
ar
X

iv
:1

70
3.

10
29

5v
3

 [
cs

.C
V

]
 2

1
Ju

l 2
01

7

DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling

Lachlan Tychsen-Smith, Lars Petersson

CSIRO (Data61)

7 London Circuit, Canberra, ACT, 2601

Lachlan.Tychsen-Smith@data61.csiro.au, Lars.Petersson@data61.csiro.au

Abstract

We define the object detection from imagery problem

as estimating a very large but extremely sparse bounding

box dependent probability distribution. Subsequently we

identify a sparse distribution estimation scheme, Directed

Sparse Sampling, and employ it in a single end-to-end CNN

based detection model. This methodology extends and for-

malizes previous state-of-the-art detection models with an

additional emphasis on high evaluation rates and reduced

manual engineering. We introduce two novelties, a cor-

ner based region-of-interest estimator and a deconvolution

based CNN model. The resulting model is scene adaptive,

does not require manually defined reference bounding boxes

and produces highly competitive results on MSCOCO, Pas-

cal VOC 2007 and Pascal VOC 2012 with real-time eval-

uation rates. Further analysis suggests our model per-

forms particularly well when finegrained object localiza-

tion is desirable. We argue that this advantage stems from

the significantly larger set of available regions-of-interest

relative to other methods. Source-code is available from:

https://github.com/lachlants/denet

1. Introduction

Feed-forward neural networks exhibit good convergence

properties given a random initialization under stochastic

gradient descent (SGD) and, given an appropriate network

design and training regime, can generalize well to previ-

ously unseen data [8]. In particular, convolutional neural

networks (CNNs) built from interleaved convolution and

pooling layers with ReLU activation functions have set nu-

merous benchmarks in computer vision tasks [8] [6] [20].

A number of methodologies have been developed to map

their state-of-the-art dense regression and classification ca-

pabilities to the problem of identifying axis aligned bound-

ing boxes of object instances in images. In particular we

highlight the relatively slow region based CNN approaches

(R-CNN [4], Faster R-CNN [15]) and the more recent work

on real-time detection (YOLO [14], SSD [12]).

Input

Image
Base

CNN

Sparse

Sample
Classify

CNN
BBox

Update

Pr(s|BS)

Corner

Detect
Pr(t|k, y, x)

Sampling

Bounding

Boxes

Figure 1. A high level flow diagram depicting the DeNet method-

ology. The CNN’s are highlighted in blue, the novel components

in purple and the outputs in yellow. The sampling bounding box

dependency BS (highlighted in red) is held constant during back

propagation to produce an end-to-end trained model. The cor-

ner distribution and final classification distribution are jointly op-

timized using cross entropy loss.

Rather than focusing on obtaining state-of-the-art accu-

racy in a competition environment (i.e. computationally un-

constrained) in this paper we emphasis the dual task of ob-

taining the best detection performance at a predefined eval-

uation rate i.e. 60 Hz and 30 Hz. The primary contributions

made within this paper include:

• An improved theoretical understanding of modern de-

tection methods and a generic framework in which to

describe them i.e. Directed Sparse Sampling.

• A novel, fast, region-of-interest estimator which

doesn’t require manually defined reference bounding

boxes.

• A novel application of deconvolution layers which

greatly improves evaluation rates.

• Six implementations of our method demonstrating

competitive detection performance on a range of

benchmarks.

• An easily extended Theano based code release to facil-

itate the research community.

1

http://arxiv.org/abs/1703.10295v3

1.1. Related work

In region based CNN detection (R-CNN) [4] the image

is first preprocessed with a region proposal algorithm e.g.

selective search [21], region proposal network (RPN) [15],

etc. This algorithm identifies image regions (i.e. bounding

boxes) of interest (RoIs) which are then rescaled to fixed di-

mensions (normalizing scale and aspect ratio) and fed into

a CNN based classifier. The CNN assigns a probability

that the region bounds an object of interest or the null class

and, via linear regression, identifies an improved bounding

box. This approach has demonstrated state-of-the-art re-

sults, however, it is very expensive to train and evaluate, re-

quiring multiple full CNN evaluations (one per region pro-

posal) and an often expensive pre-processing step. Since the

majority of CNN computation occurs in the first few layers,

Fast R-CNN [3] addressed these issues by applying a shal-

low CNN to the image and then, for each region, extracting

fixed sized features from the generated feature map for the

final classification. In Faster R-CNN [15] the region pro-

posal algorithm was integrated into the CNN providing an

end-to-end solution, improved timings and demonstrating

that both tasks (region proposal and classification) shared

similar underlying features. Despite these improvements, to

our knowledge, region based CNN’s have not been demon-

strated operating near real-time frequencies.

In You Only Look Once (YOLO) [14] they depart from

the algorithmically defined region based approaches de-

scribed above, opting instead for a predefined, regular grid

of detectors. In effect they merged the region classification

problem into the region proposal network (RPN) first pro-

posed in Faster R-CNN. With this approach the CNN is only

evaluated once to produce the outcomes for all detectors

resulting in significantly reduced training and evaluation

times. In Single Shot Detector (SSD) [12] this approach

was further refined with an improved network design and

training methodology to demonstrate comparable results to

the region based methods. We note that the considerable

improvements achieved with SSD required scene dependent

engineering to manually predefine the most likely set of re-

gions within the image to contain an object, a flaw shared

with the Faster R-CNN region proposal network. In particu-

lar, SSD demonstrated an improvement of 2.7% MAP [12]

by the addition of four aspect ratios to the predefined re-

gions on the Pascal VOC2007 [1] dataset, highlighting the

importance of manual engineering in modern state-of-the-

art detector designs. Without going into too much detail,

we note that in practice manually engineered solutions typi-

cally limit scalability and adaptiveness to different problem

sets (without an expensive re-engineering process).

The primary differentiator between these methods lies

in how each method identifies and treats the regions to be

classified. R-CNN based methods sample regions sparsely

based on an algorithmic preprocessing step and normalize

the region of interest while YOLO based approaches per-

form dense sampling with a manually defined grid of de-

tectors without image normalization. Often dense methods

are well suited to current implementations and, therefore

offer a significant timing advantage over sparse methods.

However, in this work, we demonstrate a novel model de-

sign which combines the ease of training, scene adaptability

and classification accuracy of the sparse region-based ap-

proaches with the fast training and evaluation of the dense

non-region based methods.

1.2. Probabilistic Object Detection

We formulate the probabilistic multiclass detection prob-

lem as first estimating the distribution Pr(s|B, I) where

s ∈ C ∩ {null} is a random variable indicating the pres-

ence of an instance of class c ∈ C or the null class (in-

dicating no instances) which is sufficiently bounded by the

box B = {x, y, w, h} and I is the input image (omitted in

subsequent derivations). This formulation incorporates the

assumption that only a single instance of a class can occupy

each bounding box. We note that this definition does not

seek to perform instance assignment, but can be used as an

input to an algorithm that does e.g. Non-Max Suppression.

Given a suitable neural network design we assert that

Pr(s|B) can be estimated from training data with class

bounding box annotations. However, since the number of

unique bounding boxes is given by |B| ∝ XYWH where

(X,Y) are the number of image positions and (W,H)
the range of bounding box dimensions the naive solu-

tion quickly becomes intractable. For instance, assuming

the most common settings for the ImageNet dataset, 1000
classes and 224 × 224 images, and considering all valid

bounding boxes within the image, expressing this distribu-

tion requires approximately 629 × 109 values or 2.5TB in

32bit float format. Clearly this is an intractable problem

with current hardware.

At the cost of localization accuracy, subsampling the

output bounding boxes is a valid approach. For instance,

by careful dataset dependent manual engineering, Faster R-

CNN and YOLO based approaches subsample the distribu-

tion to the order of 104 to 105 bounding boxs [14] [15].

These boxes are then refined by estimating only the most

likely bounding box in a local region via linear regression.

As an alternative to large scale subsampling, we sought to

exploit the fact that, due to occlusion and other factors, we

expect a very small subset of bounding boxes to contain

class instances other than the null class. Subsequently, we

have developed a solution based on the state-of-the-art re-

gression capabilities of a single end-to-end CNN which es-

timates the highly sparse distribution Pr(s|B) in a real-time

(or computationally constrained) operational environment.

2. Directed Sparse Sampling (DSS)

We use the term Directed Sparse Sampling to refer to the

method of a applying a jointly optimized two stage CNN

where one stage estimates the likely locations where user-

defined interesting values occur and the other sparsely clas-

sifies the identified values e.g. in R-CNN based models

(including R-FCN and DeNet) we estimate the bounding

boxes which are most likely to include a non-null class as-

signment, then run a classifer over these bounding boxs.

2.1. Cornerbased RoI Detector

Here we introduce the concept of bounding box corner

estimation for efficient region-of-interest (RoI) estimation.

In our methodology, this task is performed by estimating

the likelihood that each position in the image contains an

instance of one of 4 corner types i.e. Pr(t|k, y, x) where t
is a binary variable indicating the presence of a corner of

type k ∈ {top left, top right, bottom left, bottom right}
at position (x, y) in the input image. We assert that due to

the natural translation invariance of the problem, estimating

the corner distribution can be efficiently performed with a

standard CNN design trained on bounding box annotated

image data (e.g. MSCOCO [11], Pascal VOC [1], etc).

With the corner distribution defined we estimate the like-

lihood that a bounding boxB contains an instance by apply-

ing a Naive Bayesian Classifier to each corner of the bound-

ing box:

Pr(s 6= null|B) ∝
∏

k

Pr(t|k, yk, xk) (1)

where (xk, yk) = fk(B) indicates the bounding box po-

sition associated with each corner type k. For ease of im-

plementation we define the N×N bounding boxes with the

largest non-null probabilityPr(s 6= null|B) as the sampling

bounding boxes BS . The user defined variable N balances

the maximum number of detections the model can handle

with the computational and memory requirements.

With the potentially non-null bounding boxes estimated,

we pass a feature vector of predefined length from the cor-

ner detector model to the final classification stages. There-

fore, the final classification stage is a function of the form

f : ᾱB → Pr(s|B) where ᾱB is a feature vector uniquely

identified by the sampling bounding box B ∈ BS . It is

important that the feature is uniquely associated with each

bounding box, otherwise the classifier will have no informa-

tion to distinguish between bounding boxes with the same

ᾱB . Exactly how to construct the feature vector is still a

matter of debate [9, 15] however we construct ᾱB by con-

catenating together the nearest neighbour sampling features

at predefined locations relative to each sampling bounding

box (e.g. bounding box corners, center, etc) in addition to

the bounding box width and height. The bounding box cen-

ter position was omitted from the feature vector such that

the classifier would be agnostic to image offsets.

2.2. Training

During training, the model is initially forward propa-

gated to generate the sampling bounding boxes BS as de-

scribed in the previous subsection. In addition, we augment

the sampling bounding boxes with the ground truth bound-

ing boxes and randomly generated samples. We then prop-

agate the activations ᾱB associated with the augmented set

of sampling bounding boxes through the rest of the model

to produce the final classification distribution Pr(s|BS) and

updated bounding box parameters. The set of sampling

bounding boxes BS is held constant during gradient estima-

tion to enable end-to-end training, therefore the corner de-

tector network is optimized in conjunction with the bound-

ing box classification and estimation task. Since forward

propagation is a necessary preprocessing step in the back

propagation based SGD policy typically used to optimize

neural networks, the DeNet method introduces no penalty

to training time over a standard dense network.

The DeNet model jointly optimizes over the corner

probability distribution, final classification distribution and

bounding box regression cost, i.e.

Cost =
λt

Λt

∑

k,y,x

φ(t|k, y, x) ln(Pr(t|k, y, x))+

λs

Λs

∑

B∈BS

φ(s|B) ln(Pr(s|B))+

λb

Λb

∑

i

SoftL1(φB,i − βi)

(2)

where φ(...) are the ground truth corner and classifi-

cation distributions, φB,i = {xi, yi, wi, hi} the ground

truth bounding boxes, (λs, λt, λb) are user defined con-

stants indicating the relative strength of each component,

(Λs,Λt,Λb) are constants normalizing each component to

1 given the model initialization and SoftL1(x) is defined

in [3]. The corner distribution φ(t|k, y, x) is identified by

mapping each groundtruth instance’s corners to a single po-

sition in the corner map, corners out of bounds are sim-

ply discarded. The detection distribution φ(s|B) is identi-

fied by calculating the intersection over union (IoU) overlap

between the groundtruth bounding boxes and the sampling

bounding boxes BS . Following standard practice, the re-

gression target bounding box φB is identified by selecting

the ground truth bounding box with the largest IoU overlap.

2.3. Detection Model

Residual neural networks [6] have demonstrated im-

pressive regression capabilities on a number of large scale

datasets. In particular the 101 layer Residual Network

model (ResNet-101) achieved state of the art performance

on the ILSVRC2015 [16] and MSCOCO [11] datasets when

combined with Faster R-CNN. As the base model to our

networks we selected the 34 layer, 21M parameter ResNet-

34 model (DeNet-34) and the 101 layer, 45M parameter

ResNet-101 model (DeNet-101).

To each base model we modified the input size to 512×
512 pixels, removed the final mean pooling and fully con-

nected layers and appended two deconvolution [13] lay-

ers followed by a corner detector. The corner detector is

responsible for generating the corner distribution and pro-

duces a feature sampling map via a learnt linear projection

with Fs features at each spatial position. The deconvolu-

tion [13] layers efficiently reintroduce spatial information

that was lost in the base model such that the feature map and

corner probability distribution can be defined at a greater

spatial resolution i.e. 64 × 64 compared to 16 × 16 with-

out. This results in a 16 × 16 pixel minimum size for each

sampling bounding box.

Following the corner detector is the sparse layer which

observes the corners identified by the corner detector and

generates a set of sampling bounding boxes (RoIs). The

RoIs are used to extract a set of N×N feature vectors from

the feature sampling maps. In this case, we are sparsely

sampling N2 bounding boxes from a set of 4.2M valid

bounding boxes. A feature vector is constructed by extract-

ing the nearest neighbour sampling features associated with

a 7 × 7 grid plus the bounding box width and height. This

produces a feature with 7 × 7 × Fs + 2 values. We found

that nearest neighbour sampling was sufficient because the

feature sampling maps have the same, relatively high, spa-

tial resolution as the bounding box corners. Finally, the

feature vectors are propagated through a relatively shallow

fully connected network to generate the final classification

and fine tuned bounding box for each sampling RoI.

In Table 1 and 2 we describe the additional layers ap-

pended to the base models with the following definitions:

• Conv: Convolves a series of 2D filters over the in-

put activations. Filter weights were initialized via the

normal distribution N (0, σ) with σ2 = 2/(nfnxny)
where nf is the number of filters and (nx, ny) their

spatial shape [5]. Following each convolution is batch

normalization [7] then the ReLU activation function.

• Deconv: Applies a learnt deconvolution [13] (upsam-

pling) operation followed by ReLU activation. In this

case it is equivalent to upscaling both spatial dimen-

sions then applying a Conv layer.

Model F0 F1 F2 F3 F4 F5 F6 F7

DeNet-34 512 256 128 4706 1536 1024 768 512

DeNet-101 2048 384 192 6274 2048 1536 1024 768

Table 1. Filter parameters used for DeNet models. See Table 2

Layer Input Shape Filters Shape Stride

ResNet-34 or ResNet-101 [6] base model.

Deconv 16× 16× F0 F1 3× 3 2× 2
Deconv 32× 32× F1 F2 3× 3 2× 2
Corner 64× 64× F2 - - -

Sparse - - - -

Conv N ×N × F3 F4 1× 1 1× 1
Conv N ×N × F4 F5 1× 1 1× 1
Conv N ×N × F5 F6 1× 1 1× 1
Conv N ×N × F6 F7 1× 1 1× 1
Classifier N ×N × F7 - - -

Table 2. DeNet: A ResNet derived model for DSS Object Detec-

tion with a 512×512 input image. Layers in the base models above

the line are initialized with a pretrained ResNet-34 or ResNet-101

ImageNet 2012 classification model.

• Corner: Estimates a corner distribution via the soft-

max function and produces a sampling feature map.

See Section 2.

• Sparse: Identifies sampling bounding boxes from cor-

ner distribution and produces a fixed size sampling fea-

ture from the sampling feature maps.

• Classifier: Maps activations to the desired probabil-

ity distribution via the softmax function and generates

bounding box targets.

For DeNet-34 we use a ResNet-34 base model and Fs =
96 to produce a feature vector of 4706 values and a total of

32M parameters. The DeNet-101 model uses a ResNet-101

base model and increased the number of filters by approxi-

mately 1.5× for the appended layers (See Table 1). These

changes produce a sparse feature vector of 6274 values and

a total of 69M parameters.

2.3.1 Skip Layer Variant

As an extension we considered augmenting the DeNet mod-

els with skip layers. In recent work, skip layers have demon-

strated consistent improvements in classification [6], detec-

tion [10] and semantic segmentation [2] and, more gener-

ally, are an integral component to highway [18] and residual

networks [6]. In this case, these layers connect the Deconv

layer with the final layer in the base model which has the

same spatial dimensions. Our implementation follows [10],

each skip layer performs a linear projection of the source

features to the destination feature dimensions and simply

adds the resulting feature maps (before activation).

2.3.2 Wide Variant

In this model we modified the skip model variants to use

a 128 × 128 spatial resolution for the corner and feature

sampling maps by the addition of another Deconv and skip

layer. We also increased N to 48 to produce 2304 RoIs.

In the current implementation, this approach comes with a

considerable timing cost due to the increased classification

burden and the CPU bound algorithm for identifying RoIs.

With further engineering (e.g. deduplication) we believe

these costs could be reduced.

3. Implementation Details

Our models are implemented within our Theano based

CNN library called DeNet. The source-code is available

from: https://github.com/lachlants/denet

3.1. Training methodology

In all experiments we used Nesterov style SGD [19] with

an initial learning rate of 0.1, momentum of 0.9 and weight

decay of 0.0001 (only applied to weights). A batch size

of 128 was employed for both models with 32 samples per

GPU iteration. The learning rate was divided by 10 at epoch

30 and epoch 60 and a total of 90 training epochs were per-

formed. Note that, apart from the batch size changes, these

hyperparameters are identical to those used when training

the original residual networks for classification [6]. No on-

line hard negative mining [17] or other gradient optimiza-

tion techniques were applied, however, we observed some

instances of overtraining on Pascal VOC. In response, to

increase exposure to negative samples, we introduced 10%
randomly generated bounding box samples during training.

An augmentation strategy very similar to GoogLeNet

[20] was employed to improve model generalization to dif-

ferent scales and translations. For each sample, a black bor-

der was added to the smallest dimension to produce a square

image. At test time, this image was scaled to 512×512 pix-

els using bilinear sampling, during training a random crop

was selected with an area between (0.08, 1.0) relative to the

border image and an aspect ratio between (3/4, 4/3). The

random crop was discarded and a new one generated if no

ground truth objects overlapped with the crop by at least

50%. This process was repeated up to 10 times and, as

a fallback, the entire bordered image was returned. As in

testing, the resulting crop was scaled to 512 × 512 pixels.

Random photometric (contrast, saturation and brightness)

and mirror augmentation was also employed [20].

3.2. Identifying Sampling Bounding Boxes (RoIs)

A simple algorithm was developed to quickly search the

corner distribution for non-null bounding boxes:

1. Search the corner distribution for corners {k, y, x} ∈
Cλ where Pr(t = 1|k, y, x) > λ.

2. For each corner type, select the M corners with the

greatest likelihood CM ⊆ Cλ

3. Generate a set of unique bounding boxes by matching

every corner within CM of type top− left with every

one of type bottom− right.

4. Calculate the probability of each bounding box being

non-null via Equation 1.

5. Repeat steps 2 and 3 with corners of type top− right
and bottom− left.

6. Sort bounding boxes by probability and keep the N2

largest to produce the sampling bounding boxes BS .

Since the vast majority of corners are culled in step 1 this

method obtains a significant speed up beyond the naive

brute force method i.e. testing every possible bounding box.

4. Results and Analysis

In this section we compare our design with previously

published models. We note that in some cases, an apples-

to-apples comparison is difficult due to the wide range of

base models, data augmentation schemes and dataset merg-

ing. In particular, we note that SSD utilize larger batch sizes

while R-CNN models have larger input resolutions (on av-

erage). All our DeNet timing results are provided for a sin-

gle Titan X GPU (CuDNN 5110) with a batch size of 8x,

the same settings used in SSD. For brevity we include only

three flavours of the non real-time Faster R-CNN model,

the original RPN (VGG), the ResNet-101 extension RPN+

(ResNet-101) and R-FCN for comparison (highlighted in

grey in the tables). We note that due to implementation re-

strictions RPN based models are tested with a single image

per batch.

Model Max. Input BS L Param.

RPN (VGG) [15] 1000× 600 1 16 137M

RPN+ (ResNet) [6] 1000× 600 1 100 45M

R-FCN [9] 1000× 600 1 100 45M

Fast YOLO [14] 448× 448 1 9 9M

YOLO [14] 448× 448 1 26 60M

SSD300 [12] 300× 300 8 25 27M

SSD512 [12] 512× 512 8 25 27M

DeNet-34 (ours) 512× 512 8 41 33M

DeNet-101 (ours) 512× 512 8 107 69M

Table 3. Model overview detailing maximum input image sizes,

batch size at test time (BS), number of activation layers (L) and

approximate number of parameters.

In Table 3 we provide a broad overview of the baseline

models. We note that despite an increased number of layers

and parameters the DeNet models obtain improved evalua-

tion rates (See Section 4.2).

λs 1 1 1 1 1 1 1

λt 1 10 10 100 100 100 500

λb 1 1 10 0.1 1 10 1

MAP (%) 49.6 63.3 64.9 71.8 72.8 72.1 70.6

Table 4. Optimizing cost hyperparameters {λs, λt, λb}, see Equa-

tion 2. MAP is provided for Pascal VOC 2007 val dataset.

Sample BBoxs 64 144 256 400 576 784 1024

Coverage (%) 81 87 91 93 95 96 97

Eval. Rate (Hz) 96 90 84 76 69 61 55

Table 5. Sample bounding boxes vs coverage over training dataset

and evaluation rate.

1,0247685122560
64

66

68

70

72

74

#Sample BBoxs @ Test Time

M
A

P
(%

)

BBox=64 BBox=144

BBox=256 BBox=576

BBox=1024

Figure 2. The MAP on the Pascal VOC 2007 validation dataset

with varying number of bounding box samples during training (see

legend) and testing (displayed on x-axis).

4.1. Hyperparameter Optimization

For the following we used the DeNet-34 model and

trained it on Pascal VOC 2007 train and Pascal VOC

2012 trainval (14,041 images), for testing we used Pas-

cal VOC 2007 val (2,510 images). The same DeNet-34

model initialization was used for all experiments. We ap-

plied the training procedure described in Section 3.1 except

with a batch size of 96.

In Table 4 we performed a coarse search over the cor-

ner and bounding box regression cost parameters λt and λb.

Best results were achieved by setting λs = 1, λt = 100
and λb = 1, these were applied in all subsequent exper-

iments. Next, we investigated the model behaviour with

varying numbers of sampling bounding boxes. In particular,

we trained a set of models with N = {8, 12, 16, 24, 32}. At

test time, we took each of these models and varied N from

8 to 32 to produce Figure 2. In Table 5, we provide the

model evaluation rate and coverage (percentage of ground

DeNet-34 DeNet-101

Estimate corners 8.4 ms 68% 24.9ms 80%

Generate RoI 1.5 ms 12% 1.5 ms 5%

Classify RoI 2.4 ms 19% 4.5 ms 15%

Estimate instances 0.1 ms 1% 0.1 ms 0%

Total (per image) 12.4 ms - 31.0 ms -

Table 6. A coarse timing breakdown per image for DeNet models

at test time on a Titan X GPU.

truth with a sampling bounding box with IoU > 0.5) over

the training set that was obtained by the RoI estimator de-

scribed in Section 2. As expected, we observed a consis-

tently improving MAP with diminishing returns above 576

when training with a larger number of sampling bounding

boxes. In general we observed an improved MAP with

increased testing bounding boxes at the cost of evaluation

rates. For subsequent experiments we set N = 24 for both

training and testing.

4.2. Timing Breakdown and Evaluation Rates

In Table 6 we present a coarse analysis of the timing for

both DeNet models. We broke the timing into 4 sequentially

executed stages:

1. Estimate corners: Images are uploaded to the GPU

and fed through the base network generating the cor-

ner distribution and sampling feature maps. The corner

distribution is transferred from GPU to CPU memory.

2. Generate RoI: The sampling bounding boxes (RoIs)

are generated from the corner distribution.

3. Classify RoI: The final classification CNN is exe-

cuted, the classification distribution and bounding box

regression outputs are transferred from GPU to CPU.

4. Estimate instances: Non-Max Supression is run over

the resulting detection hits producing a de-duplicated

list of detections for each image.

We observe that the vast majority of time is spent evalu-

ating the base network to generate corners. Also, note that

the CPU bound Generate RoI stage timing can vary sub-

stantially between different samples and may require addi-

tional tuning depending on application. Furthermore, we

wish to emphasize a number of important features of the

DeNet model which makes it significantly faster than most

other baseline models:

• Deconvolution: Spatial information is increased via

deconvolution layers as opposed to the atrous modi-

fied models used in R-FCN and SSD. This method in-

troduces spatial information significantly later in the

model, greatly improving evaluation rates.

• Fast RoI Features: Features are extracted via a sim-

ple nearest neighbour sampling method, limiting the

the number of feature reads to 49 per RoI. Some RPN

variants use pooling which varies from 49-580 per RoI.

• Input Image Dimensions: DeNet scales all images

to 512x512 pixels, whereas RPN based methods use a

varying input size up to 1000x600 pixels.

• Batching: Our models are tested with 8x samples per

batch (same as SSD). This improves GPU utilization.

With these improvements in timing we are able to use a

more expressive base model for the same evaluation rate.

4.3. RoI Coverage Comparison

In Table 7. we provide the coverage obtained by by

the top 300 RoIs for RPN, R-FCN and DeNet methods.

We observe that given a relatively low number of RoIs,

RPN (VGG) and R-FCN provide better coverage at low IoU

thresholds, however with increasing IoU the DeNet models

provide significantly improved coverage.

Top 300 Coverage@IoU (%)

Model 0.5 0.6 0.7 0.8 0.9

RPN (VGG) 89.24 81.99 65.18 27.79 2.66

R-FCN 91.41 86.72 77.37 45.37 5.73

DeNet-34 80.98 77.00 71.63 63.39 46.37

DeNet-101 82.47 78.69 73.81 65.36 47.83

Table 7. Coverage on Pascal VOC 2007 test using 300 sample

bounding boxs (RoI proposals).

We note that RPN / R-FCN utilize bounding box regres-

sion and deduplication methods in their RoI proposal net-

works, these factors improve coverage with low numbers of

proposals. As demonstrated in the following sections, the

DeNet RoI coverage results do not necessarily translate to a

reduced MAP for the full model, which includes NMS and

bounding box regression, at lower IoU thresholds.

4.4. MSCOCO

The Microsoft Common Object in Context [11] dataset

consists of 82K training and 40K validation images dis-

tributed across 80 classes. For testing, the dataset includes

an 80K test dataset from which a user known subset of 20K

images forms the test-dev2015 set and an unknown

subset of 20K images forms test2015 allowing only 5

evaluations. Due to the dataset size, number of classes

and relatively small size of the object instances within the

images, MSCOCO is a considerably more difficult dataset

compared to the Pascal VOC challenges. The primary eval-

uation metric for MSCOCO is the integral of the MAP over

the detection matching parameter IoU=0.5 to IoU=0.95.

This metric places a greater emphasis on localization per-

formance compared to the Pascal datasets. We found that

setting λt = 50 for DeNet-101 was necessary for conver-

gence, this is likely due to the greater number of corners

present within each image on average compared to the val-

idation experiments. Training took ∼4 days with 2× Tesla

P100 GPUs for DeNet-34 and ∼6.5 days with 4× Tesla

P100 GPUs for DeNet-101.

In Table 8 we provide the precision and recall results

for our models on test-dev2015. The DeNet models

demonstrate a clear advantage over other high evaluation

rate implementations e.g. our real-time DeNet-34 model

beats SSD300 by 6.2% MAP at the same evaluation rate

and SSD512 by 2.6% at more than twice the evaluation

rate. The DeNet-101 model furthers this advantage and is

only beaten by the very slow competition style RPN+ model

utilizing multi-scale evaluation and bounding box refine-

ment. At the time of writing, the DeNet-101 model obtains

a result good enough to be in the top-10 on the MSCOCO

competition leaderboard which doesn’t consider evaluation

time. The skip model variants consistently improved perfor-

mance on small and medium sized objects (see AR and AP

for small and medium area objects in table) with a minor

cost to large objects and evaluation rate. The wide vari-

ants further improved small object detection and fine object

localization at the cost of evaluation rate. Near identical

results were obtained on MSCOCO test-std2015 e.g.

we obtained a MAP@[0.5:0.95] of 29.3% and 31.7% for

DeNet-34 and DeNet-101 respectively. Analysis suggests

our advantage stems from improved large object detection

and finegrain object localization performance, as reflected

in the MAP@IoU=0.75 result. We argue this is an outcome

of the much larger range of candidate RoI’s our method pro-

duces e.g. the vanilla DeNet models can select from a pos-

sible set of 4.2 × 106 bounding boxes while SSD utilizes

2.5× 104. Utilizing such a large set of candidate bounding

boxes would likely be intractable with the dense evaluation

methods used in the YOLO and RPN derived models.

4.5. Pascal VOC 2007

We combined the trainval samples from Pascal VOC

2007 and 2012 [1] (denoted 07+12 in table) to produce

16,551 training samples. For testing we used Pascal VOC

2007 test containing 4,991 samples. We note that this

dataset is considerably smaller than MSCOCO and there-

fore more susceptible to overtraining and image augmenta-

tion methods. Training time was ∼13 hours for DeNet-34

using 2× Tesla P100s and ∼20 hours for DeNet-101 using

4× Tesla P100s. In Table 9, we provide the MAP and tim-

ing results. We observed the skip layer variant DeNet-34

improving upon SSD300’s peak MAP by 1.6% and 20Hz.

In the near real-time domain DeNet-101 matches SSD512

at a higher evaluation rate.

Eval. AP@IoU (%) AP@Area (%) AR@Dets (%) AR@Area (%)

Model Rate 0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

RPN (VGG) 7 Hz 21.9 42.7 - - - - - - - - - -

RPN+ (ResNet) <1 Hz 34.9 55.7 - 15.6 38.7 50.9 - - - - - -

R-FCN 9 Hz 29.9 51.9 - 10.8 32.8 45.0 - - - - - -

SSD300 58 Hz 23.2 41.2 23.4 5.3 23.2 39.6 22.5 33.2 35.3 9.6 37.6 56.5

SSD512 23 Hz 26.8 46.5 27.8 9.0 28.9 41.9 24.8 37.5 39.8 14.0 43.5 59.0

DeNet-34 83 Hz 29.4 46.2 31.2 7.8 30.8 47.4 26.9 38.0 38.5 11.2 41.9 63.0

DeNet-34 (skip) 82 Hz 29.5 47.9 31.1 8.8 30.9 47.0 26.9 38.0 38.6 13.2 41.7 61.6

DeNet-34 (wide) 44 Hz 30.0 48.9 31.8 10.1 30.9 45.7 27.3 39.5 40.3 17.0 42.8 60.9

DeNet-101 34 Hz 31.9 50.5 34.2 9.7 34.9 50.6 28.4 39.8 40.3 13.1 44.8 64.1

DeNet-101 (skip) 33 Hz 32.3 51.4 34.6 10.5 35.1 50.9 28.5 40.2 40.8 14.7 44.9 63.8

DeNet-101 (wide) 17 Hz 33.8 53.4 36.1 12.3 36.1 50.8 29.6 42.6 43.5 19.3 46.9 64.3

Table 8. MSCOCO average precision (AP) and average recall (AR) results evaluated on test-dev2015 dataset.

Model Dataset Eval. Rate MAP

RPN (VGG) 07+12 7 Hz 73.2%

RPN (ResNet) 07+12 2 Hz 76.4%

R-FCN 07+12 9 Hz 80.5%

Fast YOLO 07+12 155 Hz 52.7%

YOLO 07+12 45 Hz 63.4%

SSD300 07+12 58 Hz 74.3%

SSD512 07+12 23 Hz 76.8%

DeNet-34 07+12 83 Hz 75.3%

DeNet-34 (skip) 07+12 82 Hz 75.9%

DeNet-101 07+12 34 Hz 77.0%

DeNet-101 (skip) 07+12 33 Hz 77.1%

Table 9. Pascal VOC 2007 mean average precision and timing.

4.6. Pascal VOC 2012

In this experiment we combine trainvaltest from

Pascal VOC 2007 and trainval from Pascal VOC 2012

[1] (denoted 07++12 in table) to produce 21,503 training

samples. Test scores are evaluated on 10,991 samples by the

Pascal VOC 2012 testing server. For this dataset the DeNet-

34 model matches SSD300, however, for reasons unknown,

DeNet-101 demonstrates results below SSD512. For ref-

erence, we note that DeNet-101 obtains results near iden-

tical to the other ResNet-101 based model, RPN (ResNet)

with an order of magnitude improvement in evaluation rate.

Training time was ∼18 hours for DeNet-34 with 2× Tesla

P100s and ∼28 hours for DeNet-101 with 4× Tesla P100s.

5. Conclusion

In this work, we describe a framework for sparse esti-

mation with CNNs and present a novel region-of-interest

detector and classification model which reduces manual

engineering and improves state-of-the-art detection perfor-

mance with real-time and near real-time evaluation rates.

Model Dataset Eval. Rate MAP

RPN (VGG) 07++12 7 Hz 70.4%

RPN (ResNet) 07++12 2 Hz 73.8%

R-FCN 07++12 9 Hz 77.6%

YOLO 07++12 45 Hz 57.9%

SSD300 07++12 58 Hz 72.4%

SSD512 07++12 23 Hz 74.9%

DeNet-34 07++12 83 Hz 72.3%

DeNet-101 07++12 33 Hz 73.9%

Table 10. Pascal VOC 2012 mean average precision and timing.

Utilizing deconvolution and skip layers first described in

the context of semantic segmentation, we demonstrated a

highly computationally efficient model with tightly coupled

RoI, class prediction and bounding box regression. We pro-

vide further evidence that skip connections consistently im-

proved detection rates for small and medium sized objects.

While the wide model variant highlighted the importance of

corner map resolution for small and medium sized objects,

and provides a natural pathway for future development.

Analysis suggests our model performs particularly well

when finer object localization is desirable. We propose that

the improved localization is due to the much larger set of

possible sampling bounding boxes that are feasible with

our sparse sampling method i.e. 4.2 × 106 compared to

less than 2.5 × 104 for SSD512 and RPN. This feature al-

lows the model to potentially select a bounding box (be-

fore bounding box regression) which is significantly closer

to the ground truth. Furthermore, since we no longer de-

fine a set of reference bounding boxes, this approach has re-

duced manual engineering requirements and can adapt well

to problems which utilize bounding boxes with a very large

range of aspect ratios and scales e.g. rotationally variant or

non-rigid objects.

References

[1] M. Everingham, L. Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. Int. J. Comput. Vision, 88(2):303–338, June 2010. 2,

3, 7, 8

[2] G. Ghiasi and C. C. Fowlkes. Laplacian pyramid reconstruc-

tion and refinement for semantic segmentation. In European

Conference on Computer Vision, pages 519–534. Springer,

2016. 4

[3] R. Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1440–1448,

2015. 2, 3

[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Region-

based convolutional networks for accurate object detection

and segmentation. IEEE transactions on pattern analysis

and machine intelligence, 38(1):142–158, 2016. 1, 2

[5] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the IEEE international con-

ference on computer vision, pages 1026–1034, 2015. 4

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

770–778, 2016. 1, 4, 5

[7] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

CoRR, abs/1502.03167, 2015. 4

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, November 1998. 1

[9] Y. Li, K. He, J. Sun, et al. R-fcn: Object detection via region-

based fully convolutional networks. In Advances in Neural

Information Processing Systems, pages 379–387, 2016. 3, 5

[10] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and

S. J. Belongie. Feature pyramid networks for object detec-

tion. CoRR, abs/1612.03144, 2016. 4

[11] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European Conference on Com-

puter Vision, pages 740–755. Springer, 2014. 3, 4, 7

[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed,

C. Fu, and A. C. Berg. SSD: single shot multibox detector.

CoRR, abs/1512.02325, 2015. 1, 2, 5

[13] H. Noh, S. Hong, and B. Han. Learning deconvolution net-

work for semantic segmentation. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1520–

1528, 2015. 4

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 779–788, 2016. 1, 2, 5

[15] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages

91–99, 2015. 1, 2, 3, 5

[16] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein,

A. C. Berg, and F. Li. Imagenet large scale visual recognition

challenge. CoRR, abs/1409.0575, 2014. 4

[17] A. Shrivastava, A. Gupta, and R. Girshick. Training region-

based object detectors with online hard example mining. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 761–769, 2016. 5

[18] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training

very deep networks. In Advances in neural information pro-

cessing systems, pages 2377–2385, 2015. 4

[19] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the

importance of initialization and momentum in deep learning.

ICML (3), 28:1139–1147, 2013. 5

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–9, 2015. 1, 5

[21] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and

A. W. M. Smeulders. Selective search for object recognition.

International Journal of Computer Vision, 104(2):154–171,

2013. 2

