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Abstract

We introduce a new framework for learning dense corre-
spondence between deformable 3D shapes. Existing learn-
ing based approaches model shape correspondence as a la-
belling problem, where each point of a query shape receives
a label identifying a point on some reference domain; the
correspondence is then constructed a posteriori by com-
posing the label predictions of two input shapes. We pro-
pose a paradigm shift and design a structured prediction
model in the space of functional maps, linear operators that
provide a compact representation of the correspondence.
We model the learning process via a deep residual network
which takes dense descriptor fields defined on two shapes
as input, and outputs a soft map between the two given ob-
jects. The resulting correspondence is shown to be accu-
rate on several challenging benchmarks comprising multi-
ple categories, synthetic models, real scans with acquisition
artifacts, topological noise, and partiality.

1. Introduction
3D acquisition technology has made great progress in

the last decade, and is being rapidly incorporated into com-
mercial products ranging from Microsoft Kinect [43] for
gaming, to LIDARs used in autonomous cars. An essen-
tial building block for application design in many of these
domains is to recover 3D shape correspondences in a fast
and reliable way. While handling real-world scanning ar-
tifacts is a challenge by itself, additional complications
arise from non-rigid motions of the objects of interest (typi-
cally humans or animals). Most non-rigid shape correspon-
dence methods employ local descriptors that are designed
to achieve robustness to noise and deformations; however,
relying on such “handcrafted” descriptors can often lead to
inaccurate solutions in practical settings. Partial remedy to
this was brought by the recent line of works on learning
shape correspondence [28, 36, 29, 8, 10, 9, 31]. A key draw-
back of these methods lies in their emphasis on learning

Figure 1. Correspondence results obtained by our network model
on two pairs from the FAUST real scans challenge. Corresponding
points are assigned the same color. The average error for the left
and right pairs is 5.21cm and 2.34cm respectively. Accurate cor-
respondence is obtained despite mesh “gluing” in areas of contact.

a descriptor that would help in identifying corresponding
points, or on learning a labeling with respect to some refer-
ence domain. On the one hand, by focusing on the descrip-
tor, the learning process remains agnostic to the way the fi-
nal correspondence is computed, and costly post-processing
steps are often necessary in order to obtain accurate solu-
tions from the learned descriptors. On the other hand, meth-
ods based on a label space are restricted to a fixed number of
points and rely on the adoption of an intermediate reference
model.

Contribution. In this work we propose a task-driven ap-
proach for descriptor learning, by including the computa-
tion of the correspondence directly as part of the learning
procedure. Perfect candidates for this task are neural net-
works, due to their inherent flexibility to the addition of
computational blocks. Our main contributions can be sum-
marized as follows:

• We introduce a new structured prediction model for
shape correspondence. Our framework allows end-to-
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end training: it takes base descriptors as input, and re-
turns matches.

• We show that our approach consistently outperforms
existing descriptor and correspondence learning meth-
ods on several recent benchmarks.

2. Related work

Shape correspondence is an active area of research in
computer vision, graphics, and pattern recognition, with a
variety of both classical and recent methods [11, 23, 13].
Since a detailed review of the literature would be out of
scope for this paper, we refer the interested reader to the
recent surveys on shape correspondence [39, 6]. More
closely related to our approach is the family of meth-
ods based on the notion of functional maps [33], mod-
eling correspondences as linear operators between spaces
of functions on manifolds. In the truncated Laplacian
eigenbases, such operators can be compactly encoded as
small matrices – drastically reducing the amount of vari-
ables to optimize for, and leading to an increased flexibil-
ity in manipulating correspondences. This representation
has been adopted and extended in several follow-up works
[34, 22, 25, 3, 18, 35, 27, 26, 32], demonstrating state-of-
the-art performance in multiple settings.

While being often adopted as a useful tool for the post-
processing of some initial correspondence, functional maps
have rarely been employed as a building block in correspon-
dence learning pipelines.

Descriptor learning. Descriptor and feature learning are
key topics in computer vision, and in recent years they have
been actively investigated by the shape analysis community.
Litman et al. [28] introduced optimal spectral descriptors, a
data-driven parametrization of the spectral descriptor model
(i.e., based on the eigen-decomposition of the Laplacian),
demonstrating noticeable improvement upon the classical
axiomatic constructions [37, 5]. A similar approach was
subsequently taken in [42] and more recently in [8, 10, 17].
Perhaps most closely related to ours is the approach of Cor-
man et al. [15], where combination weights for an input set
of descriptors are learned in a supervised manner. Similarly
to our approach, they base their construction upon the func-
tional map framework [33]. While their optimality criterion
is defined in terms of deviation from a ground-truth func-
tional map in the spectral domain, we aim at recovering an
optimal map in the spatial domain. Our structured predic-
tion model will be designed with this requirement in mind.

Correspondence learning. Probably the first example of
learning correspondence for deformable 3D shapes is the
“shallow” random forest approach of Rodolà et al. [36].
More recently, Wei et al. [41] employed a classical (ex-
trinsic) CNN architecture trained on huge training sets for

learning invariance to pose changes and clothing. Convo-
lutional neural networks on non-Euclidean domains (sur-
faces) were first considered by Masci et al. [29] with the
introduction of the geodesic CNN model, a deep learn-
ing architecture where the classical convolution operation
is replaced by an intrinsic (albeit, non-shift invariant) coun-
terpart. The framework was shown to produce promising
results in descriptor learning and shape matching applica-
tions, and was recently improved by Boscaini et al. [9] and
generalized further by Monti et al. [31]. These methods
are instances of a broader recent trend of geometric deep
learning attempting to generalize successful deep learning
paradigms to data with non-Euclidean underlying structure
such as manifolds or graphs [12].

3. Background

Manifolds. We model shapes as two-dimensional Rieman-
nian manifolds X (possibly with boundary ∂X ) equipped
with the standard measure dµ induced by the volume form.
Throughout the paper we will consider the space of func-
tions L2(X ) = {f : X → R | 〈f, f〉X < ∞}, with the
standard manifold inner product 〈f, g〉X =

∫
X f · g dµ.

The positive semi-definite Laplace-Beltrami opera-
tor ∆X generalizes the notion of Laplacian from Eu-
clidean spaces to surfaces. It admits an eigen-
decomposition ∆Xφi = λiφi (with proper boundary con-
ditions if ∂X 6= ∅), where the eigenvalues form a discrete
spectrum 0 = λ1 ≤ λ2 ≤ . . . and the eigenfunctions
φ1, φ2, . . . form an orthonormal basis for L2(X ), allowing
us to expand any function f ∈ L2(X ) as a Fourier series

f(x) =
∑
i≥1

〈φi, f〉Xφi(x) . (1)

Aflalo et al. [2] have recently shown that Laplacian eigen-
bases are optimal for representing smooth functions on
manifolds.

Functional correspondence. In order to compactly en-
code correspondences between shapes, we make use of the
functional map representation introduced by Ovsjanikov et
al. [33]. The key idea is to identify correspondences by a
linear operator T : L2(X )→ L2(Y), mapping functions on
X to functions on Y . This can be seen as a generalization
of classical point-to-point matching, which is a special case
where delta functions are mapped to delta functions.

The linear operator T admits a matrix representation
C = (cij) with coefficients cji = 〈ψj , Tφi〉Y , where
{φi}i≥1 and {ψj}j≥1 are orthogonal bases on L2(X ) and
L2(Y) respectively, leading to the expansion:

Tf =
∑
ij≥1

〈φi, f〉X cjiψj . (2)



A good choice for the bases {φi}, {ψj} is given by the
Laplacian eigenfunctions on the two shapes [33, 2]. This
choice is particularly convenient, since (by analogy with
Fourier analysis) it allows to truncate the series (2) after the
first k coefficients – yielding a band-limited approximation
of the original map. The resulting matrix C is a k× k com-
pact representation of a correspondence between the two
shapes, where typically k � n (here n is the number of
points on each shape).

Functional correspondence problems seek a solution for
the matrix C, given a set of corresponding functions fi ∈
L2(X ) and gi ∈ L2(Y), i = 1, . . . , q, on the two shapes. In
the Fourier basis, these functions are encoded into matrices
F̂ = (〈φi, fj〉X ) and Ĝ = (〈ψi, gj〉Y), leading to the least-
squares problem:

min
C
‖CF̂− Ĝ‖2F . (3)

In practice, dense q-dimensional descriptor fields (e.g.,
HKS [37] or SHOT [38]) on X and Y are used as the corre-
sponding functions.

Label space. Previous approaches at learning shape cor-
respondence phrased the matching problem as a labelling
problem [36, 29, 10, 9, 31]. These approaches attempt to
label each vertex of a given query shapeX with the index of
a corresponding point on some reference shape Z (usually
taken from the training set), giving rise to a dense point-
wise map TX : X → Z . The correspondence between two
queries X and Y can then be obtained via the composition
T−1
Y ◦ TX [36].

Given a training set S = {(x, π∗(x))} ⊂ X × Y of
matches under the ground-truth map π∗ : X → Y , label-
based approaches compute a descriptor FΘ(x) whose op-
timal parameters are found by minimizing the multinomial
regression loss:

`mr(Θ) = −
∑

(x,π∗(x))∈S

〈δπ∗(x), logFΘ(x)〉Y , (4)

where δπ∗(x) is a delta function on Y at point π∗(x).
Such an approach essentially treats the correspondence

problem as one of classification, where the aim is to ap-
proximate as closely as possible (in a statistical sense) the
correct label for each point. The actual construction of the
full correspondence is done a posteriori by a composition
step with an intermediate reference domain, or by solving
the least-squares problem (3) with the learned descriptors
as data.

Discretization. In the discrete setting, shapes are repre-
sented as manifold triangular meshes with n vertices (in
general, different for each shape). The Laplace-Beltrami
operator ∆ is discretized as a symmetric n× n matrix L =
A−1W using a classical linear FEM scheme [30], where

Figure 2. Given a source and a target shape as input, our network
outputs a soft correspondence matrix whose columns can be inter-
preted as probability distributions over the target shape.

the stiffness matrix W contains the cotangent weights, and
the mass matrix A is a diagonal matrix of vertex area el-
ements. The manifold inner product 〈f, g〉 is discretized
as the area-weighted dot product f>Ag, where the vec-
tors f ,g ∈ Rn contain the function values of f and g at
each vertex. Note that under such discretization we have
Φ>AΦ = I, where Φ contains the Laplacian eigenfunc-
tions as its columns.

4. Deep Functional Maps
In this paper we propose an alternative model to the

labelling approach described above. We aim at learning
point-wise descriptors which, when used in a functional
map pipeline such as (3), will induce an accurate correspon-
dence. To this end, we construct a neural network which
takes as input existing, manually designed descriptors and
improves upon those while satisfying a geometrically mean-
ingful criterion. Specifically, we consider the soft error loss

`F =
∑

(x,y)∈(X ,Y)

P (x, y)dY(y, π∗(x)) = ‖P ◦DY‖F , (5)

where DY is the n × n matrix of geodesic distances on Y ,
◦ is the element-wise product, and

P = |ΨCΦ>A|∧ (6)

is a soft correspondence matrix, which can be interpreted
as the probability of point x ∈ X mapping to point y ∈
Y (see Figure 2); here, Φ,Ψ are matrices containing the
first k eigenfunctions {φi}, {ψj} as their columns, | · | acts
element-wise, and X∧ is a column-wise normalization of
X. In the formula above, the k × k matrix C represents a
functional map obtained as the least-squares solution to (3)
under learned descriptors F,G.

Matrix P represents a rank-k approximation of the spa-
tial correspondence between the two shapes, thus allowing
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Figure 3. FMNet architecture. Input point-wise descriptors (SHOT [38] in this paper) from a pair of shapes are passed through an
identical sequence of operations (with shared weights), resulting in refined descriptors F,G. These, in turn, are projected onto the
Laplacian eigenbases Φ,Ψ to produce the spectral representations F̂, Ĝ. The functional map (FM) and soft correspondence (Softcor)
layers, implementing Equations (3) and (6) respectively, are not parametric and are used to set up the geometrically structured loss `F (5).

us to interpret the soft error (5) as a probability-weighted
geodesic distance from the ground-truth. This measure, in-
troduced in [25] as an evaluation criterion for soft maps,
endows our solutions with guarantees of mapping nearby
points on X to nearby points on Y . On the contrary, the
classification cost (4), adopted by existing label-based cor-
respondence learning approaches, considers equally corre-
spondences that deviate from the ground-truth, no matter
how far. Further, notice that Equation (6) is asymmetric,
implying that each pair of training shapes can be used twice
for training (i.e., in both directions). Also note that, differ-
ently from previous approaches operating in the label space,
in our setting the number of effective training examples (i.e.
pairs of shapes) increases quadratically with the number of
shapes in the collection. This is a significant advantage in
situations with scarce training data.

We implement descriptor learning using a Siamese resid-
ual network architecture [21]. To this network, we con-
catenate additional non-parametric layers implementing the
least-squares solve (3) followed by computation of the soft
correspondence according to (6). In particular, the solution
to (3) is obtained in closed form as C = ĜF̂†, where †

denotes the pseudo-inverse operation. The complete archi-
tecture (named “FMNet”) is illustrated in Figure 3.

5. Implementation details

Data. For increased efficiency, we down-sample the input
shapes to 15K vertices by edge contraction [19]; in case
the input mesh has a smaller amount of vertices, it is kept
at full resolution. As input feature for the network we use
the 352-dimensional SHOT descriptor [38], computed on
all vertices of the remeshed shapes. The choice of the de-
scriptor is mainly driven by its fast computation and its lo-

cal nature, making it a robust candidate in the presence of
missing parts. Note that while this descriptor is not, strictly
speaking, deformation invariant, it was shown to work well
for the deformable setting in practice [35, 27]. Recent work
on learning-based shape correspondence makes use of the
same input feature [9, 31].

Network. Our network architecture consists of 7 fully-
connected residual layers as described in [21] with ex-
ponential linear units (ELUs) [14] and no dimensionality
reduction, implemented in TensorFlow1 [1]. Depending
on the dataset, we used 20K (FAUST synthetic), 100K
(FAUST real scans), and 1K (SHREC’16) training mini-
batches, each containing ∼1K randomly chosen ground-
truth matches. For the FAUST real dataset, sampling was
weighted according to the vertex area elements to prevent
unduly aggregation of matches to high-resolution portions
of the surface. For the three datasets, we used respectively
k = 120, 70, 100 eigenfunctions for representing the k × k
matrix C inside the network. Training was done using the
ADAM optimizer [24] with a learning rate of α = 10−3,
β1 = 0.9, β2 = 0.999 and ε = 10−8. The average predic-
tion runtime for a pair of FAUST models is 0.25 seconds.

Upscaling. Given two down-sampled shapes X̃ and Ỹ , the
network predicts a k× k matrix C̃ encoding the correspon-
dence between the two. Since this matrix is expressed w.r.t.
basis functions {φ̃i}i, {ψ̃j}j of the low-resolution shapes,
it can not be directly used to recover a point-wise map be-
tween the full-resolution counterparts X and Y . Therefore,
we perform an upscaling step as follows.

Let πX : X̃ → X be the injection mapping each point
in X̃ to the corresponding point in the full shape X (this

1Code and data are available at https://github.com/
orlitany/DeepFunctionalMaps.

https://github.com/orlitany/DeepFunctionalMaps
https://github.com/orlitany/DeepFunctionalMaps
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Figure 4. Comparison between our structured prediction model
(FMNet), metric learning (Siamese), and baseline SHOT in terms
of CMC (left) and geodesic error (right). While the Siamese model
produces better descriptors in terms of proximity (left), these do
not necessarily induce a good functional correspondence (right).

map can be easily recovered by a simple nearest-neighbor
search in R3), and similarly for shape Y . Further, de-
note by T̃ : X̃ → Ỹ the point-to-point map recovered from
C̃ using the baseline recovery approach of [33]. A map
T : X ⊃ Im(πX ) → Y is obtained via the composi-
tion T = πY ◦ T̃ ◦ π−1

X . However, while T̃ is dense in X̃ ,
the map T is sparse in X . In order to map each point in
X to a point in Y , we construct pairs of delta functions
δxi : X → {0, 1} and δT (xi) : Y → {0, 1} supported at
corresponding points (xi, T (xi)) for i = 1, . . . , |X̃ |; note
that we have as many corresponding pairs as the number of
vertices in the low-resolution shape X̃ . We use these corre-
sponding functions to define the minimization problem:

C∗ = arg min
C
‖CF̂− Ĝ‖2,1 , (7)

where F̂ = (〈φi, δxj 〉X ) and Ĝ = (〈ψi, δT (xj)〉Y) contain
the Fourier coefficients (in the full-resolution basis) of the
corresponding delta functions, and the `2,1-norm allows to
discard potential mismatches in the data2. Problem (7) is
non-smooth and convex, and can be solved globally using
ADMM-like techniques. A dense point-to-point map be-
tween X and Y is finally recovered from the optimal func-
tional map C∗ by the nearest-neighbor approach of [33].

6. Results
We performed a wide range of experiments on real and

synthetic data to demonstrate the efficacy of our method.
Qualitative and quantitative comparisons were carried out
with respect to the state of the art on multiple recent bench-
marks, encapsulating different matching scenarios.

2The matrix norm ‖X‖2,1 is defined as the sum of the `2 norms of the
columns of X.
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Figure 5. Distance distributions (in descriptor space) between cor-
rect matches. Since FMNet does not optimize a distribution crite-
rion of this kind, it exhibits a heavy tail despite producing excellent
correspondences.

Error measure. We measure correspondence quality ac-
cording to the Princeton benchmark protocol [23]. As-
sume to be given a match (x, y) ∈ X × Y , whereas the
ground-truth correspondence is (x, y∗). Then, we measure
the geodesic error:

ε(x) =
dY(y, y∗)

area(Y)1/2
, (8)

having units of normalized geodesic length on Y (ideally,
zero). We plot cumulative curves showing the percent of
matches that have error smaller than a variable threshold.

Metric learning. As a proof of concept, we start by study-
ing the behavior of our framework when the functional map
layer is removed, and the soft error criterion (6) is replaced
with the siamese loss [20]:

`s(Θ) =
∑

x,x+∈S

γ‖FΘ(x)− FΘ(x+)‖22

+
∑

x,x−∈D

(1− γ)(µ− ‖FΘ(x)− FΘ(x−)‖2)2
+ , (9)

where γ ∈ (0, 1) is a trade-off parameter, µ > 0 is the mar-
gin, and (x)+ = max(0, x). Here, the sets S,D ⊂ X × Y
constitute the training data consisting of knowingly similar
and dissimilar pairs of points respectively. By considering
this loss function, we transform our structured prediction
model into a metric learning model. The learned descriptors
FΘ(x) can be subsequently plugged into (3) to compute a
correspondence; this metric learning approach was recently
used in a functional map pipeline in [17]. For this test we
use FAUST templates [7] as our data and SHOT [38] as an
input feature.

From the CMC curves3 of Figure 4 (left) and the distance
distributions of Figure 5 we can clearly see that the model
(9) succeeds at producing descriptors that attract each other

3Cumulative error characteristic (CMC) curves evaluate the probabil-
ity (y-axis) of finding the correct match within the first k best matches
(x-axis), obtained as `2-nearest neighbors in descriptor space.



inter AE inter WE intra AE intra WE
Zuffi et al. [44] 3.13 6.68 1.57 5.58
Chen et al. [13] 8.30 26.80 4.86 26.57

FMNet 4.83 9.56 2.44 26.16

Table 1. Comparison with the state of the art in terms of average
error (AE) and worst error (WE) on the FAUST challenge with real
scans. The error measure is reported in cm.

at corresponding points, while mismatches are repulsed.
However, as put in evidence by Figure 4 (right), these de-
scriptors do not perform well when they are used for seeking
a dense correspondence via (3). Contrarily, our structured
prediction model yields descriptors that are optimized for
such a correspondence task, leading to a noticeable gain in
accuracy.

Real scans. We carried out experiments on real 3D acqui-
sitions using the recent FAUST benchmark [7]. The dataset
consists of real scans (∼200K vertices per shape) of dif-
ferent people in a variety of poses, acquired with a full-
body 3D stereo capture system. The benchmark is divided
into two parts, namely the ‘intra-class’ (60 pairs of shapes,
with each pair depicting different poses of the same sub-
ject) and the ‘inter-class’ challenge (40 pairs of different
subjects in different poses). The benchmark does not pro-
vide ground-truth correspondence for the challenge pairs,
whereas the accuracy evaluation is provided by an online
service. Hence, for these experiments we only compare
with methods that made their results publicly available via
the official ranking: the recent convex optimization ap-
proach of Chen and Koltun [13], and the parametric method
of Zuffi and Black [44].

As training data for our approach we use the official
training set of 100 shapes provided with FAUST. Since
ground truth correspondences are only given between low-
resolution templates registered to the scans (and not be-
tween the scans themselves), during training we augmented
our data by sampling, for each template vertex, one out of
10 nearest neighbors to the real scan; this step makes the
network more robust to noise in the form of small vertex
displacement.

The comparison results are reported in Table 1. Read-
ing these results, we see that our approach considerably im-
proves upon [13] (around 50%); note that while the latter
method is not learning-based, it relies on a pose prior where
the shapes are put into initial alignment in 3D in order to
drive the optimization to a good solution. The approach
of [44] obtains slightly better results than our method, but
lacks in generality: it is based on a human-specific paramet-
ric model (called the ‘stitched puppet’), trained on a collec-
tion of 6000 meshes in different poses from motion capture
data. Our model is trained on almost two orders of mag-
nitude less data, and can be applied to any shape category
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Figure 6. Comparison with learning-based shape matching ap-
proaches on the SCAPE dataset. Our method (FMNet) was trained
on FAUST data, demonstrating excellent generalization, while all
other methods were trained on SCAPE.
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Figure 7. Comparison with learning-based approaches on the
FAUST humans dataset. Dashed and solid curves denote perfor-
mance before and after refinement respectively. FMNet has 98%
correspondences with zero error (top left corner of the plot).

(e.g., animals) as we demonstrate later in this Section.

Transfer. We demonstrate the generalization capabilities
of FMNet by performing a series of experiments on the
SCAPE dataset of human shapes [4], where our network is
trained on FAUST scans data as described previously. We
compare with state-of-the-art learning-based approaches for
deformable shape correspondence, namely optimal spectral
descriptors (OSD) [28], geodesic CNNs (GCNN) [29], lo-
calized spectral CNNs (LSCNN) [8], and two variants of
anisotropic diffusion descriptors (ADD3, mADD3) [10].
With the exception of FMNet, which was trained only on
FAUST data, all the above methods were trained on 60
shapes from the SCAPE dataset. The remaining 10 shapes
are used for testing. The results are reported in Figure 6;
note that for a fair comparison, we show the raw predicted
correspondence (i.e., without post-processing) for all meth-
ods.



Figure 8. Results of FMNet on the SHREC’16 Partial Correspondence benchmark. Each partial shape is matched to the full shape on the
left; the color texture is transferred via the predicted correspondence.

Synthetic shapes. For these experiments we reproduce ver-
batim the experimental setup of [10, 9, 31]: the training set
consists of the first 80 shapes of the FAUST dataset; the re-
maining 20 shapes are used for testing. Differently from
the comparisons of Table 1, the shapes are now taken from
the synthetic dataset provided with FAUST (∼7K vertices
per shape), for which exact ground-truth correspondence is
available. We compare with the most recent state of the
art in learning-based shape correspondence: random forests
(RF) [36], anisotropic diffusion descriptors (ADD) [10],
geodesic CNNs (GCNN) [29], anisotropic CNNs (ACNN)
[9], and the very recent MoNet model [31]. As a represen-
tative method for the family of axiomatic techniques, we
additionally include blended intrinsic maps (BIM) [23] in
the comparison.

The results are reported in Figure 7; here, all meth-
ods were post-processed with the correspondence refine-
ment technique of [40]. For FMNet and MoNet (the top-
performing competitor) we also report curves before re-
finement. We note that the raw prediction of MoNet has
a higher accuracy at zero. This is to be expected due to
the classifier nature of this method (and all the methods in
this comparison): the logistic loss (4) aims at high point-
wise accuracy, but has limited global awareness of the cor-
respondence. Indeed, the task-driven nature of our approach
induces lower accuracy at zero, but better global behavior –
note how the curve “saturates” at around 0.06 while MoNet
never does. As a result, FMNet significantly outperforms
MoNet after refinement, producing almost ideal correspon-
dence with zero error.

Partial non-human shapes. Our framework does not rely
on any specific shape model, as it learns from the shape
categories represented in the training data. In particular,
it does not necessarily require the objects to be complete
shapes: different forms of partiality can be tackled if ade-
quately represented in the training set.

We demonstrate this by running our method on the recent
SHREC’16 Partial Correspondence challenge [16]. The
benchmark consists of hundreds of shapes of multiple cate-

gories with missing parts of various forms and sizes; a train-
ing set is also provided. We selected the ‘dog’ class from
the ‘holes’ sub-challenge, being this among the hardest cat-
egories in the benchmark. The dataset is officially split into
just 10 training shapes, and 26 test shapes. Qualitative ex-
amples of the obtained solutions are reported in Figure 8.

7. Discussion and conclusions

We introduced a new neural network based method for
dense shape correspondence, structured according to the
functional maps framework. Building upon the recent suc-
cess of end-to-end learning approaches, our network di-
rectly estimates correspondences. This is in contrast to pre-
vious descriptor learning techniques, that do not account for
post processing while training. We showed this methodol-
ogy to be beneficial via an evaluation on a several challeng-
ing benchmarks, comprising synthetic models, real scans
with acquisition artifacts, and partiality. Being model-free,
we demonstrated our method can be adapted to different
shape categories such as dogs. Furthermore, we showed our
method is capable of generalizing between different data-
sets.

Limitations. Laplacian eigenfunctions are inherently sen-
sitive to topological changes. Indeed, such examples proved
to be more challenging for our method. A different choice
of a basis may be useful in mitigating this issue.

As shown by recent works
addressing partial correspondence
using functional maps [35], spe-
cial care should be taken when re-
covering matrix C from the spec-
tral representation of the descrip-
tors. While our method was able
to recover most pairs with miss-
ing parts, it failed to recover cor-
respondences under extreme partiality (see inset). This
could be addressed by incorporating partiality priors into
our structured prediction model.
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