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Abstract

Dominant approaches to action detection can only pro-
vide sub-optimal solutions to the problem, as they rely on
seeking frame-level detections, to later compose them into
‘action tubes’ in a post-processing step. With this paper
we radically depart from current practice, and take a first
step towards the design and implementation of a deep net-
work architecture able to classify and regress whole video
subsets, so providing a truly optimal solution of the action
detection problem. In this work, in particular, we propose
a novel deep net framework able to regress and classify
3D region proposals spanning two successive video frames,
whose core is an evolution of classical region proposal net-
works (RPNs). As such, our 3D-RPN net is able to effec-
tively encode the temporal aspect of actions by purely ex-
ploiting appearance, as opposed to methods which heavily
rely on expensive flow maps. The proposed model is end-to-
end trainable and can be jointly optimised for action local-
isation and classification in a single step. At test time the
network predicts ‘micro-tubes’ encompassing two succes-
sive frames, which are linked up into complete action tubes
via a new algorithm which exploits the temporal encoding
learned by the network and cuts computation time by 50%.
Promising results on the J-HMDB-21 and UCF-101 action
detection datasets show that our model does outperform the
state-of-the-art when relying purely on appearance.

1. Introduction

In recent years most action detection frameworks [8,

, 23, 26] employ deep convolutional neural network
(CNN) architectures, mainly based on region proposal al-
gorithms [34, 42, 25] and two-stream RGB and optical flow
CNNs [29, 8]. These methods first construct training hy-
potheses by generating region proposals (or ‘regions of in-
terest’, ROI"), using either Selective Search [34], Edge-
Boxes [42] or a region proposal network (RPN) [25]. ROIs
are then sampled as positive and negative training examples
as per the ground-truth. Subsequently, CNN features are ex-

I A ROl is a rectangular bounding box parameterized as 4 coordinates
in a 2D plane [z1 y1 22 y2].

tracted from each region proposal. Finally, ROI pooled fea-
tures are fed to a softmax and a regression layer for action
classification and bounding box regression, respectively.
This dominant paradigm for action detection [8, 38, 23,
], however, only provides a sub-optimal solution to the
problem. Indeed, rather than solving for

T = T 1
arg max score(T), (1)

where T is a subset of the input video of duration D as-
sociated with an instance of a known action class, they
seek partial solutions for each video frame R*(t) =
arg maxpcy(y) score(RR), to later compose in a post-
processing step partial frame-level solutions into a so-
lution 7 = [R*(1),..., R*(D)] of the original prob-
lem (1), typically called action tubes [8]. By definition,
score(1") <score(T™*) and such methods are bound to pro-
vide suboptimal solutions. The post-processing step is es-
sential as those CNNs do not learn the temporal associations
between region proposals belonging to successive video
frames. This way of training is mostly suitable for object
detection, but inadequate for action detection where both
spatial and temporal localisation are crucial. To compensate
for this and learn the temporal dynamics of human actions,
optical flow features are heavily exploited [8, 38, 23, 26].
With this paper we intend to initiate a research pro-
gramme leading, in the medium term, to a new deep net-
work architecture able to classify and regress whole video
subsets. In such a network, the concepts of (video) region
proposal and action tube will coincide.
In this work, in particular, we take a first step towards a truly
optimal solution of the action detection problem by consid-
ering video region proposals formed by a pair of bound-
ing boxes spanning two successive video frames at an ar-
bitrary temporal interval A (see Figure 2). We call these
pairs of bounding boxes 3D region proposals. The advan-
tages of this approach are that a) appearance features can be
exploited to learn temporal dependencies (unlike what hap-
pens in current approaches), thus boosting detection perfor-
mance; b) the linking of frame-level detections over time
is no longer a post processing step and can be (partially)
learned by the network. Obviously, at this stage we still
need to construct action tubes from 3D region proposals.
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Figure 1. At train time, the input to the network is a pair of successive video frames (a) which are processed through two parallel VGG-

16 networks (b). The feature maps generated by the last convolution layers are fused (c) and the fused feature map is fed to a 3D-RPN
network (d). The RPN generates 3D region proposals and their associated actionness [2] scores which are then sampled as positive and
negative training examples (f) by a proposal sampler (e). The sampled proposals and their scores are used to compute the actionness and
3D proposal regression losses (g). Subsequently, a bilinear feature pooling (h) and an element-wise feature fusion (i) are used to obtain a
fixed sized feature representation for each sampled 3D proposal. Finally, the pooled and fused features are passed through fully connected
(FC6 & FC7) (j), classification and regression (k) layers to train for action classification and a micro-tube regression. At test time, the
predicted micro-tubes are linked in time by the action-tube generator (m).
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Figure 2. (a) The 3D region proposals generated by our 3D-RPN
network span pairs of successive video frames f; and f; A at tem-
poral distance A. (b) Ground-truth action-micro-tubes generated
from different pairs of successive video frames.

We thus propose a radically new approach to action de-
tection based on (1) a novel deep learning architecture for
regressing and classifying two-frame micro-tubes’, illus-
trated in Figure 1, in combination with (2) an original strat-
egy for linking micro-tubes up into proper action tubes. At
test time, this new framework does not completely rely on
post-processing for assembling frame-level detections, but
makes use of the temporal encoding learned by the network.
We show that: i) such a network trained on pairs of suc-
cessive RGB video frames can learn the spatial and tem-
poral extents of action instances relatively better than those
trained on individual video frames, and ii) our model out-
performs the current state-of-the-art [8, 38, 26] in spatio-
temporal action detection by just exploiting appearance (the
RGB video frames), in opposition to the methods which
heavily exploit expensive optical flow maps.

Just to be clear, the aim of this paper is not to renounce to
optical flow cues, but to move from frame-level detections

2We call ‘micro-tubes’ the 3D video region proposals, spanning pairs
of successive frames, generated by the network at test time.

to whole tube regression. Indeed the method can be eas-
ily extended to incorporate motion at the micro-tube level
rather than frame level, allowing fusion of appearance and
motion at training time, unlike current methods [23, 26].

Overview of the approach. Our proposed network ar-

chitecture (see Figure 1) employs and adapts some of the
architectural components recently proposed in [25, 16].
At training time, the input to the model is a pair of suc-
cessive video frames (a) which are fed to two parallel
CNNs (b) (§ Section 3.1). The output feature maps of the
two CNNs are fused (c) and passed as input to a 3D re-
gion proposal network (3D-RPN) (d) (§ Section 3.2). The
3D-RPN network generates 3D region proposals and their
associated actionness> [2] scores, which are then sampled
as positive and negative training examples (f) by a proposal
sampler (e) (§ 3.3). A training mini-batch of 256 examples
are constructed from these positive and negative samples.
The mini-batch is firstly used to compute the actionness
classification and 3D proposal regression losses (g) (§ 4.1),
and secondly, to pool CNN features (for each 3D proposal)
using a bilinear interpolation layer (h) (§ 3.4).

In order to interface with the fully connected lay-
ers (j) (§ 3.5), bilinear interpolation is used to get a fixed-
size feature representation for each variably sized 3D region
proposal. As our 3D proposals consist of a pair of bound-
ing boxes, we apply bilinear feature pooling independently
on each bounding box in a pair, which gives rise to two
fixed-size pooled feature maps of size [512 x kh x kw],
where kh = kw = 7 for each 3D proposal. We then ap-
ply element-wise fusion (i) (§ 3.4) to these 2 feature maps.

3The term actionness [2] is used to denote the possibility of an action
being present within a 3D region proposal.



Each pooled and then fused feature map (representing a 3D
proposal) is passed to two fully connected layers (FC6 and
FC7)) (j) (§ 3.5). The output of the FC7 layer is a fixed sized
feature vector of shape [4096 x 1]. These 4096 dimension
feature vectors are then used by a classification and a re-
gression layers (k) (§ 3.5) to output (1) B x C classification
scores and (2) B x C x 8 coordinate values where B is the
number of 3D proposals in a training mini-batch and C' is
the number of action categories in a given dataset.

At test time we select top 1000 predicted micro-tubes
by using non-maximum suppression, modified to work with
pairs of bounding boxes and pass these to an action-tube
generator (m) (§ 5) which links those micro-tubes in time.
At both training and test time, our model receives as in-
put successive video frames f;, fi1a. At training time we
generate training pairs using 2 different A values 1 and 2
(§ 6.1). At test time we fix A = 1. As we show in the
Section 9.5, even consecutive frames (A = 1) carry signifi-
cantly different information which affects the overall video-
mAP. Throughout this paper, “3D region proposals” de-
notes the RPN-generated pairs of bounding boxes regressed
by the middle layer (Figure 1 (g)), whereas “micro-tubes”
refers to the 3D proposals regressed by the end layer (Fig-
ure 1 (1)).

Contributions. In summary, the key contributions of
this work are: (1) on the methodological side, a key con-
ceptual step forward from action detection paradigms rely-
ing on frame-level region proposals towards networks able
to regress optimal solutions to the problem; (2) a novel, end-
to-end trainable deep network architecture which addresses
the spatiotemporal action localisation and classification task
jointly using a single round of optimisation; (3) at the core
of this architecture, a new design for a fully convolutional
action localisation network (3D-RPN) which generates 3D
video region proposals rather than frame-level ones; (4) a
simple but efficient regression technique for regressing such
3D proposals; (5) a new action-tube generation algorithm
suitable for connecting the micro-tubes so generated, which
exploits the temporal encoding learnt by the network.

Experimental results on the J-HMDB-21 and UCF-101
action detection datasets show that our model outperforms
state-of-the-art appearance-based models, while being com-
petitive with methods using parallel appearance and flow
streams. Finally, to the best of our knowledge, this is the
first work in action detection which uses bilinear interpo-
lation [10, 11] instead of the widely used Rol max-pooling
layer [6], thus allowing gradients to flow backwards for both
convolution features and coordinates of bounding boxes.

2. Related work

Deep learning architectures have been increasingly ap-
plied of late to action classification [15, 17, 29, 33], spa-
tial [8], temporal [28] and spatio-temporal [38, 26, 23] ac-

tion localisation. While many works concern either spa-
tial action localisation [21, 37, 12, 30] in trimmed videos
or temporal localisation [20, 5, 32, 22, 36, 28, 40, 39] in
untrimmed videos, only a handful number of methods have
been proposed to tackle both problems jointly. Spatial ac-
tion localisation has been mostly addressed using segmen-
tation [21, 30, 12] or by linking frame-level region proposal
[8, 38, 37]. Gkioxari and Malik [8], in particular, have built
on [7] and [29] to tackle spatial action localisation in tem-
porally trimmed videos, using Selective-Search [34] based
region proposals on each frame of the videos.

Most recently, supervised frame-level action proposal
generation and classification have been used by Saha er
al. [26] and Peng et al. [23], via a Faster R-CNN [25] object
detector, to generate frame level detections independently
for each frame and link them in time in a post-processing
step. Unlike [35, 8, 38], current methods [37, 26, 23] are
able to leverage on end-to-end trainable deep-models [25]
for frame level detection. However, tube construction is still
tackled separately from region proposal generation.

Our novel network architecture, generates micro-tubes
(the smallest possible video-level region proposals) which
span across frames, and are labelled using a single soft-max
score vector, in opposition to [8, 38, 23, 26] which gener-
ate frame-level region proposals. Unlike [8, 38, 23, 26],
our proposed model is end-to-end trainable and requires
a single step of optimisation per training iteration. To the
contrary, [8, 38] use a multi-stage training strategy mu-
tuated from R-CNN object detection [7] which requires
training two CNNs (appearance and optical-flow) indepen-
dently, plus a battery of SVMs. The two most recent pa-
pers [23, 26] extend this Faster R-CNN [25] framework and
train independently appearance and motion CNNs. Com-
pared to [8, 38, 23, 26], which heavily exploit expensive
optical flow maps, our model learns spatiotemporal feature
encoding directly from raw RGB video frames.

3. Network Architecture
All the stages of Figure 1 are described below in detail.

3.1. Convolutional Neural Network

The convolutional (conv) layers of our network follow
the VGG-16 architecture [29]. We use two parallel VGG-
16 networks (§ Figure 1 (b)) to apply convolution over a
pair of successive video frames. Each VGG-16 has 13 conv
layers intermixed with 5 max pooling layers. Each conv
layer has a 3 x 3 filter and 1 x 1 stride and padding. Each
max pooling layer has filter shape 2 x 2. We discard all the
VGG-16 layers after the last (13-th) conv layer.

Feature map fusion. Our network takes two successive
video frames f; and f; 4 A as inputs. For a input video frame
of shape [3 x H x W], the last conv layer of each VGG-
16 outputs a feature map of shape [D x H' x W'| where
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Figure 3. 3D-RPN architecture.

D = 512, H = %, and W/ = %. We fuse the two
conv feature maps produced by the two parallel VGG-16
networks using element-wise sum fusion (§ Figure 1 (c)).
As a consequence, the fused feature map encodes both ap-
pearance and motion information (for frames f; and fia),
which we pass as input to our 3D-RPN network.

Our new 3D region proposal network (Figure 1 (d))
builds on the basic RPN structure [25] to propose a fully
convolutional network which can generate 3D region pro-

posals via a number of significant architectural changes.

3.2. 3D region proposal network

3D region proposal generation. As we explained, un-
like a classical RPN [25] which generates region propos-
als (rectangular bounding boxes) per image, our 3D-RPN
network generates (video) region proposals spanning a pair
of video frames. A single proposal thus consists of a pair
of rectangular bounding boxes. The input to our 3D-RPN
is a fused VGG-16 feature map (§ Figure 1 (c)) of size
[512 x H' x W']. We generate anchor boxes in a similar
way as in [25]: namely, we project back each point in the
H' x W’ grid (of the input feature map) onto the original
image plane of size H x W. For each projected point we
generate k pairs of anchor boxes of different aspect ratios.

Let (24, Ya;,Wa, hq;) denote the centroid, width and
height of the anchor boxes in a pair. We use the subscript ¢
to index the two boxes in a pair, i.e. ¢ = {1,2}. Similarly,
(@g:s Ygs» Wy, , hg, ) refer to the centroid, width and height of
the ground-truth pair. We can transform a pair of input an-
chor boxes into a predicted pair of ground-truth boxes via*:

Tg = Tq + ¢wwa

Wg = Wq exp(¢w)

Yg = Ya + d)yha
hg = ha eXp(QSh) (2)

where (¢, , ¢y, ) specify a scale-invariant translation of the
center of the anchor boxes, and (¢, , ¢r,) specify a log-
space translation of their width and height.

Both RPN and the micro-tube regression layer (Fig-
ure 1 (k)) predict the bounding box regression offsets
(h2i> Pys» Qw,» Ph, ). Our anchor generation approach dif-
fers from that of [25], in the sense that we generate k pairs
of anchors instead of & anchors.

4We removed the subscript 7 in Eq. 2 for sake of simplicity.

Network architecture. The network architecture of our
3D-RPN is depicted in Figure 3. To encode the location in-
formation of each pair of anchors, we pass the fused VGG-
16 feature map through a 3 x 3 convolution (b), a rectified
linear nonlinearity (¢), and two more 1 X 1 convolution ((e)
and (h)) layers. The first conv layer (b) consists of 256 con-
volution filters with 1 x 1 stride and padding, resulting in a
feature map of size [256 x H' x W] (d). The second conv
layer (e) has 8 x k convolution filters with 1 x 1 stride and
does not have padding. It outputs a feature map of shape
[(8 x k) x H' x W] (f) which encodes the location in-
formation (8 coordinate values) of [k x H' x W’ pairs of
anchor boxes (g). The third conv layer (h) is the same as (e).
The only difference is in the number of filters which is 2 x k
to encode the actionness score (i.e. probability of action or
no-action) (j) for each k pairs of anchors.

As RPN is a fully convolutional neural network, classifi-
cation and regression weights are learned directly from the
convolution features, whereas in the fully connected lay-
ers (§ 3.5) we apply linear transformation layers for clas-
sification and regression. In our 3D-RPN, the convolution
layer (e) is considered as the regression layer, as it outputs
the 8 regression offsets per pair of anchor boxes; the convo-
lution layer (h) is the classification layer.

3.3. 3D region proposal sampling

Processing all the resulting region proposals is very ex-
pensive. For example, with £ = 12 and a feature map of size
[512 x 38 x 50], we get 12 x 38 x 50 = 22800 pairs of an-
chor boxes. For this reason, we subsample them during both
training and testing following the approach of [25] (§ Fig-
ure 1 (e)). We only make a slight modification in the sam-
pling technique, as in our case one sample consists of a pair
of bounding boxes, rather than a single box.

Training time sampling. During training, we com-
pute the intersection over union (IoU) between a pair of
ground-truth boxes {G¢, Giya} and a pair of proposal
boxes {Pi, P>}, so that, ¢y = IoU(Gy, P1) and ¢o =
10U (G4 n, P2). We consider { Py, P2} as a positive exam-
pleifiy; >= 0.5 and v», >= 0.5, that is both IoU values are
above 0.5. When enforcing this condition, there might be
cases in which we do not have any positive pairs. To avoid
such cases, we also consider as positive pairs those which



have maximal mean IoU (1 +1)2)/2 with the ground-truth
pair. As negative examples we consider pairs for which both
IoU values are below 0.3.

We construct a minibatch of size B in which we can
have at most B, = B/2 positive and By = B — Bp
negative training samples. We set B = 256. Note that
the ground-truth boxes {G¢, Gi1a} in a pair belong to a
same action instance but come from two different video
frames {f;, fixa}. As there may be multiple action in-
stances present, during sampling one needs to make sure
that a pair of ground-truth boxes belongs to the same in-
stance. To this purpose, we use the ground-truth tube-id
provided in the datasets to keep track of instances.

Test time sampling. During testing, we use non-
maximum suppression (NMS) to select the top B = 1000
proposal pairs. We made changes to the NMS algorithm to
select the top B pairs of boxes based on their confidence. In
NMS, one first selects the box with the highest confidence,
to then compute the IoU between the selected box and the
rest. In our modified version (i) we first select the pair of
detection boxes with the highest confidence; (ii) we then
compute the mean IoU between the selected pair and the
remaining pairs, and finally (iii) remove from the detection
list pairs whose IoU is above an overlap threshold ¢/, .

3.4. Bilinear Interpolation

The sampled 3D region proposals are of different sizes
and aspect ratios. We use bilinear interpolation [10, 11] to
provide a fixed-size feature representation for them, neces-
sary to pass the feature map of each 3D region proposal to
the fully connected layer fc6 of VGG-16 (§ Figure 1 (j)),
which indeed requires a fixed-size feature map as input.

Whereas recent action detection methods [23, 26] use
max-pooling of region of interest (Rol) features which only
backpropagates the gradients w.r.t. convolutional features,
bilinear interpolation allows us to backpropagate gradients
with respect to both (a) convolutional features and (b) 3D
Rol coordinates. Further, whereas [23, 26] train appearance
and motion streams independently, and perform fusion at
test time, our model requires one-time training, and feature
fusion is done at training time.

Feature fusion of 3D region proposals. As a 3D pro-
posal consists of a pair of bounding boxes, we apply bilinear
feature pooling independently to each bounding box in the
pair. This yields two fixed-size pooled feature maps of size
[D x khx kw] for each 3D proposal. We then apply element-
wise sum fusion (§ Figure 1 (i)) to these 2 feature maps, pro-
ducing an output feature map of size [D x kh x kw]. Each
fused feature map encodes the appearance and motion in-
formation of (the portion of) an action instance which may
be present within the corresponding 3D region proposal. In
this work, we use D = 512, kh = kw = 7.

3.5. Fully connected layers

Our network employs two fully connected layers FC6

and FC7 (Figure 1 (j)), followed by an action classification
layer and a micro-tube regression layer (Figure 1 (k)).
The fused feature maps (§ Section 3.4) for each 3D proposal
are flattened into a vector and passed through FC6 and FC7.
Both layers use rectified linear units and dropout regular-
isation [16]. For each 3D region proposal, the FC7 layer
outputs a 4096 dimension feature vector which encodes the
appearance and motion features associated with the pair of
bounding boxes. Finally, these 4096-dimensional feature
vectors are passed to the classification and regression layers.
The latter output [B x C] softmax scores and [B x C' X §]
bounding box regression offsets (§ 3.2), respectively, for B
predicted micro-tubes and C' action classes.

4. Network training
4.1. Multi-task loss function

As can be observed in Figures | and 3, our network con-
tains two distinct classification layers.

The mid classification layer (§ Figure 3 (h)) predicts the
probability p™ of a 3D proposal containing an action, p”* =
(pg*, pi*) over two classes (action vs. no action). We denote
the associated loss by L7},. The end classification layer
(§ Figure 1 (k)) outputs a discrete probability distribution
(per 3D proposal), p® = (p§, ..., p&), over C' + 1 action cat-
egories. We denote the associated loss as L¢, .

In the same way, the network has a mid (Figure 3 (e)) and an
end (§ Figure 1 (k)) regression layer — the associated losses
are denoted by L, and L, respectively. Both regression
layers output a pair of bounding box offsets ¢™* and ¢° (cfr.
Eq. 2). We adopt the parameterization of ¢ (§ 3.2) given
in [7].

Now, each training 3D proposal is labelled with a
ground-truth action class ¢® and a ground-truth micro-
tube (§ 1) regression target g°. We can then use the multi-
task loss [25]:

L(p®,c 9% g% p™, ", 0™, 9™) =
asLas (P, €) + Alpele = 1 Li,e (6, 9°)+
ctsLets (0™ €™) + Mgele = 1] Lig (6™, 9™)
3)

on each labelled 3D proposal to jointly train for (i) action
classification (p®), (ii) micro-tube regression (¢°), (iii) ac-
tionness classification (p™), and (iv) 3D proposal regression
(¢™). Here, L% (p°,c°) and L, (p™,c™) are the cross-
entropy losses for the true classes c¢® and c¢™ respectively,
where ¢™ is 1 if the 3D proposal is positive and 0 if it is
negative, and ¢® = {1, ...,C}.

The second term Lf (¢°, g°) is defined over an 8-dim



tuple of ground-truth micro-tube regression target coordi-

‘ ({gi1 g o> Iy 12 1952 G s Gl 922})
and the corresponding predicted micro-tube tuple: ¢¢ =

({¢I1 ) yl ’ w1 ) ¢h1} {¢12’ y27 wz ’ ¢h2}) The fourth
term L7 (¢™, g™) is similarly defined over a tuple g™ of

loc
ground-truth 3D proposal regression target coordinates and
the associated predicted tuple ¢". The Iverson bracket in-
dicator function [¢ > 1] in (3) returns 1 when ¢® > 1 and 0
otherwise; [c = 1] returns 1 when ¢™ = 1 and 0 otherwise.
For both regression layers we use a smooth L1 loss in
transformed coordinate space as suggested by [25]. The
hyper-parameters A\, Aj,.. Ao, and A%, in Eq. 3 weigh
the relative importance of the four loss terms. In the follow-
ing we set to 1 all four hyper-parameters.

nates: ¢

4.2. Optimisation

We follow the end-to-end training strategy of [16] to
train the entire network in a single optimisation step. We
use stochastic gradient descent (SGD) to update the weights
of the two VGG-16 convolutional networks, with a momen-
tum of 0.9. To update the weights of other layers of the
network, we use the Adam [18] optimiser, with parameter
values 81 = 0.9, B = 0.99 and a learning rate of 1 x 1076,
During the Ist training epoch, we freeze the weights of the
convolution networks and update only the weights of the
rest of the network. We start fine-tuning the layers of the
two parallel CNNs after completion of 1st epoch. The first
four layers of both CNNs are not fine-tuned for sake of effi-
ciency. The VGG-16 pretrained ImageNet weights are used
to initialise the convolutional nets. The rest of the network’s
weights are initialised using a Gaussian with o = 0.01.

5. Action-tube generation
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Figure 4. (a) The temporal associations learned by our network;
(b) Our micro-tube linking algorithm requires (T /2 — 1) connec-
tions; (c) the T' — 1 connections required by [20]’s approach.
Once the predicted micro-tubes are regressed at test time,
they need to be linked up to create complete action tubes
associated with an action instance. To do this we intro-
duce here a new action tube generation algorithm which is
an evolution of that presented in [26]. There, temporally
untrimmed action paths are first generated in a first pass of
dynamic programming. In a second pass, paths are tempo-
rally trimmed to detect their start and end time. Here we

modify the first pass of [26] and build action paths using
the temporal associations learned by our network. We use
the second pass without any modification.

Linking up micro tubes (§ Figure 4) is not the same as
linking up frame-level detections as in [26]. In the Viterbi
forward pass of [20], the edge scores between bounding
boxes belonging to consecutive video frames (i.e., frame
ft and fi11) are first computed. Subsequently, a DP (dy-
namic programming) matrix is constructed to keep track of
the box indices with maximum edge scores. In the Viterbi
backward pass, all consecutive pairs of frames, i.e, frames
{1,2},{2,3},... are traversed to join detections in time.
Our linking algorithm saves 50% of the computing time,
by generating edge scores between micro-tubes (which only
needs 7'/2 — 1 iterations, cfr. Figure 4) rather than between
boxes from consecutive frames (which, in the forward pass,
needs 7' — 1 iterations). In the backward pass, the algorithm
connects the micro-tubes as per the max edge scores.

Recall that a predicted micro-tube consists of a pair of
bounding boxes (§ Figure 4), so that m = {b',b?}. In
the first pass action-specific paths p. = {ms,t € I =
{2,4 — 2}}, spanning the entire video length are ob-
talned by maximising via dynamic programming [8]:

E(pc) = ZSC mt +)‘ Zwo My 1mt+2)7 )

tel tel

where s.(m;) denotes the softmax score (§ 3.5) of the pre-
dicted micro-tube m at time step ¢, the overlap potential
VYo(b?m,, b m,,,) is the IoU between the second detection
box b?%,,, which forms micro-tube m; and the first detec-
tion box blmt+2 of micro-tube my.o. Finally, A, is a scalar
parameter weighting the relative importance of the pairwise
term. By recursively removing the detection micro-tubes
associated with the current optimal path and maximising (4)
for the remaining micro-tubes we can account for multiple
co-occurring instances of the same action class.

6. Experiments
6.1. Experimental setting

Datasets. All the experiments are conducted using the
following two widely used action detection datasets: a) J-
HMDB-21 [14] and b) UCF-101 24-class [31].

J-HMDB-21 is a subset of the relatively larger action
classification dataset HMDB-51 [19], and is specifically de-
signed for spatial action detection. It consists of 928 video
sequences and 21 different action categories. All video se-
quences are temporally trimmed as per the action’s dura-
tion, and each sequence contains only one action instance.
Video duration varies from 15 to 40 frames. Ground-truth
bounding boxes for human silhouettes are provided for all
21 classes, and the dataset is divided into 3 train and test



splits. For evaluation on J-HMDB-21 we average our re-
sults over the 3 splits.

The UCF-101 24-class action detection dataset is a sub-
set of the larger UCF-101 action classification dataset, and
comprises 24 action categories and 3207 videos for which
spatiotemporal ground-truth annotations are provided. We
conduct all our experiments using the first split. Compared
to J-HMDB-21, the UCF-101 videos are relatively longer
and temporally untrimmed, i.e., action detection is to be
performed in both space and time. Video duration ranges
between 100 and 1000 video frames.

Note that the THUMOS [9] and ActivityNet [ 1] datasets
are not suitable for spatiotemporal localisation, as they lack
bounding box annotation.

Evaluation metrics. As evaluation metrics we use both:
(1) frame-AP (the average precision of detections at the
frame level) as in [8, 23]; (2) video-AP (the average pre-
cision of detection at video level) as in [8, 38, 26, 23]. We
select an IoU threshold (§) range [0.1:0.1:0.5] for -HMDB-
21 and [0.1,0.2,0.3] for UCF-101 when computing video-
mAP. For frame-mAP evaluation we set § = 0.5.

Training data sampling strategy. As the input to our
model is a pair of successive video frames and their asso-
ciated ground-truth micro-tubes, training data needs to be
passed in a different way than in the frame-level training
approach [8, 38, 23, 26], where inputs are individual video
frames. In our experiments, we use 3 different sampling
schemes to construct training examples using different com-
binations of successive video frames (§ Figure 2 (b)): (1)
scheme-11 generates training examples from the pairs of
frames {t=1,t=2}, {t=2,t=3} ...; scheme-21 uses the (non-
overlapping) pairs {1,2}, {3,4} ...; scheme-32 constructs
training samples from the pairs {1,3}, {4,6} ...

6.2. Model evaluation

We first show how a proper positive IoU threshold is es-
sential during the sampling of 3D region proposals at train-
ing time (§ 3.3). Secondly, we assess whether our proposed
network architecture, coupled with the new data sampling
strategies (Sec. 6.1), improves detection performance. We
then show that our model outperforms the appearance-based
model of [26]. Finally, we compare the performance of the
overall detection framework with the state-of-the-art.

Effect of different positive IoU thresholds on detec-
tion performance. We train our model on UCF-101 using
two positive IoU thresholds: 0.7 and 0.5 (§ 3.3). The detec-
tion results (video-mAP) of these two models ( Model-0-7
& -0-5) are shown in Table 1. Whereas [25] recommends
an IoU threshold of 0.7 to subsample positive region pro-
posals during training, in our case we observe that an IoU
threshold of 0.5 works better with our model. Indeed, dur-
ing sampling we compute IoUs between pairs of bounding
boxes and then take the mean IoU to subsample (§ 3.3). As

Table 1. Effect of different positive IoU thresholds on detection
performance (video-mAP).

IToU threshold & 0.1 0.2 0.3
Model-0-7 64.04 54.83  44.664
Model-0-5 68.85 60.06 49.78

the ground-truth boxes (micro-tubes) are connected in time
and span different frames, it is harder to get enough positive
examples with a higher threshold like 0.7. Therefore, in the
remainder we use an IoU of 0.5 for evaluation.

Effect of our training data sampling strategy on de-
tection performance. JHMDB-21 frame-mAP. We first
generate a J-HMDB-21 training set using the scheme-
11 (§ 6.1) and train our model. We then generate an-
other training set using scheme-32, and train our model
on the combined training set (set-11+32). Table 2 shows
the per class frame-AP obtained using these two models.
We can observe that out of 21 JHMDB action classes, the
frame-APs of 15 classes actually improve when training the
model on the new combined trainset (set-11+32). Over-
all performance increases by 1.64%, indicating that the net-
work learns temporal association more efficiently when it
is trained on pairs generated from different combinations of
successive video frames.

JHMDB-21 video-mAP. The two above trained models
are denoted by Model-11 and Model-11+32 in Table 4,
where the video-mAPs at different IoU threshold for these
two models are shown. Although the first training strategy
scheme-11 already makes use of all the video frames present
in J-HMDB-21 training splits, when training our model us-
ing the combined trainset we observe an improvement in the
video-mAP of 1.04% at § = 0.5.

Effect of exploiting appearance features. Further,
we show that our model exploits appearance features (raw
RGB frames) efficiently, contributing to an improvement of
video-mAP by 3.2% over [26]. We generate a training set
for UCF-101 split 1 using the training scheme-21 and com-
pare our model’s performance with that of the appearance-
based model (*A) of [26]. We show the comparison in Ta-
ble 3.

Note that, among the 24 UCF-101 action classes, our
model exhibits better video-APs for 14 classes, with an
overall gain of 3.2%. We can observe that, although trained
on appearance features only, our model improves the video-
APs significantly for action classes which exhibit a large
variability in appearance and motion. Also, our model
achieves relatively better spatiotemporal detection on ac-
tion classes associated with video sequences which are sig-
nificantly temporally untrimmed, such as BasketballDunk,
GolfSwing, Diving with relative video-AP improvements of
16.9%, 10.8% and 1.5% respectively. We report significant
gains in absolute video-AP for action categories SoccerJug-
gling, PoleVault, RopeClimbing, BasketballDunk, IceDanc-



Table 2. Effect of our training data sampling strategy on per class frame-AP at IoU threshold § = 0.5, JHMDB-21 (averaged over 3 splits).

frame-AP(%) | brushHair catch  clap ~ climbStairs ~ golf  jump  kickBall ~pick pour pullip push run  shootBall ~shootBow shootGun  sit  stand swingBaseball —throw —walk  wave | mAP
ours (*) 46.4 407 319 62.3 91.0 43 17.3 295 862 827 66.9 355 339 78.2 49.7 1.7 138 57.1 213 278 271 43.6
ours (%) 43.7 43.6  33.0 61.5 91.8 5.6 23.8 315 918 84.1 73.1 323 333 81.4 55.1 12.4 14.7 56.3 222 24.7 29.4 45.0
Improvement 2.6 2.9 10 -0.8 0.7 12 6.4 19 55 14 61 32 -0.6 32 54 0.6 0.8 -0.8 0.8 3.1 23 14
5] 65.2 183 38.1 39.0 79.4 73 9.4 252 802 82.8 33.6 11.6 5.6 66.8 27.0 32.1 342 33.6 155 34.0 21.9 36.2
[371 60.1 342 564 38.9 83.1 10.8 24.5 385 715 675 213 198 11.6 78.0 50.6 109 430 489 265 252 158 39.9
[38] 73.3 340 408 56.8 939 59 13.8 385 881 894 605 211 23.9 85.6 37.8 349 492 36.7 168 405 205 | 458
[23] 75.8 384 622 62.4 99.6 127 35.1 57.8 968 973 79.6  38.1 52.8 90.8 62.7 336 489 62.2 256 597 371 58.5
video-AP(%) | |
ours (*) 53.9 544 398 68.2 96.1 569 39.6 349 971 93.5 84.1 537 43.6 93.2 64.5 209 228 72.1 232 394 378 | 5427
ours (**) 51.9 545 412 66.6 948 18 48.7 337 976 925 87.6  49.0 374 92.7 75.8 216 271 733 243 377 447 | 5531
Improvement -1.9 0.01 14 -1.6 -1.2 2.1 9.1 -1.2 0.4 -1.0 34 -4.7 -6.2 -0.5 11.2 0.6 4.2 1.1 1.1 -1.6 6.8 1.04
] 79.1 334 539 60.3 99.3 184 26.2 420 928 981 29.6 246 13.7 92.9 423 672 57.6 66.5 279 589 358 | 533
[371 76.4 49.7 80.3 43.0 92.5 242 57.7 70.5 787 77.2 3.7 357 27.0 88.8 76.9 29.8 68.6 72.8 315 44.4 26.2 56.4
*Model-11 **Model-11+32

Table 3. Per class video-AP comparison at IoU threshold § = 0.2, UCF-101.
video-AP(%) ‘ BasketballDunk ~ Biking  Diving  Fencing  FloorGymnastics ~ GolfSwing  IceDancing  LongJump  PoleVault ~ RopeClimbing  Skiing  Skijet  SoccerJuggling ~ WalkingWithDog ‘ mAP
[26] (*A) 22.7 56.1 89.7 86.9 93.8 59.9 59.2 415 489 77.8 68.4 88 34.6 73.3 56.86
ours 39.6 59.5 91.2 88.5 94.1 70.7 70.4 49.8 71.0 97.2 74.0 92.9 80.2 73.6 60.06
Improvement 16.9 34 15 L6 0.3 10.8 112 83 221 194 5.6 49 45.6 0.3 32

*A: appearance model

Table 4. Effect of our training data sampling strategy on video-
mAP, JHMDB-21 (averaged over 3 splits).

ToU threshold & 0.1 0.2 03 0.4 0.5
Model-11 5773 57770 57.60 56.81 54.27
Model-11+32 5779 5776 57.68 56.79 55.31

Table 5. Spatio-temporal action detection performance (video-
mAP) comparison with the state-of-the-art on J-HMDB-21.

IoU threshold & 0.1 0.2 03 0.4 0.5

Gkioxari and Malik [8] - - - - 53.30
Wang et al. [37] - - - - 56.40
Weinzaepfel et al. [38] - 63.1 - - 60.70
Saha et al. [20] (Spatial Model)  52.99 5294 5257 5222 51.34
Peng and Schmid [23] - 74.3 - - 73.1
Ours 5779 57776 57.68 56.79  55.31

Table 6. Spatio-temporal action detection performance (video-
mAP) comparison with the state-of-the-art on UCF-101.

IoU threshold & 0.1 0.2 0.3 0.5 0.75 0.5:0.95
Yuetal. [41] 428 2650 14.6 - - -
Weinzaepfel et al. [38] 51.7 46.8 37.8 - - -
Peng and Schmid [23]  77.31 72.86 6570 30.87 01.01 07.11
Saha et al. [20] (*A) 65.45 5655 4852 - - -
Saha et al. [26] (full) 76.12 6636 54.93 - - -
Ours — ML 68.85 60.06 49.78 - - -
Ours — ML — (x) 70.71 6136 5044  32.01 0.4 9.68
Ours — 2PDP — (%) 713 63.06 51.57 33.06 0.52 10.72

(*) cross validated alphas as in [26]; 2PDP - tube generation algorithm [26]
ML - our micro-tube linking algorithm.

ing, GolfSwing and LongJump of 45.6%, 22.1%, 19.4%,
16.9%, 11.2% 10.8% and 8.3%, respectively.

Detection performance comparison with the state-of-
the-art. Table 5 reports action detection results, averaged
over the three splits of J-HMDB-21, and compares them
with those to our closest competitors. Note that, although
our model only trained using the appearance features (RGB
images), it outperforms [8] which was trained using both
appearance and optical flow features. Also, our model out-
performs [26]’s spatial detection network.

Table 6 compares the action detection performance of

our model on the UCF-101 dataset to that of current state
of the art approaches. We can observe that our model out-
performs [41, 38, 26] by a large margin. In particular, our
appearance-based model outperforms [38] which exploits
both appearance and flow features. Also notice, our method
works better than that of [23] at higher IoU threshold, which
is more useful in real-world applications.

7. Implementation details

We implement our method using Torch 7 [3]. To develop
our codebase, we take coding reference from the publicly
available repository [13]. We use the coding implementa-
tion of bilinear interpolation [24] (§ Section 3.4) for ROI
feature pooling. Our micro-tube linking algorithm (ML)
(§ Section 5) is implemented in MATLAB.

In all our experiments, at training time we pick top 2000
RPN generated 3D proposals using NMS (non-maximum
suppression). At test time we select top 1000 3D pro-
posals. However, a lower number of proposals, e.g. top
300 proposals does not effect the detection performance,
and increase the test time detection speed significantly.
In Section 9.2, we show that extracting less number of
3D proposals (at test time) does not effect the detection
performance. Shaoqing et al. [25] observed the same with
Faster-RCNN.

For UCF-101, we report test time detection results
(video-mAP) using two different action-tube generation al-
gorithms. Firstly, we link the micro-tubes predicted by the
proposed model (at test time) using our micro-tube linking
(ML) algorithm (§ Section 5). we denote this as “Ours-
ML” in Table 6. Secondly, we construct final action-tubes
from the predicted micro-tubes using the 2 pass dynamic
programming (2PDP) algorithm proposed by [26]. We de-
note this as “Ours-2PDP” in Table 6. The results in Ta-



ble 1, 3, 4 and 5 are generated using our new micro-tube
linking algorithm (“Ours-ML”). Further, we cross-validate
the class-specific a. as in Section 3.4 of [26], and generate
action-tubes using these cross-validated o, values. We de-
note the respective results using an asterisk (‘*’) symbol in
Table 6.

7.1. Mini-batch sampling

In a similar fashion [6], we construct our gradient de-
scent mini-batches by first sampling N pairs of successive
video frames, and then sampling R 3D proposals for each
pair. In practice, we set N = 1 and R = 256 in all our
experiments. We had one concern over this way of sam-
pling training examples because, all the positive 3D propos-
als from a single training batch (i.e. a pair of video frames)
belong to only one action category > (that is, they are corre-
lated), which may cause slow training convergence. How-
ever, we experience a fast training convergence and good
detection results with the above sampling strategy.

7.2. Data preprocessing

The dimension of each video frame in both J-HMDB-
21 and UCF-101 is [320 x 240]. We scale up each frame
to dimension [800 x 600] as in [25]. Then we swap the
RGB channels to BGR and subtract the VGG image mean
{103.939,116.779, 123.68} from each BGR pixel value.

7.3. Data augmentation

We augment the training sets by flipping each video
frame horizontally with a probability of 0.5.

7.4. Training batch

Our training data loader script constructs a training batch
which consists of: a) a tensor of size [2 x D x H x W] con-
taining the raw RGB pixel data for a pair of video frames,
where D = 3 refers to the 3 channel RGB data, H = 600
is the image height and W = 800 is the image width; b) a
tensor of size [2 X T' x 6] which contains the ground-truth
micro-tube annotation in the following format: [fno fid z,
Yo w h], where T is the number of micro-tubes, fno is the
frame number of the video frame, #id is an unique identifica-
tion number assigned to each individual action tube within
a video, {x.,y.} is the center and w and h are the width
and height of the ground-truth bounding box; ¢) a [1 x T
tensor storing the action class label for each micro-tube.
The J-HMDB-21 (Model-11+32) train set has 58k training
batches, and UCF-101 train set consists of 340k training
batches.

SEach video clip of UCF-101 and J-HMDB-21 is associated with a
single class label. Therefore, a pair of video frames belongs to a single
action class.

7.5. Training iteration

Our model requires at least 2 training epochs because,
in the first training epoch we freeze the weights of all the
convolutional layers and only update the weights of the rest
of the network. We start updating the weights of the convo-
lutional layers (alongside other layers) in the second epoch.
We stop the training after 195k and 840k iterations for J-
HMDB-21 and UCF-101 respectively. The training times
required for J-HMDB-21 and UCF-101 are 36 and 96 GPU
hours respectively using a single GPU. The training time
can be further reduced by using two or more GPUs in par-
allel.

8. Fusion methods

A fusion function f : x!, x!*t2, — y fuses two con-

volution feature maps x!, x!T2 € RH *W'xD o produce
an output map y € RH W'D ‘where W', H' and D are
the width, height and number of channels of the respective
feature maps [4]. In this work we experiment with the
following two fusion methods.

Sum fusion. Sum fusion y**" = f5*m(x! x*+2) com-
putes the sum of the two feature maps at the same spatial
locations, (4, j) and feature channels d:

sum

ot t+A
Yijd = Xijat X ja ®)

where 1 < i < H')1 < 5 < W,1 <d < D and

! !
Xt,XH_A,y c RH xW ><D.

Mean fusion. Mean fusion is same as sum fusion, only
the difference is, instead of computing the element-wise
sum, here we compute the element-wise mean:

mean

it = (xja+x55)/2 (6)

9. Additional experiments and discussion
9.1. Effect of different fusion methods

In Table 7 we report video-mAPs obtained using mean
and sum fusion methods for J-HMDB-21 dataset. We train
our model on the combined trainset (set-11+32) (§ Section
6.1 and 6.2). We train two models, one using mean and an-
other using sum fusion and denote these two models in Ta-
ble 7 as Model-11+32 (mean-ML) and Model-11+32 (sum-
ML) respectively. Action-tubes are constructed using our
micro-tube linking (ML) algorithm. We can observe that at
higher IoU threshold § = 0.5, the sum fusion performs bet-
ter and improve the mAP by almost 1%. As a future work,
we would like to explore different spatial and temporal fea-
ture map fusion functions [4].



Table 7. Effect of element-wise mean and sum fusion methods on
video-mAP for J-HMDB-21 dataset (averaged over 3 splits).

Table 9. Effect of different combinations of hyper-parameters on
video-mAP for J-HMDB-21 split-1 train set.

IoU threshold § 0.1 0.2 0.3 0.4 0.5
Model-11+32 (mean-ML)  57.16  57.14 57.00 56.13 54.51
Model-11+32 (sum-ML) 57.79 5776 57.68 56.79 55.31

9.2. Effect of the number of predicted 3D proposals

To investigate the effect of the number of predicted 3D
proposals on detection performance, we generate video-
mAPs using two different sets of detections on J-HMDB-21
dataset. One detection set is generated by selecting top 1000
3D proposals and another set is by selecting top 300 3D pro-
posals at test time using NMS. Once the two sets of detec-
tions are extracted, predicted micro-tubes are then linked up
in time to generate final action tubes. Subsequently, video-
mAPs are computed for each set of action tubes. The corre-
sponding video-mAPs for each detection set at different loU
thresholds are reported in Table 8. We denote these two de-
tection sets in Table 8 as Detection-1000 and Detection-300.
It is quite apparent that reduced number of RPN proposals
does not effect the detection performance.

Table 8. Effect of the number of predicted 3D proposals on
video-mAP for J-HMDB-21 dataset (averaged over 3 splits).

ToU threshold § 0.1

57.79
5791

0.2

57.76
57.89

0.3

57.68
57.84

0.4

56.79
56.87

0.5

55.31
55.26

Detection-1000
Detection-300

9.3. Loss function hyper-parameters

We have four hyper-parameters A, A, ., Alj, and A,
in our multi-task loss function (§ Equation 3) which weigh
the relative importance of the four loss terms. To investi-
gate the effect of these hyper-parameters on video-mAP, we
train our model with different combinations of these four
hyper-parameters on J-HMDB-21 split-1. The trainset is
generated as per scheme-11 (§ Section 6.1). The video-
mAPs of these trained models are presented in Table 9. We
can observe that when the weigths for the mid classifcation
(A\7},) and regression (A[,,) layers’ loss terms are too low
(e.g. 0.1 & 0.05), the model has the worst detection per-
formance. When all weights are set to 1, then the model
exhibits good detection performance. However, we get the
best video-mAPs with \S;, = 1.0, A7 . = 1.0, A7}, = 0.5
and A7, = 0.5. In all our experiments we set all 4 weights
to 1. As a future work, we will explore the setting [1.0, 1.0,

0.5, 0.5].
9.4. Ablation study

An ablation study of the proposed model is presented in
Section 9.5. Besides, as a part of the ablation study, per
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Hyper-parameters IoU threshold &

Ads  Aoe s Aoe 0.1 0.2 0.3 0.4 0.5
1.0 1.0 0.1 0.05 | 55.03 55.03 54.63 53.17 5033
1.0 1.0 0.1 0.1 55.62 5562 5547 5447 50.51
1.0 1.0 0.5 0.25 56.3 563 5591 5476  52.30
1.0 1.0 0.5 0.5 573 5713 56779 5582 53.81
1.0 1.0 1.0 1.0 56.86 56.85 56.57 55.89 52.78

Model-11-2PDP

class frame- and video-APs of J-HMDB-21 dataset are re-
ported in Table 2, and per class video-APs of UCF-101 are
presented in Table 3 in the main paper.

9.5. Discussion

The paper is about action detection, where evaluation
is by class-wise average precision(AP) rather than classifi-
cation accuracy, a confusion matrix cannot be used. Our
model is not limited to learn from pairs of consecutive
frames, but can learn from pairs at any arbitrary interval
A (see Figure 2 (a)).

To confute this point we conducted an ablation study
of our model which is discussed below. For consecu-
tive frames, we trained our model on J-HMDB-21 (split-
01) dataset by passing training pairs composed of identical
frames, e.g. passing the video frame pair (65,65) instead
of (65,66). As you can see in Table 10, video-mAP drops
significantly by 8.13% (at IoU threshold 6 = 0.5) which
implies that the two streams do not output identical repre-
sentations.

To double-check, we also extracted the two VGG-16
conv feature maps (see Figure 1 (b)) for each test frame
pair ((f¢, ft+1)) of JHMDB-21 and UCF-101 datasets. For
each pair of conv feature maps, we first flattened them into
feature vectors, and then computed the normalised L2 dis-
tance between them. For identical frames we found that
the L2 distance is 0 for both J-HMDB-21 and UCF-101
datasets. Whereas, for consecutive frames it is quite high,
in case of J-HMDB-21 the mean L2 distance is 0.67; for
UCF-101 the mean L2 distance is 0.77 which again implies
that the two streams generate significantly different feature
encoding even for pairs consist of consecutive video frames.

9.6. Computing time required for training/testing

Computing time required for training. Saha er
al. reported [27] that the state-of-the-art [8, 38] action
detection methods require at least 6+ days to train all the
components (including fine-tuning CNNs, CNN feature
extraction, one vs rest SVMs) of their detection pipeline
for UCF-101 trainset (split-01). In our case, we need to
train the model once which requires 96 hours for UCF-101
and 36 hours for J-HMDB-21 to train. The training



Table 10.  An ablation study on J-HMDB-21 (split-01). Video-
mAP is computed at loU threshold § = 0.5.

Model video-mAP (%)
Model-01 48.9
Model-02 52.7
Model-03 571

Model-01: Training pairs with identical frames

Model-02: Training pairs with consecutive frames (model-11)
Model-03: Training pairs with mixture of consecutive and
successive frames (model-11+32)

and test time calculations are done considering a single
NVIDIA Titan X GPU. The computing time requirement
for different detection methods are presented in Table 11.
Our model requires 2 days less training time as compared
to [8, 38] on UCF-101 trainset.

Computing time required for testing. We compare
video-level computing time required (during test time) of
our method with [8, 38, 26] on J-HMDB-21 dataset. Note
that our method takes the least computing time of 8.5
Sec./video as compared to [8, 38, 26] (§ Table 11).

Table 11. Computing time comparison for training and testing.
Methods  days (¥) Sec/video (**)
[8] 6+ 113.52
[38] 6+ 52.23
[26] 3+ 10.89
ours 4 8.5

(*) Training time on UCF-101 dataset.
(**) Average detection time on J-HMDB-21.

9.7. Qualitative results

Spatiotemporal action detection results on UCF-101.
We show the spatiotemporal action detection qualitative re-
sults in Figures 5 and 6. To demonstrate the robustness of
the proposed detector against temporal action detection, we
select those action categories which have highly temporally
untrimmed videos. We select action classes VolleyballSpik-
ing, BasketballDunk and CricketBowling. For Volleyball-
Spiking class, the average temporal extent of the action in
each video is 40%, that means, the remaining 60% of the
video doesn’t contain any action. Similarly, for Basketball-
Dunk and CricketBowling classes, we have average dura-
tions 41% and 46% respectively.

Video clip (a) (§ Figures 5) has duration 107 frames
and the action VolleyballSpiking takes place only between
frames 58 to 107. Note that our method able to successfully
detect the temporal extent of the action (alongside spatial
locations) which closely matches the ground-truth. We can
observe similar quality of detection results for video clip
(b) and (c) (§ Figures 5) which have durations 41 and 94
frames and the temporal extent of action instances are be-
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tween frames 17 to 41 and frames 75 to 94 respectively for
BasketballDunk and CricketBowling. Video clips (a) and
(b) in Figures 6 show some more spatiotemporal detection
results for action classes BasketballDunk and CricketBowl-
ing.

Figures 7 shows sample detection results on UCF-101.
Note that in (1), the 2nd “biker” is detected in spite of par-
tial occlusion. Figures 7 (1), (2), (3) and (5) are examples of
multiple action instance detection with complex real world
scenarios like 3 fencers (§ (2)) and bikers (§ (3)). Further,
note that the detector is robust against scale changes as
the 3rd fencer (§ (2)) and the biker (§ (3)) are detected
accurately in spite of their relatively smaller shapes.

Spatiotemporal action detection results on J-HMDB-
21. Figure 8 presents the detection results of our model
on J-HMDB-21 dataset. In Figure 8 (1), (2) and (3), the ac-
tions “run” and “sit” are detected accurately in spite of large
variations in illumination conditions, which shows that our
detector is robust against illumination changes. In Figure 8
(5), (6) and (7), the actions “jump” and “run” are detected
successfully. Note that due to fast motion, these video
frames are affected by motion blur. Further, in Figure 8
(9) to (12), actions “stand” and “sit” are detected with cor-
rect action labels. Even for human, it is hard to infer which
instance belong to “stand” and “sit” class. This again tells
that our classifier is robust against inter-class similarity.

10. Conclusions

In this work we departed from current practice in action
detection to take a step towards deep network architectures
able to classify and regress whole video subsets. In particu-
lar, we propose a novel deep net framework able to regress
and classify 3D region proposals spanning two successive
video frames, effectively encoding the temporal aspect of
actions using just raw RBG values. The proposed model is
end-to-end trainable and can be jointly optimised for action
localisation and classification using a single step of opti-
misation. At test time the network predicts ‘micro-tubes’
spanning two frames, which are linked up into complete ac-
tion tubes via a new algorithm of our design. Promising
results confirm that our model does indeed outperform the
state-of-the-art when relying purely on appearance.

Much work will need to follow. It remains to be tested
whether optical flow can be integrated in this framework
and further boost performance. As the search space of 3D
proposals is twice the dimension of that for 2D proposals,
efficient parallelisation and search are crucial to fully ex-
ploit the potential of this approach. Further down the road
we wish to extend the idea of micro-tubes to longer time
intervals, posing severe challenges in terms of efficient re-
gression in higher-dimensional spaces.
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Figure 5. Spatiotemporal action detection results. Video clips (a), (b) and (c) are test videos belong to UCF-101 action classes

VolleyballSpiking, BasketballDunk and CricketBowling respectively.
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Figure 6. Spatiotemporal action detection results. Video clips (a) and (b) are test videos belong to UCF-101 action classes BasketballDunk
and CricketBowling respectively.
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Figure 7. More sample detection results on UCF-101 test videos.
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Figure 8. Spatiotemporal action detection results on J-HMDB-21 test videos.
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