of 8,189 images (2,040
train+val) of 102 species of flowers common in the United
Kingdom [25]. Classes are not equally represented across
the dataset, with the number of samples ranging from 40 to
258 per class.

Stanford 40 Actions: consists of 9,532 images (4,000
for training) of 40 categories that depict different human
actions [35]. Classes are equally represented on the training
set and all samples contain at least one human performing
the corresponding action.

PASCAL 2007: consists of approximately 10,000 images
(5,011 train+val) containing one or more instances of 20
classes [8]. The dataset contains 24,640 annotated objects,
with that the training and validation sets having a mean of
2.52 objects per image, and the test set a mean of 2.43 ob-
jects per image. This dataset is used to evaluate our ap-
proach for object detection.

ImageNet: consists of more than 14 million images of
thousands of object classes. The dataset is organized us-
ing the nouns from the WordNet hierarchy, with each class
having an average of about 500 images. We use CNNs pre-
trained on the 1,000-class ILSVRC subset.

5.2. Compression on source domain

Before performing experiments on domain adaptation,
we applied Bias Compensation and DALR compression on
the source domain and compare it to the truncated SVD
method as baseline. We used the original VGG19 network
trained on the 1,000 ImageNet classes. Since ImageNet is
a very large dataset, we randomly selected 50 images from
each class to build our training set for DALR and truncated
SVD compression. Then, we extracted the activations of
this training set for the fc6 and fc7 layers to compress the
network using DALR at different rates. The compressed
networks were evaluated on the ImageNet validation set.

Results are provided in Tables 1 and 2. Results on fc6
show a slight performance increase for the most restricting
compression settings (k = 32, 64, 128). However the gain
is relatively small. On fc7 the results are even closer and
the best results are obtained with bias compensation. Even
though the proposed compression methods outperform stan-
dard SVD the gain is small when done on the source do-
main. This is most probably due to the fact that the in-
puts have relatively uniform activation rates and consider-

dim kept 32 64 128 256 512 1024
params 0.91% 1.82% 3.64% 7.27% 14.54% 29.08%
SVD 79.44 50.82 36.44 34.80 34.40 34.18
SVD + BC 73.41 46.54 36.21 34.82 34.33 34.22
DALR 66.43 44.50 36.06 34.63 34.28 34.20

Table 1. Top-1 error rate results on ImageNet when compressing
fc6 in the source domain. We report the dimensions k kept in the
layer and the percentage of parameters compressed. The uncom-
pressed top-1 error rate is 34.24%.

dim kept 32 64 128 256 512 1024
params 1.56% 3.13% 6.25% 12.5% 25% 50%
SVD 57.07 40.68 35.50 34.63 34.40 34.35
SVD + BC 55.57 39.75 35.14 34.51 34.35 34.30
DALR 56.32 40.25 35.26 34.54 34.40 34.33

Table 2. ImageNet fc7 - uncompressed top-1 error rate: 34.24%.

ing them does not significantly change the matrix decom-
position (see also the discussion in Section 4.3). In gen-
eral these results suggest that compressing a model without
changing the domain can be done effectively with decompo-
sitions of filter weights (e.g truncated SVD), and does not
benefit significantly from the additional information com-
ing from the inputs, in contrast to when there is a domain
change involved (see the following sections).

5.3. Image recognition

Here we use the CUB-200 Birds, Oxford-102 Flowers
and Stanford 40 Actions datasets to evaluate our compres-
sion strategies. We apply the Bias Compensation and the
DALR compression techniques to fine-tuned VGG19 mod-
els. For all image recognition experiments we used the pub-
licly available MatConvNet library [33].

Fine-tuning: The VGG19 [32] is trained on ImageNet.
Since this network excelled on the ImageNet Large-Scale
Visual Recognition Challenge in 2014 (ILSVRC-2014), it
is a strong candidate as a pre-trained CNN source for the
transfer learning. Very deep CNNs are commonly used as
pre-trained CNNs in order to initialize the network param-
eters before fine-tuning. For each dataset, a fine-tuned ver-
sion of VGG19 was trained using only the training set. Al-
though initialized with the VGG19 weights, layers fc6 and
fc7 are given a 0.1 multiplier to the network’s learning rate.
The number of outputs of the fc8 layer is changed to fit the
number of classes in the dataset. All the convolutional lay-
ers are frozen and use the VGG19 weights.

Evaluation metrics: All results for image recognition are
reported in terms of classification accuracy. The compres-
sion rate of fully connected layers is the percentage of the
number of parameters of the compressed layer with respect
to the original number of parameters.

Baseline performance: We first apply truncated SVD to
the fc6 and fc7 weight matrices. In the original VGG19
and fine-tuned models, Wfc6 has 25088× 4096 parameters

dim kept 32 64 128 256 512 1024
params 0.91% 1.82% 3.64% 7.27% 14.54% 29.08%
SVD 16.83 36.47 51.74 54.47 54.85 55.25
SVD + BC 27.91 46.00 53.50 54.83 55.21 55.44
Pruning (mean) 4.30 8.06 12.57 25.82 37.25 50.41
Pruning (max) 4.06 7.01 15.26 25.27 36.69 48.95
DALR 48.81 54.51 55.78 55.85 55.71 55.82

Table 3. Birds fc6 compression - original accuracy: 55.73%.

dim kept 32 64 128 256 512 1024
params 1.56% 3.13% 6.25% 12.5% 25% 50%
SVD 26.86 44.13 52.19 54.30 54.80 55.13
SVD + BC 28.72 47.07 53.62 54.45 55.02 55.30
Pruning (mean) 2.49 3.45 9.15 18.31 34.05 47.24
Pruning (max) 6.46 9.60 13.84 22.63 33.28 45.67
DALR 51.21 54.16 55.21 55.59 55.71 55.85

Table 4. Birds fc7 compression - original accuracy: 55.73%.

and Wfc7 has 4096× 4096 parameters. Applying truncated
SVD results in a decomposition of each weight matrix into
the two smaller matrices. If we keep the k largest singular
vectors, those two matrices will change to (25088+4096)k
and (4096+4096)k parameters for fc6 and fc7 respectively.
Since SVD does not take into account activations, and there
is no compression method to our knowledge that uses ac-
tivations in order to reduce the number of parameters in
the weight matrices, we also show results for activation-
based pruning. The pruning strategy consists of removing
the rows or columns of the weight matrices which are less
active for that specific dataset, following the work on [23].

Results: Tables 3 to 8 show the performance of compress-
ing the fc6 and fc7 layers using SVD and pruning baselines,
as well as the proposed Bias Compensation and DALR tech-
niques. Results confirm the tendency observed in the analy-
sis of the L2-error reconstruction curves in Figure 3. DALR
compression has a better performance than the other meth-
ods at the same compression rates on both fc6 and fc7 for
CUB-200 Birds, Oxford-102 Flowers and Stanford-40 Ac-
tions. In all our experiments DALR provides a slight boost
in performance even when compressing to 25% of the orig-
inal parameters. Bias compensation slightly improves the
original SVD method on both layers except on Flowers for
fc7. Since the fc6 layer has more parameters, it is the layer
that allows for more compression at a lower loss in perfor-
mance. The advantages of DALR are especially clear for
that layer, and for a typical setting where one would accept
a loss of accuracy of around one percent, truncated SVD
must retain between 4x and 8x the number of parameters
compared to DALR to maintain the same level of perfor-
mance. Finally, both pruning methods are consistently out-
performed by compression methods, probably due to the ef-
fect pruning has on subsequent layers (fc7 and fc8).

In the previous experiment we evaluated the layer com-
pression separately for fc6 and fc7. To get a better under-
standing of the potential joint compression, we perform a

dim kept 32 64 128 256 512 1024
params 0.91% 1.82% 3.64% 7.27% 14.54% 29.08%
SVD 14.00 47.37 59.90 75.07 77.72 78.61
SVD + BC 29.55 57.93 71.96 75.91 78.00 78.63
Pruning (mean) 1.42 4.91 19.74 49.07 71.23 77.64
Pruning (max) 1.81 4.96 10.36 33.99 60.14 74.78
DALR 72.17 76.42 77.95 78.22 78.94 78.94

Table 5. Flowers fc6 compression - original accuracy: 78.84%.

dim kept 32 64 128 256 512 1024
params 1.56% 3.13% 6.25% 12.5% 25% 50%
SVD 58.14 70.30 75.10 77.02 78.01 78.58
SVD + BC 57.07 70.14 75.53 77.15 78.00 78.50
Pruning (mean) 19.13 25.81 37.26 55.80 67.54 75.33
Pruning (max) 8.18 18.91 27.06 42.95 62.69 72.63
DALR 72.32 76.55 77.79 78.48 78.86 78.86

Table 6. Flowers fc7 compression - original accuracy: 78.84%.

dim kept 32 64 128 256 512 1024
params 0.91% 1.82% 3.64% 7.27% 14.54% 29.08%
SVD 38.18 55.59 66.59 67.97 68.38 68.94
SVD + BC 46.76 60.14 66.96 68.17 68.40 69.00
Pruning (mean) 3.98 7.27 13.70 32.14 52.02 62.46
Pruning (max) 5.44 13.12 26.72 46.11 53.40 63.16
DALR 64.70 68.33 69.31 69.65 69.54 69.52

Table 7. Stanford fc6 compression - original accuracy: 68.73%.

dim kept 32 64 128 256 512 1024
params 1.56% 3.13% 6.25% 12.5% 25% 50%
SVD 50.98 62.27 66.72 68.08 68.44 68.60
SVD + BC 53.62 62.74 67.32 68.37 68.67 68.82
Pruning (mean) 12.46 17.57 25.23 34.20 51.05 61.19
Pruning (max) 14.84 20.37 22.90 36.35 49.30 59.33
DALR 63.87 67.46 68.44 68.75 68.78 68.78

Table 8. Stanford fc7 compression - original accuracy: 68.73%.

compression experiment with DALR on both layers simul-
taneously. In order to find suitable compression pairs for
both layers at the same time, we implemented an iterative
solution. At each step, we slightly increase the compres-
sion on both layers. Then, both options are evaluated on
the validation set, and the compression rate with better per-
formance is applied to the network and used on the next
iteration. When both steps in compression exceed a defined
drop in performance (here set to a 1% accuracy drop), the
iterative process stops and the compressed network is eval-
uated on the test set. Results are shown in Table 10. This
implementation tends to compress fc6 more because fc6 has
more room for compression than fc7, as seen also in the ex-
periments reported in Tables 4 to 8. The results show that
we can compress the parameters of the fully connected lay-
ers to as few as 14.88% for Flowers, as few as 6.81% for
Birds, and as few as 29.85% for Stanford while maintaining
close to optimal performance.

5.4. Object detection

One of the most successful approaches to object detec-
tion is RCNN [10] (including its Fast [9] and Faster [29]
variants). This approach is also an example of the effective-

ae
ro

plan
e

bicy
cle

bird boa
t

bott
le

bus
ca

r
ca

t
ch

air
co

w
diningta

ble

dog hor
se

moto
rb

ike

pers
on

pott
ed

plan
t

sh
eep

sof
a

tra
in

tvm
on

ito
r

mAP
No Compression 75.9 77.4 65.3 53.9 38.0 76.8 78.2 80.9 40.6 74.0 67.2 79.4 82.4 74.9 66.2 33.4 66.0 67.3 73.3 67.1 66.9

SVD @ 1024 74.4 77.6 65.9 54.9 38.4 76.7 78.2 81.6 40.0 73.0 65.9 78.9 81.9 75.7 65.6 33.7 65.3 67.3 72.4 65.7 66.6
SVD + BC @ 1024 73.9 77.8 65.9 55.0 38.5 76.7 78.3 81.5 40.1 72.6 66.4 79.1 82.2 75.7 65.7 33.9 65.5 67.5 72.1 66.1 66.7

DALR @ 1024 74.6 77.7 66.4 53.7 37.6 77.0 78.1 81.7 40.5 73.3 67.4 79.7 81.9 74.8 65.9 34.0 65.9 66.9 73.7 66.3 66.9
SVD @ 768 74.2 77.5 65.8 53.5 37.8 76.6 78.3 82.3 39.8 72.5 66.1 79.4 81.5 74.2 65.6 33.8 64.7 67.9 71.7 66.3 66.5

SVD + BC @ 768 74.4 77.5 65.6 53.8 38.0 77.3 78.2 82.2 39.7 72.5 66.3 79.7 82.1 75.4 65.7 34.0 65.1 68.1 71.7 66.0 66.7
DALR @ 768 74.2 77.5 66.7 53.8 37.8 77.4 78.1 82.0 40.1 72.7 66.2 79.0 81.7 75.5 66.1 33.9 65.8 66.7 73.2 66.0 66.7

Table 9. Compression and bias compensation results on Fast-RCNN on PASCAL 2007.

Orig. Acc Compr. Acc fc6 red. fc7 red. total red.
Birds 55.73 55.97 4.66% 19.97% 6.81%
Flowers 78.84 77.62 10.45% 41.99% 14.88%
Stanford 68.73 69.43 25.59% 55.96% 29.85%

Table 10. Reduction in number of parameters for both fc6 and fc7.

ness of the fine-tuning approach to domain transfer, and also
of the importance of network compression for efficient de-
tection. The authors of [9] analyzed the timings of forward
layer computation and found that 45% of all computation
time was spent in fc6 and fc7. They then applied truncated
SVD to compress these layers to 25% of their original size.
This compression however came with a small drop in per-
formance of 0.3 mAP in detection on PASCAL 2007.

For comparison, we have also run SVD with bias com-
pensation and our compression approach based on low-rank
matrix decomposition. Results are presented in Table 9.
Here we apply compression at varying rates to fc6 (which
contains significantly more parameters), and compress fc7
to 256 pairs of basis vectors (which is the same number used
in [9]). What we see here is that at the same compression
rate for fc6 (1024) proposed in [29], our low-rank compres-
sion approach does not impact performance and performs
equal to the uncompressed network. When we increase the
compression rate of fc6 (768) we see a drop of 0.4% mAP
for standard SVD and only half of that for both SVD with
bias compensation and DALR.

6. Conclusions and discussion

We proposed a compression method for domain-adapted
networks. Networks which are designed to be optimal on a
large source domain are often overdimensioned for the tar-
get domain. We demonstrated that networks trained on a
specific domain tend to have neurons with relatively flat ac-
tivations rates, indicating that almost all neurons are equally
important in the network. However, after transferring to a
target domain, activation rates tend to be skewed. This mo-
tivated us to consider activation statistics in the compression
process. We show that compression which takes activations
into account can be formulated as a rank-constrained regres-
sion problem which has a closed-form solution. As an addi-
tional contribution we show how to compensate the bias for
the matrix approximation done by SVD. This is consistently

shown to obtain improved results over standard SVD.

Experiments show that DALR not only removes redun-
dancy in the weights, but also balances better the parameter
budget by keeping useful domain-specific parameters while
removing unnecessary source-domain ones, thus achieving
higher accuracy with fewer parameters, in contrast to trun-
cated SVD, which is blind to the target domain. On further
experiments in image recognition and object detection, the
DALR method significantly outperforms existing low-rank
compression techniques. With our approach, the fc6 layer
of VGG19 can be compressed 4x more than using truncated
SVD alone – with only minor or no loss in accuracy.

The Bias Compensation and DALR techniques were ap-
plied to fully connected layers in this work. To show the
effectiveness of those methods we applied them to standard
networks with large fully connected layers. On more recent
networks, like ResNets [15], most of the computation has
moved to convolutional layers, and the impact of the pro-
posed method would be restricted to the last layer. How-
ever, VGG-like networks are very much used in current ar-
chitectures [4, 37, 28]. Extending the proposed compres-
sion method to convolutional layers is an important research
question which we aim to address in future works.

Our paper shows that domain transferred networks can
be significantly compressed. The amount of compression
seems to correlate with the similarity [3, 36] between the
source and target domain when we compare it to the order-
ing proposed in [3] (see Table II). According to this order-
ing, the similarity with respect to ImageNet in descending
order is image classification (PASCAL), fine-grained recog-
nition (Birds, Flowers) and compositional (Stanford). We
found found that higher compression rates can be applied in
target domains further away from the source domain.

Acknowledgements We thank Adrià Ruiz for his ad-
vice on optimization. Herranz acknowledges the Euro-
pean Union’s H2020 research under Marie Sklodowska-
Curie grant No. 6655919. Masana acknowledges 2017FI-
B-00218 grant of Generalitat de Catalunya, and their
CERCA Programme. We acknowledge the Spanish project
TIN2016-79717-R, the CHISTERA project M2CR (PCIN-
2015-251). We also acknowledge the generous GPU sup-
port from Nvidia.

References
[1] J. M. Alvarez and L. Petersson. Decomposeme: Simplifying

convnets for end-to-end learning. arXiv:1606.05426, 2016.
2

[2] J. M. Alvarez and M. Salzmann. Learning the number of
neurons in deep networks. In NIPS, 2016. 2

[3] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and
S. Carlsson. Factors of transferability for a generic convnet
representation. IEEE transactions on pattern analysis and
machine intelligence, 38(9):1790–1802, 2016. 8

[4] A. Bansal, X. Chen, B. Russell, A. G. Ramanan, et al. Pix-
elnet: Representation of the pixels, by the pixels, and for the
pixels. arXiv:1702.06506, 2017. 8

[5] C. Bucila, R. Caruana, and A. Niculescu-Mizil. Model com-
pression. In KDD, pages 535–541. ACM, 2006. 3

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
CVPR, 2009. 1

[7] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-
gus. Exploiting linear structure within convolutional net-
works for efficient evaluation. In NIPS, 2014. 2, 3, 4

[8] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. International journal of computer vision, 88(2):303–
338, 2010. 6

[9] R. Girshick. Fast r-cnn. In CVPR, 2015. 2, 7, 8
[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014. 7

[11] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev. Compress-
ing deep convolutional networks using vector quantization.
CoRR, abs/1412.6115, 2014. 3

[12] L. Gui and L.-P. Morency. Learning and transferring deep
convnet representations with group-sparse factorization. In
ICCV. Springer, 2015. 3

[13] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quan-
tization and huffman coding. arXiv:1510.00149, 2015. 2,
3

[14] B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain sur-
geon and general network pruning. In ICNN, 1993. 2

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 8

[16] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning al-
gorithm for deep belief nets. Neural Computation, 18:1527–
1554, 2006. 2

[17] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowl-
edge in a neural network. In arXiv:1503.02531, 2014. 3

[18] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up
convolutional neural networks with low rank expansions.
BMVC, 2014. 2

[19] P. Koch and J. J. Corso. Sparse factorization layers for neu-
ral networks with limited supervision. In Arxiv:1612.04468,
2016. 2

[20] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D.
Jackel. Optimal brain damage. In NIPS, 1989. 2, 4

[21] J. Li. Restructuring of deep neural network acoustic models
with singular value decomposition. In Interspeech, January
2013. 2, 3, 4

[22] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy.
Sparse convolutional neural networks. In CVPR, 2015. 2

[23] M. Masana, J. van de Weijer, and A. D. Bagdanov. On-the-
fly network pruning for object detection. arXiv:1605.03477,
2016. 7

[24] A. Mukherjee. Topics on Reduced Rank Methods for Multi-
variate Regression. PhD thesis, The University of Michigan,
2013. 5

[25] M.-E. Nilsback and A. Zisserman. Automated flower classi-
fication over a large number of classes. In Proceedings of the
Indian Conference on Computer Vision, Graphics and Image
Processing, Dec 2008. 3, 6

[26] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and
transferring mid-level image representations using convolu-
tional neural networks. In CVPR, 2014. 1

[27] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-
net: Imagenet classification using binary convolutional neu-
ral networks. In ECCV, 2016. 2, 3

[28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. In
CVPR, 2016. 8

[29] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-
wards real-time object detection with region proposal net-
works. In NIPS, 2015. 7, 8

[30] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,
and Y. Bengio. Fitnets: Hints for thin deep nets.
arXiv:1412.6550, 2014. 2, 3

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252,
2015. 1

[32] K. Simonyan and A. Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv:1409.1556, 2014. 3, 6

[33] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural
networks for matlab. In Proceeding of the ACM Int. Conf. on
Multimedia, 2015. 6

[34] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011. 3, 6

[35] B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-
Fei. Human action recognition by learning bases of action
attributes and parts. In ICCV, 2011. 3, 6

[36] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-
ferable are features in deep neural networks? In Advances
in neural information processing systems, pages 3320–3328,
2014. 8

[37] B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva.
Places: An image database for deep scene understanding.
arXiv preprint arXiv:1610.02055, 2016. 1, 8

[38] H. Zhou, J. M. Alvarez, and F. Porikli. Less is more: Towards
compact cnns. In ECCV, 2016. 2

