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Text query:  The little girl jumps back up after falling.

Figure 1: We consider localizing moments in video with natural language and demonstrate that incorporating local and
global video features is important for this task. To train and evaluate our model, we collect the Distinct Describable Moments
(DiDeMo) dataset which consists of over 40,000 pairs of localized video moments and corresponding natural language.

Abstract

We consider retrieving a specific temporal segment, or
moment, from a video given a natural language text de-
scription. Methods designed to retrieve whole video clips
with natural language determine what occurs in a video
but not when. To address this issue, we propose the Mo-
ment Context Network (MCN) which effectively localizes
natural language queries in videos by integrating local and
global video features over time. A key obstacle to train-
ing our MCN model is that current video datasets do not
include pairs of localized video segments and referring ex-
pressions, or text descriptions which uniquely identify a
corresponding moment. Therefore, we collect the Distinct
Describable Moments (DiDeMo) dataset which consists of
over 10,000 unedited, personal videos in diverse visual set-
tings with pairs of localized video segments and referring
expressions. We demonstrate that MCN outperforms sev-
eral baseline methods and believe that our initial results
together with the release of DiDeMo will inspire further re-
search on localizing video moments with natural language.

1. Introduction

Consider the video depicted in Figure 1, in which a lit-
tle girl jumps around, falls down, and then gets back up to
start jumping again. Suppose we want to refer to a partic-
ular temporal segment, or moment, from the video, such as
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when the girl resiliently begins jumping again after she has
fallen. Simply referring to the moment via an action, object,
or attribute keyword may not uniquely identify it. For ex-
ample, important objects in the scene, such as the girl, are
present in each frame. Likewise, recognizing all the frames
in which the girl is jumping will not localize the moment
of interest as the girl jumps both before and after she has
fallen. Rather than being defined by a single object or activ-
ity, the moment may be defined by when and how specific
actions take place in relation to other actions. An intuitive
way to refer to the moment is via a natural language phrase,
such as “the little girl jumps back up after falling”.

Motivated by this example, we consider localizing mo-
ments in video with natural language. Specifically, given a
video and text description, we identify start and end points
in the video which correspond to the given text descrip-
tion. This is a challenging task requiring both language
and video understanding, with important applications in
video retrieval, such as finding particular moments from a
long personal holiday video, or desired B-roll stock video
footage from a large video library (e.g., Adobe Stock1,
Getty2, Shutterstock3).

Existing methods for natural language based video re-
trieval [24, 51, 46] retrieve an entire video given a text string
but do not identify when a moment occurs within a video.
To localize moments within a video we propose to learn a
joint video-language model in which referring expressions
and video features from corresponding moments are close

1https://stock.adobe.com
2http://www.gettyimages.com
3https://www.shutterstock.com
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in a shared embedding space. However, in contrast to whole
video retrieval, we argue that in addition to video features
from a specific moment, global video context and knowing
when a moment occurs within a longer video are impor-
tant cues for moment retrieval. For example, consider the
text query “The man on the stage comes closest to the audi-
ence”. The term “closest” is relative and requires temporal
context to properly comprehend. Additionally, the tempo-
ral position of a moment in a longer video can help localize
the moment. For the text query “The biker starts the race”,
we expect moments earlier in the video in which the biker
is racing to be closer to the text query than moments at the
end of the video. We thus propose the Moment Context
Network (MCN) which includes a global video feature to
provide temporal context and a temporal endpoint feature
to indicate when a moment occurs in a video.

A major obstacle when training our model is that cur-
rent video-language datasets do not include natural lan-
guage which can uniquely localize a moment. Addition-
ally, datasets like [20, 28] are small and restricted to spe-
cific domains, such as dash-cam or cooking videos, while
datasets [5, 32, 45, 50] sourced from movies and YouTube
are frequently edited and tend to only include entertaining
moments (see [38] for discussion). We believe the task of
localizing moments with natural language is particularly
interesting in unedited videos which tend to include un-
eventful video segments that would generally be cut from
edited videos. Consequently, we desire a dataset which
consists of distinct moments from unedited video footage
paired with descriptions which can uniquely localize each
moment, analogous to datasets that pair distinct image re-
gions with descriptions [17, 22].

To address this problem, we collect the Distinct Describ-
able Moments (DiDeMo) dataset which includes distinct
video moments paired with descriptions which uniquely lo-
calize the moment in the video. Our dataset consists of
over 10,000 unedited videos with 3-5 pairs of descriptions
and distinct moments per video. DiDeMo is collected in
an open-world setting and includes diverse content such as
pets, concerts, and sports games. To ensure that descrip-
tions are referring and thus uniquely localize a moment, we
include a validation step inspired by [17].

Contributions. We consider the problem of localizing mo-
ments in video with natural language in a challenging open-
world setting. We propose the Moment Context Network
(MCN) which relies on local and global video features.
To train and evaluate our model, we collect the Distinct
Describable Moments (DiDeMo) dataset which consists of
over 40,000 pairs of referring descriptions and localized
moments in unedited videos.

2. Related Work

Localizing moments in video with natural language is
related to other vision tasks including video retrieval, video
summarization, video description and question answering,
and natural language object retrieval. Though large scale
datasets have been collected for each of these tasks, none
fit the specific requirements needed to learn how to localize
moments in video with natural language.

Video Retrieval with Natural Language. Natural lan-
guage video retrieval methods aim to retrieve a specific
video given a natural language query. Current methods
[24, 46, 51] incorporate deep video-language embeddings
similar to image-language embeddings proposed by [8, 40].
Our method also relies on a joint video-language embed-
ding. However, to identify when events occur in a video,
our video representation integrates local and global video
features as well as temporal endpoint features which indi-
cate when a candidate moment occurs within a video.

Some work has studied retrieving temporal segments
within a video in constrained settings. For example, [43]
considers retrieving video clips from a home surveillance
camera using text queries which include a fixed set of spatial
prepositions (“across” and “through”) whereas [20] consid-
ers retrieving temporal segments in 21 videos from a dash-
board car camera. In a similar vein, [1, 4, 36] consider
aligning textual instructions to videos. However, methods
aligning instructions to videos are restricted to structured
videos as they constrain alignment by instruction ordering.
In contrast, we consider localizing moments in an uncon-
strained open-world dataset with a wide array of visual con-
cepts. To effectively train a moment localization model,
we collect DiDeMo which is unique because it consists of
paired video moments and referring expressions.

Video Summarization. Video summarization algorithms
isolate temporal segments in a video which include impor-
tant/interesting content. Though most summarization algo-
rithms do not include textual input ([3, 9, 10, 52, 53]), some
use text in the form of video titles [21, 41] or user queries in
the form of category labels to guide content selection [37].
[54] collects textual descriptions for temporal video chunks
as a means to evaluate summarization algorithms. However,
these datasets do not include referring expressions and are
limited in scope which makes them unsuitable for learning
moment retrieval in an open-world setting.

Video Description and Question Answering (QA). Video
description models learn to generate textual descriptions of
videos given video-description pairs. Contemporary mod-
els integrate deep video representations with recurrent lan-
guage models [25, 31, 47, 48, 56]. Additionally, [42] pro-
posed a video QA dataset which includes question/answer
pairs aligned to video shots, plot synopsis, and subtitles.

YouTube and movies are popular sources for joint video-



language datasets. Video description datasets collected
from YouTube include descriptions for short clips of longer
YouTube videos [5, 50]. Other video description datasets
include descriptions of short clips sourced from full length
movies [32, 45]. However, though YouTube clips and movie
shots are sourced from longer videos, they are not appropri-
ate for localizing distinct moments in video for two reasons.
First, descriptions about selected shots and clips are not
guaranteed to be referring. For example, a short YouTube
video clip might include a person talking and the descrip-
tion like “A woman is talking”. However, the entire video
could consist of a woman talking and thus the description
does not uniquely refer to the clip. Second, many YouTube
videos and movies are edited, which means “boring” con-
tent which may be important to understand for applications
like retrieving video segments from personal videos might
not be present.

Natural Language Object Retrieval. Natural language
object retrieval [14, 22] can be seen as an analogous task
to ours, where natural language phrases are localized spa-
tially in images, rather than temporally in videos. Despite
similarities to natural language object retrieval, localizing
video moments presents unique challenges. For example, it
often requires comprehension of temporal indicators such
as “first” as well as a better understanding of activities.
Datasets for natural language object retrieval include refer-
ring expressions which can uniquely localize a specific lo-
cation in a image. Descriptions in DiDeMo uniquely local-
ize distinct moments and are thus also referring expressions.

Language Grounding in Images and Videos. [27, 29, 40]
tackle the task of object grounding in which sentence frag-
ments in a description are localized to specific image re-
gions. Work on language grounding in video is much more
limited. Language grounding in video has focused on spa-
tially grounding objects and actions in a video [20, 55],
or aligning textual phrases to temporal video segments
[28, 43]. However prior methods in both these areas
([43, 55]) severely constrain natural language vocabulary
(e.g., [55] only considers four objects and four verbs) and
consider constrained visual domains in small datasets (e.g.,
127 videos from a fixed laboratory kitchen [28] and [20]
only includes 520 sentences). In contrast, DiDeMo offers
a unique opportunity to study temporal language ground-
ing in an open-world setting with a diverse set of objects,
activities, and attributes.

3. Moment Context Network

Our moment retrieval model effectively localizes natu-
ral language queries in longer videos. Given input video
frames v = {vt}, where t ∈ {0, . . . , T − 1} indexes time,
and a proposed temporal interval, τ̂ = τstart : τend, we
extract visual temporal context features which encode the
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Figure 2: Our Moment Context Network (MCN) learns a
shared embedding for video temporal context features and
LSTM language features. Our video temporal context fea-
tures integrate local video features, which reflect what oc-
curs during a specific moment, global features, which pro-
vide context for the specific moment, and temporal end-
point features which indicate when a moment occurs in a
video. We consider both appearance and optical flow in-
put modalities, but for simplicity only show the appearance
input modality here.

video moment by integrating both local features and global
video context. Given a sentence s we extract language fea-
tures using an LSTM [12] network. At test time our model
optimizes the following objective

τ̂ = argmin
τ

Dθ(s, v, τ), (1)

where Dθ is a joint model over the sentence s, video v, and
temporal interval τ given model parameters θ (Figure 2).
Visual Temporal Context Features. We encode video mo-
ments into visual temporal context features by integrating
local video features, which reflect what occurs within a spe-
cific moment, global video features, which provide context
for a video moment, and temporal endpoint features, which
indicate when a moment occurs within a longer video. To
construct local and global video features, we first extract
high level video features using a deep convolutional net-
work for each video frame, then average pool video fea-
tures across a specific time span (similar to features em-
ployed by [48] for video description and [46] for whole
video retrieval). Local features are constructed by pooling
features within a specific moment and global features are
constructed by averaging over all frames in a video.

When a moment occurs in a video can indicate whether
or not a moment matches a specific query. To illustrate,
consider the query “the bikers start the race.” We expect
moments closer to the beginning of a video in which bikers
are racing to be more similar to the description than mo-
ments at the end of the video in which bikers are racing.



To encode this temporal information, we include temporal
endpoint features which indicate the start and endpoint of
a candidate moment (normalized to the interval [0, 1]). We
note that our global video features and temporal endpoint
features are analogous to global image features and spatial
context features frequently used in natural language object
retrieval [14, 22].

Localizing video moments often requires localizing spe-
cific activities (like “jump” or “run”). Therefore, we explore
two sources of visual input modalities; appearance or RGB
frames (vt) and optical flow frames (ft). We extract fc7 fea-
tures from RGB frames using VGG [39] pre-trained on Im-
ageNet [35]. We expect these features to accurately identify
specific objects and attributes in video frames. Likewise,
we extract optical flow features from the penultimate layer
from a competitive activity recognition model [49]. We ex-
pect these features to help localize moments which require
understanding action.

Temporal context features are extracted by inputting lo-
cal video features, global video features, and temporal end-
point features into a two layer neural network with ReLU
nonlinearities (Figure 2 top). Separate weights are learned
when extracting temporal context features for RGB frames
(denoted as PVθ ) and optical flow frames (denoted as PFθ ).
Language Features. To capture language structure, we ex-
tract language features using a recurrent network (specifi-
cally an LSTM [12]). After encoding a sentence with an
LSTM, we pass the last hidden state of the LSTM through a
single fully-connected layer to yield embedded feature PLθ .
Though our dataset contains over 40,000 sentences, it is still
small in comparison to datasets used for natural language
object retrieval (e.g., [17, 22]). Therefore, we find that rep-
resenting words with dense word embeddings (specifically
Glove [26]) as opposed to one-hot encodings yields superior
results when training our LSTM.
Joint Video and Language Model. Our joint model is the
sum of squared distances between embedded appearance,
flow, and language features

Dθ(s, v, τ) = |PVθ (v, τ)−PLθ (s)|2+η|PFθ (f, τ)−PLθ (s)|2,
(2)

where η is a tunable (via cross validation) “late fusion”
scalar parameter. η was set to 2.33 via ablation studies.
Ranking Loss for Moment Retrieval. We train our model
with a ranking loss which encourages referring expres-
sions to be closer to corresponding moments than nega-
tive moments in a shared embedding space. Negative mo-
ments used during training can either come from different
segments within the same video (intra-video negative mo-
ments) or from different videos (inter-video negative mo-
ments). Revisiting the video depicted in Figure 1, given
a phrase “the little girl jumps back up after falling” many
intra-video negative moments include concepts mentioned

in the phrase such as “little girl” or “jumps”. Consequently,
our model must learn to distinguish between subtle differ-
ences within a video. By comparing the positive moment
to the intra-video negative moments, our model can learn
that localizing the moment corresponding to “the little girl
jumps back up after falling” requires more than just recog-
nizing an object (the girl) or an action (jumps). For training
example i with endpoints τi, we define the following intra-
video ranking loss

Lintrai (θ) =
∑

n∈Γ\τ i

LR
(
Dθ(s

i, vi, τ i), Dθ(s
i, vi, n)

)
,

(3)
where LR(x, y) = max(0, x− y+ b) is the ranking loss, Γ
are all possible temporal video intervals, and b is a margin.
Intuitively, this loss encourages text queries to be closer to
a corresponding video moment than all other possible mo-
ments from the same video.

Only comparing moments within a single video means
the model must learn to differentiate between subtle differ-
ences without learning how to differentiate between broader
semantic concepts (e.g., “girl” vs. “sofa”). Hence, we
also compare positive moments to inter-video negative mo-
ments which generally include substantially different se-
mantic content. When selecting inter-video negative mo-
ments, we choose negative moments which have the same
start and end points as positive moments. This encourages
the model to differentiate between moments based on se-
mantic content, as opposed to when the moment occurs in
the video. During training we do not verify that inter-video
negatives are indeed true negatives. However, the language
in our dataset is diverse enough that, in practice, we observe
that randomly sampled inter-video negatives are generally
true negatives. For training example i, we define the fol-
lowing inter-video ranking loss

Linteri (θ) =
∑
j 6=i

LR
(
Dθ(s

i, vi, τ i), Dθ(s
i, vj , τ i)

)
. (4)

This loss encourages text queries to be closer to correspond-
ing video moments than moments outside the video, and
should thus learn to differentiate between broad semantic
concepts. Our final inter-intra video ranking loss is

L(θ) = λ
∑
i

Lintrai (θ) + (1− λ)
∑
i

Linteri (θ), (5)

where λ is a weighting parameter chosen through cross-
validation.

4. The DiDeMo Dataset
A major challenge when designing algorithms to local-

ize moments with natural language is that there is a dearth
of large-scale datasets which consist of referring expres-
sions and localized video moemnts. To mitigate this issue,



The dog begins to follow 
the woman as she leads it 
through the training course

A black and white dog runs 
through an indoor agility 

course

The woman squats down 
and pets the dog

The woman stands and 
begins walking away from 

her dog
A dog jumps over two 

white jumps

A cat walks over two boxes

An orange cat walks out of 
a box

There is a different cat in 
each of the two boxes

Black cat walks into right 
hand side box

A black cat walks out of a 
box that the orange cat 

used to be in

Figure 3: Example videos and annotations from our Distinct Describable Moments (DiDeMo) dataset. Annotators describe
moments with varied language (e.g., “A cat walks over two boxes” and “An orange cat walks out of a box”). Videos with
multiple events (top) have annotations which span all five-second segments. Other videos have segments in which no distinct
event takes place (e.g., the end of the bottom video in which no cats are moving).

we introduce the Distinct Describable Moments (DiDeMo)
dataset which includes over 10,000 25-30 second long per-
sonal videos with over 40,000 localized text descriptions.
Example annotations are shown in Figure 3.

4.1. Dataset Collection

To ensure that each description is paired with a sin-
gle distinct moment, we collect our dataset in two phases
(similar to how [17] collected text to localize image re-
gions). First, we asked annotators to watch a video, select
a moment, and describe the moment such that another user
would select the same moment based on the description.
Then, descriptions collected in the first phase are validated
by asking annotators to watch videos and mark moments
that correspond to collected descriptions.

Harvesting Personal Videos. We randomly select over
14,000 videos from YFCC100M [44] which contains over
100,000 Flickr videos with a Creative Commons License.
To ensure harvested videos are unedited, we run each video
through a shot detector based on the difference of color his-
tograms in adjacent frames [23] then manually filter videos
which are not caught. Videos in DiDeMo represent a di-
verse set of real-world videos, which include interesting,
distinct moments, as well as uneventful segments which
might be excluded from edited videos.

Video Interface. Localizing text annotations in video is
difficult because the task can be ambiguous and users must
digest a 25-30s video before scrubbing through the video to
mark start and end points. To illustrate the inherent ambigu-
ity of our task, consider the phrase “The woman leaves the
room.” Some annotators may believe this moment begins
as soon as the woman turns towards the exit, whereas oth-
ers may believe the moment starts as the woman’s foot first
crosses the door threshold. Both annotations are valid, but

result in large discrepancies between start and end points.
To make our task less ambiguous and speed up annota-

tion, we develop a user interface in which videos are pre-
sented as a timeline of temporal segments. Each segment
is displayed as a gif, which plays at 2x speed when the
mouse is hovered over it. Following [54], who collected
localized text annotations for summarization datasets, we
segment our videos into 5-second segments. Users select
a moment by clicking on all segments which contain the
moment. To validate our interface, we ask five users to lo-
calize moments in ten videos using our tool and a traditional
video scrubbing tool. Annotations with our gif-based tool
are faster to collect (25.66s vs. 38.48s). Additionally, start
and end points marked using the two different tools are sim-
ilar. The standard deviation for start and end points marked
when using the video scrubbing tool (2.49s) is larger than
the average difference in start and end points marked using
the two different tools (2.45s).

Moment Validation. After annotators describe a moment,
we ask three additional annotators to localize the moment
given the text annotation and the same video. To accept
a moment description, we require that at least three out of
four annotators (one describer and three validators) be in
agreement. We consider two annotators to agree if one of
the start or end point differs by at most one gif.

4.2. DiDeMo Summary

Table 1 compares our Distinct Describable Mo-
ments (DiDeMo) dataset to other video-language datasets.
Though some datasets include temporal localization of nat-
ural language, these datasets do not include a verification
step to ensure that descriptions refer to a single moment. In
contrast, our verification step ensuring that descriptions in
DiDeMo are referring expressions, meaning that they refer



Dataset # Videos/# Clips # Sentences Video Source Domain Temporal
Localization Un-Edited Referring

Expressions

YouCook [7] 88/- 2,668 YouTube Cooking

Charades [38] 10,000/- 16,129 Homes Daily activities X

TGIF [19] 100,000 /- 125,781 Tumblr GIFs Open

MSVD [5] 1,970/1,970 70,028 YouTube Open X

MSR-VTT [50] 7,180/10,000 200,000 YouTube Open X

LSMDC 16 [33] 200/128,085 128,085 Movie Open X

TV Dataset [54] 4/1,034 1,034 TV Shows TV Shows X

KITTI [20] 21/520 520 Car Camera Driving X X

TACoS [28, 34] 123/7,206 18,227 Lab Kitchen Cooking X X

TACoS
multi-level[30] 185/14.105 52,593 Lab Kitchen Cooking X X

UT Egocentric [54] 4/11,216 11,216 Egocentric Daily Activities X X

Disneyland [54] 8/14,926 14,916 Egocentric Disneyland X X

DiDeMo 10,464/26,892 40,543 Flickr Open X X X

Table 1: Comparison of DiDeMo to other video-language datasets. DiDeMo is unique because it includes a validation step
ensuring that descriptions are referring expressions.

to a specific moment in a video.

Vocabulary. Because videos are curated from Flickr,
DiDeMo reflects the type of content people are interested in
recording and sharing. Consequently, DiDeMo is human-
centric with words like “baby”, “woman”, and “man” ap-
pearing frequently. Since videos are randomly sampled,
DiDeMo has a long tail with words like “parachute” and
“violin”, appearing infrequently (28 and 38 times).

Important, distinct moments in a video often coincide
with specific camera movements. For example, “the cam-
era pans to a group of friends” or “zooms in on the baby”
can describe distinct moments. Many moments in personal
videos are easiest to describe in reference to the viewer
(e.g., “the little boy runs towards the camera”). In contrast
to other dataset collection efforts [5], we allow annotations
to reference the camera, and believe such annotations may
be helpful for applications like text-assisted video editing.

Table 2 contrasts the kinds of words used in DiDeMo
to two natural language object retrieval datasets [17, 22]
and two video description datasets [33, 50]. The three left
columns report the percentage of sentences which include
camera words (e.g., “zoom”, “pan”, “cameraman”), tem-
poral indicators (e.g., “after” and “first”), and spatial indi-
cators (e.g., “left” and “bottom”). We also compare how
many words belong to certain parts of speech (verb, noun,
and adjective) using the natural language toolkit part-of-
speech tagger [2]. DiDeMo contains more sentences with
temporal indicators than natural language object retrieval
and video description datasets, as well as a large number of
spatial indicators. DiDeMo has a higher percentage of verbs
than natural language object retrieval datasets, suggesting
understanding action is important for moment localization
in video.

% Sentences % Words
Camera Temp. Spatial Verbs Nouns Adj.

ReferIt [17] 0.33 1.64 43.13 5.88 52.38 11.54
RefExp [22] 1.88 1.00 15.11 8.97 36.26 11.82
MSR-VTT [50] 2.10 2.03 1.24 18.77 36.95 5.12
LSMDC 16 [33] 1.09 7.58 1.49 13.71 37.44 3.99
DiDeMo 19.69 18.42 11.62 16.06 35.26 7.89

Table 2: DiDeMo contains more camera and temporal
words than natural language object recognition datasets
[17, 22] or video description datasets [50, 33]. Addition-
ally, verbs are more common in DiDeMo than in natural lan-
guage object retrieval datasets suggesting natural language
moment retrieval relies more heavily on recognizing actions
than natural language object retrieval.

Annotated Time Points. Annotated segments can be any
contiguous set of gifs. Annotators generally describe short
moments with 72.34% of descriptions corresponding to a
single gif and 22.26% corresponding to two contiguous
gifs. More annotated moments occur at the beginning of a
video than the end. This is unsurprising as people generally
choose to begin filming a video when something interesting
is about to happen. In 86% of videos annotators described
multiple distinct moments with an average of 2.57 distinct
moments per video.

5. Evaluation

In this section we report qualitative and quantitative re-
sults on DiDeMo. First, we describe our evaluation criteria
and then evaluate against baseline methods.

Metrics: Accounting for Human Variance. Our model
ranks candidate moments in a video based on how well



Baseline Comparison (Test Set)

Model Rank@1 Rank@5 mIoU

1 Upper Bound 74.75 100.00 96.05
2 Chance 3.75 22.50 22.64
3 Moment Frequency Prior 19.40 66.38 26.65
4 CCA 18.11 52.11 37.82
5 Natural Lang. Obj. Retrieval [14] 16.20 43.94 27.18
6 Natural Lang. Obj. Retrieval [14] (re-trained) 15.57 48.32 30.55

7 MCN (ours) 28.10 78.21 41.08

Ablations (Validation Set)
8 LSTM-RGB-local 13.10 44.82 25.13
9 LSTM-Flow-local 18.35 56.25 31.46
10 LSTM-Fusion-local 18.71 57.47 32.32
11 LSTM-Fusion + global 19.88 62.39 33.51
12 LSTM-Fusion + global + tef (MCN) 27.57 79.69 41.70

Table 3: Our Moment Context Network (MCN) outper-
forms baselines (rows 1-6) on our test set. We show ab-
lation studies on our validation set in rows 8-12. Both flow
and RGB modalities are important for good performance
(rows 8-10). Global video features and temporal endpoint
features (tef) both lead to better performance (rows 10-12).

they match a text description. Candidate moments come
from the temporal segments defined by the gifs used to col-
lect annotations. A 30 second video will be broken into
six five-second gifs. Moments can include any contigu-
ous set of gifs, so a 30-second video contains 21 possi-
ble moments. We measure the performance of each model
with Rank@1 (R@1), Rank@5 (R@5), and mean intersec-
tion over union (mIoU). Instead of consolidating all human
annotations into one ground truth, we compute the score
for a prediction and each human annotation for a particu-
lar description/moment pair. To account for outlier annota-
tions, we consider the highest score among sets of annota-
tions A′ where A′ are the four-choose-three combinations
of all four annotations A. Hence, our final score for a pre-
diction P and four human annotationsA using metricM is:
score(P,A) = maxA′∈(A

3)
1
3

∑
a∈A′ M(P, a). As not all

annotators agree on start and end points it is impossible to
achieve 100% on all metrics (c.f., upper bounds in Table 3).

Baseline: Moment Frequency Prior. Though annotators
may mark any contiguous set of gifs as a moment, they tend
to select short moments toward the beginning of videos.
The moment frequency prior selects moments which cor-
respond to gifs most frequently described by annotators.

Baseline: CCA. Canonical correlation analysis (CCA)
achieves competitive results for both natural language im-
age [18] and object [27] retrieval tasks. We use the CCA
model of [18] and employ the same visual features as the
MCN model. We extract language features from our best
MCN language encoder for fair comparison.

Baseline: Natural Language Object Retrieval. Natural

language object retrieval models localize objects in a text
image. We verify that localizing objects is not sufficient for
moment retrieval by running a natural language object re-
trieval model [14] on videos in our test set. For every tenth
frame in a video, we score candidate bounding boxes with
the object retrieval model proposed in [14] and compute the
score for a frame as the maximum score of all bounding
boxes. The score for each candidate moment is the aver-
age of scores for frames within the moment. Additionally,
we re-train [14] using the same feautures used to train our
MCN model; instead of candidate bounding boxes, we pro-
vide candidate temporal chunks and train with both appear-
ance and flow input modalities. More details, baselines, and
ablations can be found in our appendix.
Implementation Details. DiDeMo videos are split into
training (8,395), validation (1,065), and testing (1,004) sets.
Videos from a specific Flickr user only appear in one set.
All models are implemented in Caffe [15] and have been
publicly released 4. SGD (mini-batch size of 120) is used
for optimization and all hyperparamters, such as embed-
ding size (100), margin (0.1), and LSTM hidden state size
(1000), are chosen through ablation studies.

5.1. Results

Table 3 compares different variants of our proposed re-
trieval model to our baselines. Our ablations demonstrate
the importance of our temporal context features and the
need for both appearance and optical flow features.
Baseline Comparison. Rows 1-7 of Table 3 compare the
Moment Context Network (MCN) model to baselines on
our test set. Though all baselines we trained (lines 4-6)
have similar R@1 and R@5 performance, CCA performs
substantially better on the mIoU metric. Scoring video seg-
ments based on the scores from a natural language object
retrieval model [14] does fairly well, performing similarly
to the same model retrained with our features. This sug-
gests that pre-training with a dataset designed for natural
language object retrieval and incorporating spatial localiza-
tion into our model could improve results. We believe that
retraining [14] leads to poor results on our dataset because
it relies on sentence generation rather than directly retriev-
ing a moment. Additionally, our model does substantially
better than the moment frequency prior.
Visual Temporal Context Feature. Rows 9-12 of Table 3
demonstrate the importance of temporal context for moment
retrieval. The inclusion of both the global video feature and
temporal endpoint feature increase performance consider-
ably. Additionally, we find that combining both appearance
and optical flow features is important for best performance.
Qualitative Results. Figure 4 shows moments predicted

4https://people.eecs.berkeley.edu/˜lisa_
anne/didemo.html

https://people.eecs.berkeley.edu/~lisa_anne/didemo.html
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Query: “camera zooms in on group of women”

Query: “first time cat jumps up”

Query: “both men stop and clasp hands before resuming their demonstration”

MCN Prediction

MCN Prediction

MCN Prediction

Figure 4: Natural language moment retrieval results on DiDeMo. Ground truth moments are outlined in yellow. The Moment
Context Network (MCN) localizes diverse descriptions which include temporal indicators, such as “first” (top), and camera
words, such as “camera zooms” (middle).

“A ball flies over the athletes.”
“A man in a red hat passed a man in a yellow shirt.”

Figure 5: MCN correctly retrieves two different moments
(light green rectangle on left and light blue rectangle on
right). Though our ground truth annotations are five-second
segments, we can evaluate with more fine-grained temporal
proposals at test time. This gives a better understanding of
when moments occur in video (e.g., “A ball flies over the
athletes” occurs at the start of the first temporal segment).

by MCN. Our model is capable of localizing a diverse set
of moments including moments which require understand-
ing temporal indicators like “first” (Figure 4 top) as well as
moments which include camera motion (Figure 4 middle).
More qualitative results are in our appendix.

Fine-grained Moment Localization Even though our
ground truth moments correspond to five-second chunks,
we can evaluate our model on smaller temporal segments
at test time to predict moment locations with finer granular-
ity. Instead of extracting features for a five second segment,
we evaluate on individual frames extracted at ∼ 3 fps. Fig-
ure 5 includes an example in which two text queries (“A

ball flies over the athletes” and “A man in a red hat passed a
man in a yellow shirt”) are correctly localized by our model.
The frames which best correspond to “A ball flies over the
athletes” occur in the first few seconds of the video and the
moment “A man in a red hat passed a men in a yellow shirt”
finishes before the end point of the fifth segment. More
qualitative results are in our appendix.

Discussion. We introduce the task of localizing moments
in video with natural language in a challenging, open-world
setting. Our Moment Context Network (MCN) localizes
video moments by harnessing local video features, global
video features, and temporal endpoint features. To train and
evaluate natural language moment localization models, we
collect DiDeMo, which consists of over 40,000 pairs of lo-
calized moments and referring expressions. Though MCN
properly localizes many natural language queries in video,
there are still many remaining challenges. For example,
modeling complex (temporal) sentence structure is still very
challenging (e.g., our model fails to localize “dog stops,
then starts rolling around again”). Additionally, DiDeMo
has a long-tail distribution with rare activities, nouns, and
adjectives. More advanced (temporal) language reasoning
and improving generalization to previously unseen vocabu-
lary are two potential future directions.
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Supplemental
This appendix includes the following material:

1. Qualitative examples illustrating when global video
features and tef features improve performance.

2. Qualitative examples contrasting RGB and flow input
modalities.

3. Additional qualitative examples using the full Moment
Context Network. See https://www.youtube.

com/watch?v=MRO7_4ouNWU for a video example.

4. Additional baselines.

5. Ablation of inter-intra negative loss.

6. Results when training without a language feature.

7. List of words used to generate numbers in Table 2 of
the main paper.

8. Qualitative video retrieval experiment. See https:

//www.youtube.com/watch?v=fuz-UBvgapk for
a video example.

9. Discussion on ambiguity of annotations and our met-
rics.

10. Histrogram showing the moments annotators mark in
our dataset.

11. Example video showing our annotation tool
(see https://www.youtube.com/watch?v=

vAvT5Amp408 and https://www.youtube.com/

watch?v=9WWgndeEjMU.

A. Impact of Global Video Features and TEF
Features

In the main paper we quantitatively show that global
video features and tef features improve model performance.
Here, we highlight qualitative examples where the global
video features and tef features lead to better localization.

Figure 6 shows examples in which including global con-
text improves performance. Examples like “The car passes
the closest to the camera” require context to identify the
correct moment. This is sensible as the word “closest” is
comparative in nature and determining when the car is clos-
est requires viewing the entire video. Other moments which
are correctly localized with context include “we first see the
second baby” and “the dog reaches the top of the stairs”.

Figure 7 shows examples in which including temporal
endpoint features (tef) correctly localizes a video moment.
For moments like “we first see the people” the model with-
out tef retrieves a video moment with people, but fails to
retrieve the moment when the people first appear. Without

the tef, the model has no indication of when a moment oc-
curs in a video. Thus, though the model can identify if there
are people in a moment, the model is unable to determine
when the people first appear. Likewise, for moments like
“train begins to move”, the model without tef retrieves a
video moment in which the train is moving, but not a mo-
ment in which the train begins to move.

B. RGB and Flow Input Modalities

In the main paper, we demonstrate that RGB and optical
flow inputs are complementary. Here we show a few ex-
amples which illustrate how RGB and flow input modalities
complement each other. Figure 8 compares a model trained
with RGB input and a model trained with optical flow input
(both trained with global video features and tef). We ex-
pect the model trained with RGB to accurately localize mo-
ments which require understanding the appearance of ob-
jects and people in a scene, such as “child jumps into arms
of man wearing yellow shirt” (Figure 8 top row). We ex-
pect the model trained with flow to better localize moments
which require understanding of motion (including camera
motion) such as “a dog looks at the camera and jumps at it”
and “camera zooms in on a man playing the drums” (Fig-
ure 8 row 3 and 4). Frequently, both RGB and optical flow
networks can correctly localize a moment (Figure 8 bot-
tom row). However, for best results we take advantage of
the complimentary nature of RGB and optical flow input
modalities in our fusion model.

C. Qualitative Results for MCN

Figure 9 shows four videos in which we evaluate with
fine-grained temporal windows at test time. Observing the
plots in Figure 9 provides insight into the exact point at
which a moment occurs. For example, our model correctly
localizes the phrase “the blue trashcan goes out of view”
(Figure 9 bottom right). The finegrained temporal segments
that align best with this phrase occur towards the end of the
third segment (approximately 14s). Furthermore, Figure 9
provides insight into which parts of the video are most sim-
ilar to the text query, and which parts are most dissimilar.
For example, for the phrase “the blue trashcan goes out of
view”, there are two peaks; the higher peak occurs when
the blue trashcan goes out of view, and the other peak oc-
curs when the blue trashcan comes back into view.

In the main paper, running a natural language object re-
trieval (NLOR) model on our data is a strong baseline. We
expect this model to perform well on examples which re-
quire recognizing a specific object such as “a man in a
brown shirt runs by the camera” (Figure10 top row), but
not as well for queries which require better understanding
of action or camera movement such as “man runs towards
camera with baby” (row 2 and 4 in Figure 10). Though the

https://www.youtube.com/watch?v=MRO7_4ouNWU
https://www.youtube.com/watch?v=MRO7_4ouNWU
https://www.youtube.com/watch?v=fuz-UBvgapk
https://www.youtube.com/watch?v=fuz-UBvgapk
https://www.youtube.com/watch?v=vAvT5Amp408
https://www.youtube.com/watch?v=vAvT5Amp408
https://www.youtube.com/watch?v=9WWgndeEjMU
https://www.youtube.com/watch?v=9WWgndeEjMU


Moment Context Network performs well on DiDeMo, there
are a variety of difficult queries it fails to properly localize,
such as “Mother holds up the green board for the third time”
(Figure 10 last row).

Please see https://www.youtube.com/watch?v=

MRO7_4ouNWU for examples of moments correctly retrieved
by our model.

D. Additional Baselines

In the main paper we compare MCN to the natural lan-
guage object retrieval model of [14]. Since the publication
of [14], better natural language object retrieval models have
been proposed (e.g., [13]). We evaluate [13] on our data,
in a similar way to how we evaluated [14] on our data in
the main paper (Table 3 Row 5 in the main paper). We ex-
tract frames at 10 fps on videos in our test set and use [13]
to score each bounding box in an image for our description.
The score for a frame is the max score of all bounding boxes
in the frame, and the score for a moment is the average of
all frames in the moment. We expect this model to do well
when the moment descriptions can be well localized by lo-
calizing specific objects. Surprisingly, even though CMN
outperforms [14] for natural language object retrieval, it
does worse than [14] on our data (Table 4 row 6). One pos-
sible reason is that [13] relies on parsing subject, relation-
ship, and object triplets in sentences. Sentences in DiDeMo
may not fit this structure well, leading to a decrease in per-
formance. Additionally, [13] is trained on MSCOCO [6]
and [14] is trained on ReferIt [17]. Though MSCOCO is
larger than ReferIt, it is possible that the images in ReferIt
are more similar to ours and thus [14] transfers better to our
task.

Additionally, we train [16], which is designed for natu-
ral language image retrieval, using our data. [16] relies on
first running a dependency parser to extract sentence frag-
ments linked in a dependency tree (e.g., “black dog”, or
“run fast”). It scores an image based on how well sentence
fragments match a set of proposed bounding boxes. To train
this model for our task, we also extract sentence fragments,
but then score temporal regions based on how well sentence
fragments match a ground truth temporal region. We train
on our data (using a late fusion approach to combine RGB
and optical flow), and find that this baseline performs sim-
ilarly to other baselines (Table 4 row 8). In general, we
believe our method works better than other baselines be-
cause it considers both positive and negative moments when
learning to localize video moments and directly optimizes
the R@1 metric.

E. Inter-Intra Negative Loss

In Table 4 we compare results when training with only
an inter-negative loss, only an intra-negative loss, and our

Baseline Comparison (Test Set)

Model Rank@1 Rank@5 mIoU

1 Upper Bound 74.75 100.00 96.05
2 Chance 3.75 22.50 22.64
3 Prior (tef) 19.40 66.38 26.65
4 CCA 16.27 41.82 35.73
5 Natural Lang. Obj. Retrieval (SCRC [14]) 16.20 43.94 27.18
6 Natural Lang. Obj. Retrieval (CMN [13]) 12.59 38.52 22.50
7 Natural Lang. Obj. Retrieval (SCRC [14] re-trained) 15.57 48.32 30.55
8 Image Retrieval (DeFrag [16] re-trained) 10.61 33.00 28.08

9 MCN (ours) 28.10 78.21 41.08

Ablations (Validation Set)
10 MCN: Inter-Neg. Loss 25.58 74.13 39.77
11 MCN Intra-Neg. Loss 26.77 78.13 39.83
12 MCN 27.57 79.69 41.70

Table 4: MCN outperformes baselines (rows 1-8) on our test
set. We show ablation studies for our inter-intra negative
loss in rows 10-12.

proposed inter-intra negative loss. Considering both types
of negatives is important for best performance.

F. Importance of Language Feature
Because we ask annotators to mark any interesting mo-

ment and describe it, it is possible that annotators mark
visually interesting moments which can be localized with-
out text. We thus train a model with our temporal context
features but no text query and observe that this model out-
performs chance and the moment frequency prior, but does
not perform as well as our full model (25.04, 75.23, and
36.12 on R@1, R@5, and mIoU metrics). This indicates
that while understanding what constitutes a “describable”
moment can be helpful for natural language moment re-
trieval, natural language is important to achieve best results
on DiDeMo. Because the majority of videos include mul-
tiple distinct moments (86%), we believe the gap between
model trained with and without language will improve with
better video-language modelling.

G. Words Used to Construct Table 2
To construct Table 2 in the main paper, we used the fol-

lowing words:

• Camera words: camera, cameras, zoom, zooms, pan,
pans, focus, focuses, frame, cameraman

• Temporal words: first, last, after, before, then, second,
final, begin, again, return, third, ends

• Spatial words: left, right, top, bottom, background

Additionally, our vocab size is 7,785 words (which is
large considering the total number of words in our dataset -
329,274).

https://www.youtube.com/watch?v=MRO7_4ouNWU
https://www.youtube.com/watch?v=MRO7_4ouNWU


H. Video Retrieval Experiment

We used our model to retrieve five moments closest to a
specific text query in our shared embedding space from all
videos in our test set (Figure 11). We find that retrieved mo-
ments are semantically similar to the provided text query.
For example, the query “zoom in on baby” returns moments
in which the camera zooms in on babies or young children.
A similar query, “camera zooms in” returns example mo-
ments of the camera zooming, but the videos do not contain
babies. Though the query “the white car passes by” does
not always return moments with cars, it returns moments
which include semantically similar objects (trains, busses
and cars).

Please see https://www.youtube.com/watch?v=

fuz-UBvgapk for an example of video retrieval results.

I. Annotation Ambiguity

Figure 12 shows an example in which the end point for
specific moments are ambiguous. For the query “zoom in
on man”, three annotators mark the fourth segment in which
the camera actively zooms in on the man. However, one
annotator marks the segment in which the camera zooms
in on the man and the following segment when the camera
stays zoomed in on the man before zooming out.

This ambiguity informed how we chose our metrics.
Based on the annotations for the query “zoom in on man”,
it is clear that the moment retrieved by our model should
include the fourth segment. Though it is less clear if a mo-
ment retrieved by our model must include the fifth segment
(which was only marked by one annotator to correspond
to the phrase “zoom in on man”), it is clear that a model
which retrieves both the fourth and fifth segment is more
correct than a model which retrieves the third and fourth
segment. When we compute a score for a specific example,
we choose the maximum score when comparing the model’s
result to each four-choose-three combinations of human an-
notations. This results in scores which reflect the intuition
outlined above; a model which retrieves only the fourth seg-
ment (and therefore agrees with most annotators) will get a
higher score than a model which retrieves the fourth and
fifth segment (which only agrees with one annotator). Ad-
ditionally, a model which retrieves the fourth and fifth seg-
ment will receive a higher score than a model which re-
trieves the third and fourth segment.

Note that if two annotators had marked both the fourth
and fifth segment, no retrieved moment would perfectly
align with any four choose three combination of annota-
tions. Thus, for some examples, it is impossible for any
model to achieve a perfect score. In all our qualitative ex-
amples where we mark the “ground truth” moment in green,
at least three annotators perfectly agree on the start and end
point.

J. Distribution of Annotated Moments
Figure 13 shows the distribution of annotated start and

end points in DiDeMo. Moments marked by annotators
tend to occur at the beginning of the videos and are short.
Though a “prior baseline” which retrieves moments which
correspond to the most common start and end points in the
dataset does much better than chance, our model signifi-
cantly outperforms a “prior baseline”.

https://www.youtube.com/watch?v=fuz-UBvgapk
https://www.youtube.com/watch?v=fuz-UBvgapk


The car passes the closest to the camera.

Brown dog runs at the camera.

The dog reaches the top of the stairs.

We first see the second baby.

A girl and a guy hug each other.

local+global local

local local+global

local local+global

local local+global

locallocal+global

Figure 6: Comparison of moments which are correctly retrieved when including global context, but not when only using local
video features. Ground truth moments are outlined in green. Global video features improve results for a variety of moments.
For moments like “the car passes the closest to the camera”, it is not enough to identify a car but to understand when the car
is closer to the camera than in any other moment. For moments like “brown dog runs at the camera”, the model must not only
identify when the brown dog is running, but when it runs towards the camera.



We first see people.

Second child comes running in.

Vehicle is now the furthest away possible.

Train begins to move.

We first see the cross at the front of the room.

local+global+tef

local+global local+global+tef

local+global local+global+tef

local+globallocal+global+tef

local+global+tef local+global

local+global

Figure 7: Comparison of moments which are correctly retrieved when including the temporal endpoint feature (tef), but not
when only using local and global video features. Ground truth moments are outlined in green. For moments like “we first
see the people” the model without tef retrieves a video moment with people, but fails to retrieve the moment when the people
first appear. Likewise, for moments like “train begins to move”, the model without tef retrieves a video moment in which the
train is moving, but not a moment in which the train begins to move.



A white car is visible.

FlowRGB
Fusion

Flow RGB
Fusion

Child jumps into arms of man wearing yellow shirt.

A dog looks at the camera and jumps at it.

FlowRGB
Fusion

Camera zooms in on a man playing drums.

Flow
Fusion

RGB

Girl waves to the camera.

RGB

Flow

Fusion

Figure 8: Comparison of moments retrieved using different input modalities (ground truth marked in green). For queries like
“A white car is visible” which require recognizing an object, a network trained with RGB performs better whereas for queries
like “Camera zooms in on a man playing drums” which require understanding movement, a network trained with optical
performs better. For some queries, networks trained with either RGB or optical flow retrieve the correct moment.



Woman with glasses in view.
The camera pans over to the left.

First strike with the shovel.
A person in white walks up and behind the man digging.

Person raises bow above head.
The target is shown, then the people.

First car to make it around the curve.
The blue trashcan goes out of view.

Figure 9: Comparison of similarity between text queries and finegrained temporal segments. Though ground truth annotations
correspond to five second segments, evaluation with more finegrained segments at test time can provide better insight about
where a moment occurs within a specific segment and also provide insight into which other parts of a video are similar to a
given text query.



A man in a brown shirt runs by the camera.

NLOR

MCN
The camera zooms in on the guitarist.

NLOR MCN

Pigs run around in a circle before returning to the shade.

MCNNLOR

Man runs toward the camera with the baby.

MCN NLOR

Mother holds up the green board for the third time.

MCN

NLOR

Figure 10: We compare our Moment Context Network (MCN) model to a model trained for natural language object retrieval
(NLOR). We expect a model trained for natural language object retrieval to perform well when localizing a query relies on
locating a specific object (e.g, a man in a brown shirt). However, in general, the MCN model is able to retrieve correct
moments more frequently than a model trained for natural language object retrieval. DiDeMo is a difficult dataset and some
queries, such as “mother holds up green board for third time” are not correctly localized by the MCN.
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Figure 11: We use our model to retrieve the top moments which correspond to a specific query from the entire test set.
Though MCN was not trained to retrieve specific moments from a set of different videos, it is able to retrieve semantically
meaningful results. Above we show the top five moments retrieved for four separate text queries. A video showing retrieved
momenents can be found here: https://www.youtube.com/watch?v=fuz-UBvgapk.

https://www.youtube.com/watch?v=fuz-UBvgapk


Zoom in on man.

Figure 12: Humans do not always perfectly agree on start and end points for a moment. In the above example we show
annotations (denoted as blue lines) from four separate crowd-sourced annotators. Though three annotators agree that the
moment corresponds to the fourth segment, a fourth annotator believes the moment corresponds to both the fourth and fifth
segment. Our metrics reflect this ambiguity; a model which retrieves only the fourth segment will receive a high score. A
model which retrieves both the fourth and fifth segment will receive a lower score, but it will receive a higher score than a
model which retrieves the third and fourth segments (which no annotators marked as the correct start and end point).

Single GIF 
moments

Two GIF 
moments

Three GIF 
moments

Four GIF 
moments

Five GIF 
moments

Figure 13: Distribution of segments marked in DiDeMo. Moments tend to be short and occur towards the beginning of
videos.
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