
When Unsupervised Domain Adaptation Meets Tensor Representations∗

Hao Lu†, Lei Zhang‡, Zhiguo Cao†, Wei Wei‡, Ke Xian†, Chunhua Shen§, Anton van den Hengel§
†Huazhong Unviersity of Science and Technology, China

‡Northwestern Polytechnical University, China
§The University of Adelaide, Australia

e-mail: {poppinace,zgcao}@hust.edu.cn

Abstract

Domain adaption (DA) allows machine learning meth-
ods trained on data sampled from one distribution to be ap-
plied to data sampled from another. It is thus of great prac-
tical importance to the application of such methods. De-
spite the fact that tensor representations are widely used in
Computer Vision to capture multi-linear relationships that
affect the data, most existing DA methods are applicable to
vectors only. This renders them incapable of reflecting and
preserving important structure in many problems. We thus
propose here a learning-based method to adapt the source
and target tensor representations directly, without vector-
ization. In particular, a set of alignment matrices is intro-
duced to align the tensor representations from both domains
into the invariant tensor subspace. These alignment matri-
ces and the tensor subspace are modeled as a joint opti-
mization problem and can be learned adaptively from the
data using the proposed alternative minimization scheme.
Extensive experiments show that our approach is capable of
preserving the discriminative power of the source domain,
of resisting the effects of label noise, and works effectively
for small sample sizes, and even one-shot DA. We show that
our method outperforms the state-of-the-art on the task of
cross-domain visual recognition in both efficacy and effi-
ciency, and particularly that it outperforms all comparators
when applied to DA of the convolutional activations of deep
convolutional networks.

Contents

1. Introduction 2

2. Related work 2

3. Learning an invariant tensor subspace 3
∗Appearing in Proc. Int. Conf. Computer Vision (ICCV2017). HL and

LZ contributed equally. This work was done when HL, LZ, and KX were
visiting The University of Adelaide. ZC is the correspondence author.

3.1. Tensor decomposition revisited 3
3.2. Naive tensor subspace learning 3
3.3. Tensor-aligned invariant subspace learning . 4

4. Optimization 4

5. Results and discussion 5
5.1. Datasets, protocol, and baselines 5
5.2. Evaluation on the Office–Caltech10 dataset . 6
5.3. Evaluation on the ImageNet–VOC2007 dataset 8
5.4. Evaluation with other tensor representations . 9

6. Conclusion 9

7. Towards efficient optimization 10

8. Feature normalization with spatial pooling 11

9. Datasets and protocol details 11

10. Recognition results 12

11. Parameters Sensitivity 13

1

ar
X

iv
:1

70
7.

05
95

6v
1

 [
cs

.C
V

]
 1

9
Ju

l 2
01

7

1. Introduction
The difficulty of securing an appropriate and exhaus-

tive set of training data, and the tendency for the domain
of application to drift over time, often lead to variations
between the distributions of the training (source) and test
(target) data. In Machine Learning this problem is labeled
domain mismatch. Failing to model such a distribution shift
may cause significant performance degradation. Domain
adaptation (DA) techniques capable of addressing this prob-
lem of distribution shift have thus received significant atten-
tion recently [24].

The assumption underpinning DA is that, although the
domains differ, there is sufficient commonality to support
adaptation. Many approaches have modeled this com-
monality by learning an invariant subspace, or set of sub-
spaces [1, 10, 12, 13]. These methods are applicable to vec-
tor data only, however. Applying these methods to struc-
tured high-dimensional representations (e.g., convolutional
activations), thus requires that the data be vectorized first.
Although this solves the algebraic issue, it does not solve
the underlying problem.

Tensor arithmetic is a generalization of matrix and vec-
tor arithmetic, and is particularly well suited to represent-
ing multi-linear relationships that neither vector nor matrix
algebra can capture naturally [34]. The higher-order statis-
tics of a vector-valued random variables are most naturally
expressed as tensors, for instance. The power of tensor
representations has also been demonstrated for a range of
computer vision tasks (see Section 2 for examples). Deep
convolutional neural networks (CNNs) [19] represent the
state-of-the-art method for a substantial number of visual
tasks [15, 21, 25], which makes DA a critical issue for their
practical application. The activations of such CNNs, and the
interactions between them, are naturally represented as ten-
sors, meaning that DA should also be applied using this rep-
resentation. We show in Section 5 that the proposed method
outperforms all comparators in DA of the convolutional ac-
tivations of CNNs.

Vectorization also often results in the so-called curse of
dimensionality [28], as the matrices representing the re-
lationships between vectorized tensors have n2 elements,
where n is the number of elements in the tensor. This leads
to errors in the estimation of this large number of parame-
ters and high computational complexity. Furthermore, after
vectorization, many existing approaches become sensitive
to the scarcity of source data (compared to the number of
dimensions) and noise in the labels. The proposed direct
tensor method uses much lower dimensional entities, thus
avoiding these estimation problems.

To address these issues we propose to learn an invari-
ant tensor subspace that is able to adapt the tensor repre-
sentations directly. The key question is thus whether we
can find an invariant tensor subspace such that the domain

U

U1

U2 U3

Source Domain Target Domain

Figure 1: Vector subspace (top) vs. tensor subspace (bot-
tom). Third-order (3-mode) tensors are used as an example.
Compared to the vector subspace, the tensor subspace con-
sists of a set of subspaces characterizing each mode respec-
tively. Higher-order tensor modeling offers us an opportu-
nity to investigate multiple interactions and couplings that
capture the commonality and differences between domains.

discrepancy is reduced when the source data are adapted
into the target domain. Following this idea, a novel ap-
proach termed Tensor-Aligned Invariant Subspace Learning
(TAISL) is proposed for unsupervised DA. By introducing
a set of alignment matrices, the tensor representations from
the source domain are aligned to an underlying tensor sub-
space shared by the target domain. As illustrated in Fig. 1,
the tensor subspace is able to preserve the intrinsic struc-
ture of representations by modeling the correlation between
different modes. Instead of executing a holistic adaptation
(where all feature dimensions would be taken into account),
our approach performs mode-wise partial adaptation (where
each mode is adapted separately) to avoid the curse of di-
mensionality. Seeking such a tensor subspace and learning
the alignment matrices are consequently formulated into a
joint optimization problem. We also propose an alternat-
ing minimization scheme, which allows the problem to be
effectively optimized by off-the-shelf solvers.

Extensive experiments on cross-domain visual recogni-
tion demonstrate the following merits of our approach: i)
it effectively reduces the domain discrepancy and preserves
the discriminative power of the original representations; ii)
it is applicable to small-sample-size adaptation, even when
there is only one source sample per category; iii) it is ro-
bust to noisy labels; iv) it is computationally efficient, be-
cause the tensor subspace is constructed in a much smaller
space than the vector-form paradigm; and v) it shows supe-
rior performance over state-of-the-art vector representation-
based approaches in both the classification accuracy and
computation time. Source code is made available online at:
https://github.com/poppinace/TAISL.

2. Related work

Our work is closely related to subspace-based unsuper-
vised DA and tensor representations.

2

Subspace-based domain adaptation. Gopalan et al. [13]
present one of the first visual DA approaches, which sam-
ples a finite set of subspaces along geodesic flows to bridge
the source and target domains. Later in [12], Gong et al.
kernelize this idea by integrating an infinite number of sub-
spaces that encapsulate the domain commonness and dif-
ference in a smooth and compact manner. Recently, [10]
argues that it is sufficient to directly align the subspaces of
two domains using a linear projection. Intuitively, such a
linear mapping defines a shift of viewing angle that snap-
shots the source data from the target perspective. Subse-
quently, [1] extends [10] in a landmark-based kernelized
paradigm. The performance improvement is due to the non-
linearity of the Gaussian kernel and sample reweighting.
Alternatively, [29] imposes a low-rank constraint during the
subspace learning to reconstruct target samples with rele-
vant source samples. More recently, [31] proposes to use
the covariance matrix, a variant of the subspace, to charac-
terize the domain, the adaptation is then cast as two simple
but effective procedures of whitening the source data and
recoloring the target covariance.

Tensor representations. Tensor representations play a
vital role in many computer vision applications [17, 19, 20,
33]. At the early stage of face representations, [33] intro-
duced the idea of “tensorfaces” to jointly model multiple
variations (viewpoint, expression, illumination, etc.). [20]
achieves robust visual tracking by modeling frame-wise ap-
pearance using tensors. [17] proposes tensor-based canoni-
cal correlation analysis as a representation for action recog-
nition and detection. In other low-level tasks, such as image
inpainting and image synthesis [41], modeling images as a
tensor is also a popular choice.

More recently, the most notable example is the deep
CNNs [19], as convolutional activations are intrinsically
represented as tensors. The state-of-the-art performance
of generic visual recognition and semantic image segmen-
tation benefits from fully-convolutional models [15, 21].
Aside from this, by reusing convolutional feature maps, pro-
posal generation and object detection can be performed si-
multaneously in a faster R-CNN fashion [25]. Yet, convolu-
tional activations still suffer from the domain shift [22, 38].
How to adapt convolutional activations effectively remains
an open question.

Tensor representations are important, while solutions to
adapt them are limited. To fill this gap, we present one of the
first DA approaches for tensor representations adaptation.

3. Learning an invariant tensor subspace

Before we present our technical details, some mathe-
matical background related to tensor decomposition is pro-
vided. In the following mathematical expressions, we de-

note matrices and tensors by uppercase boldface letters and
calligraphic letters, respectively, such as U and U .

3.1. Tensor decomposition revisited

A tensor of order (mode) K is denoted by X ∈
Rn1×...×nK . Its mode-k product is defined as
X ×k V . The operator ×k indicates matrix multipli-
cation performed along the k-th mode. Equivalently,
(X ×k V)(k) = V X(k), where X(k) is called the mode-k
matrix unfolding, a procedure of reshaping a tensor
X into a matrix X(k) ∈ Rnk×n1...nk−1nk+1...nK .

In this paper we draw upon Tucker Decomposition [18]
to generate tensor subspaces. Tucker decomposition de-
composes a K-mode tensor X into a core tensor multiplied
by a set of factor matrices along each mode as follows:
X = G ×1 U

(1) ×2 U
(2) ×3 · · · ×K U (K) = [[G;U]] , (1)

where G ∈ Rd1×...×dK is the core tensor, and U (k) ∈
Rnk×dk denotes the factor matrix of the k-th mode. The col-
umn space of U (k) expands the corresponding signal sub-
space. To simply the notation, with U = {U (k)}k=1,...,K ,
Tucker decomposition can be concisely represented as the
right part of Eq. 1. Here, U is the tensor subspace, and G
is the tensor subspace representation of X . Alternatively,
via the Kronecker product, Tucker decomposition can be
expressed in matrix form as X(k) = U (k)G(k)U

T
\k, where

U\k = U (K) ⊗ · · · ⊗U (k+1) ⊗U (k−1) ⊗ · · · ⊗U (1), (2)
and ⊗ denotes the Kronecker product.

3.2. Naive tensor subspace learning

Perhaps the most straight-forward way to adapt domains
is to assume an invariant subspace between the source do-
main S and the target domain T . This assumption is rea-
sonable when the domain discrepancy is not very large.
With this idea, we first introduce the Naive Tensor Subspace
Learning (NTSL) below, which can be viewed as a baseline
of our approach.

Given Ns samples {Xn
s }n=1,...,Ns from source do-

main, each sample is denoted as a K-mode tensor Xn
s ∈

Rn1×...×nK . For simplicity, Ns samples are stacked into
a (K + 1)-mode tensor Xs ∈ Rn1×...×nK×Ns . Similarly,
let Xt ∈ Rm1×...×mK×Nt be a set of Nt samples from the
target domain T . In general, we consider nk = mk, k =
1, 2, ...,K, because the case with heterogeneous data is out
the scope of this paper. Provided that S and T share a
underlying tensor subspace U = {U (k)}k=1,...,K ,U

(k) ∈
Rnk×dk , on the basis of Tucker decomposition, seeking U
is equivalent to solve the following optimization problem as

min
U,Gs,Gt

‖Xs − [[Gs;U]]‖2F + ‖Xt − [[Gt;U]]‖2F

s.t. ∀k, U (k)TU (k) = I
, (3)

where Gs and Gt denote the tensor subspace representation
of Xs and Xt, respectively. I is an identity matrix with
appropriate size. Here U is the invariant tensor subspace in

3

which the idea of DA lies. One can employ the off-the-shelf
Tucker decomposition algorithm to solve Eq. (3) effectively.
Once the optimum U∗ is identified, Gs can be obtained by
the following straight-forward multilinear product as
Gs = Xs ×1 U

∗(1)T ×2 U
∗(2)T ×3 · · · ×K U∗(K)T . (4)

A similar procedure can be applied to derive Gt. Next, if DA
is evaluated in the context of classification, one can learn a
linear classifier with Gs and source label Ls, and then veri-
fies the classification performance on Gt.

3.3. Tensor-aligned invariant subspace learning

Eq. (3) assumes a shared subspace between two domains.
However, when the domain discrepancy becomes larger, en-
forcing only a shared subspace is typically not sufficient.
To address this, we present Tensor-Aligned Invariant Sub-
space Learning (TAISL) which aims to reduce the domain
discrepancy more explicitly. Motivated by the idea that a
simple linear transformation can effectively reduce the do-
main discrepancy [2, 10], we introduce a set of alignment
matrices into Eq. (3). This yields the following optimiza-
tion problem as

min
U,Gs,Gt,M

‖[[Xs;M]]− [[Gs;U]]‖2F + ‖Xt − [[Gt;U]]‖2F

s.t. ∀k, U (k)TU (k) = I
, (5)

whereM = {M (k)}k=1,...,K , M (k) ∈ Rmk×nk . WithM,
samples from S can be linearly aligned to T . Here, M (k)

is unconstrained, which is undesirable in a well-defined op-
timization problem. To narrow down the search space, a
natural choice to regularize M (k) is the Frobenius norm
‖M (k)‖2F . However, [23] suggests that the original data
variance should be preserved after the alignment. Other-
wise, there is a high probability the projected data will clus-
ter into a single point. As a consequence, we employ a
PCA-like constraint onM to maximally preserve the data
variance. This gives our overall optimization problem

min
U,Gs,Gt,M

‖[[Xs;M]]− [[Gs;U]]‖2F + ‖Xt − [[Gt;U]]‖2F

+ λ‖[[[[Xs;M]];MT]]−Xs‖2F
s.t. ∀k, U (k)TU (k) = I,M (k)M (k)T = I

, (6)

where λ is a weight on the regularization term. Intu-
itively, the regularization term measures how well M re-
constructs the source data. Note that, in contrast U (k),
which is column-wise orthogonal, M (k) is row-wise or-
thogonal. Moreover, both U (k) and M (k) have no effect
on the (K + 1)-th mode, because the adaptation of data di-
mension makes no sense.

Relation to subspace alignment. As mentioned in Sec-
tion 2, the seminal subspace alignment (SA) framework is
introduced in [10]. Given two vector subspaces U s and
U t of two domains, the domain discrepancy is measured
by the Bregman divergence as ‖U sM − U t‖2F . Here M
aligns the subspaces. In our formulation, M seems to

align the data directly at the first glance. However, if one
takes the properties of the mode-k product into account,
one can see that this is not the case. According to the
definition of the Tucker decomposition, for Xs, we have
Xs = Gs ×1 U (1)

s ×2 · · · ×K U (K)
s , so [[Xs;M]] can be

expanded as
Xs ×1 M

(1) ×2 · · · ×K M (K)

= Gs ×1 (M
(1)U (1)

s)×2 · · · ×K (M (K)U (K)
s)

. (7)

That is, the alignment of the tensor is equivalent to the align-
ment of the tensor subspace. As a consequence, our ap-
proach can be viewed as a natural generalization of [10] to
the multidimensional case. However, unlike SA, in which
the DA and subspaces are learned separately, the alignment
matricesM and the tensor subspace U in our approach are
learned jointly in an unified paradigm.

4. Optimization

Here we discuss how to solve the problem in Eq. (6).
SinceM and U are coupled in Eq. (6), it is hard for a joint
optimization. A general strategy is to use alternative min-
imization to decompose the problem into subproblems and
to iteratively optimize these subproblems until convergence,
acquiring an approximate solution [29, 39, 40].

Optimize U , Gs, and Gt givenM: By introducing an aux-
iliary variable Z = [[Xs;M]], the subproblem over U , Gs
and Gt can be given as

min
U,Gs,Gt

‖Z − [[Gs;U]]‖2F + ‖Xt − [[Gt;U]]‖2F

s.t. ∀k, U (k)TU (k) = I
, (8)

which is exactly the same problem in Eq. (3) and can be
easily solved in the same paradigm.

OptimizeM given U , Gs, and Gt: By introducing another
auxiliary variable Y = [[Gs;U]] ∈ Rn1×···×nK×Ns , we ar-
rive at the subproblem overM as

min
M
‖[[Xs;M]]− Y‖2F + λ‖[[[[Xs;M]];MT]]−Xs‖2F

s.t. ∀k, M (k)M (k)T = I
. (9)

Directly solvingM is intractable, but we can optimize each
M (k) individually. To this end, Eq. (9) needs to be refor-
mulated further. Let Y (k) be the k-mode unfolding matrix
of tensor Y , and M\k = I ⊗M (K) ⊗ · · · ⊗M (k+1) ⊗
M (k−1)⊗· · ·⊗M (1). Unfolding the k-th mode of the first
term in Eq. (9) can be given as
‖ [[[Xs;M]]− Y](k) ‖

2
F = ‖M (k)Xs(k)M

T
\k − Y (k)‖2F . (10)

For the regularizer, sinceM cannot be directly decomposed
into individual M (k), we raise an assumption here to make
the optimization tractable in practice. Considering that

[[[[Xs;M]];MT]] = Xs ×1 (M
(1)TM (1))×2 ...

×K(M (K)TM (K))
, (11)

4

for the k-th mode, we have[
Xs ×k (M (k)TM (k))

]
(k)

= M (k)TM (k)Xs(k) . (12)

Provided that MT
\k is given and all M (i)s for i 6= k well

preserve the energy of Xs, i.e., we assume M (i)TM (i) ≈
I , i 6= k. Though this assumption seems somewhat heuris-
tic, we show later in experiments the loss decreases nor-
mally, which suggests it is at least a good approximation.
Hence, optimizing Eq. (9) over M can be decomposed to
K subproblems. The k-th subproblem over M (k) gives
min
M(k)

‖M (k)Q(k)−Y (k)‖2F +λ‖M (k)TM (k)Xs(k)−Xs(k)‖2F

s.t. ∀k, M (k)M (k)T = I

,

(13)
where Q(k) = Xs(k)M

T
\k. Notice that

‖M (k)TM (k)Xs(k)−Xs(k)‖2F = ‖Xs(k)‖2F − ‖M (k)Xs(k)‖2F .
(14)

Since ‖Xs(k)‖2F remains unchanged during the optimiza-
tion of M (k), this term can be ignored. Therefore, Eq. (13)
can be further simplified as

min
M(k)

‖M (k)Q(k) − Y (k)‖2F − λ‖M (k)Xs(k)‖2F

s.t. ∀k, M (k)M (k)T = I
. (15)

Finally, by replacing P = M (k)T , we can transform
Eq. (15) into a standard orthogonality constraint based op-
timization problem as

min
P
‖QT

(k)P − Y T
(k)‖2F − λ‖XT

s(k)P ‖2F

s.t. ∀k, P TP = I
, (16)

which can be effectively solved by a standard solver, like
the solver presented in [37]. This alternating minimization
approach is summarized in Algorithm 1. We observe that
the optimization converges only after several iterations.

5. Results and discussion

In this section, we first illustrate the merits of our ap-
proach on a standard DA dataset, and then focus on com-
parisons with related and state-of-the-art methods.

5.1. Datasets, protocol, and baselines

Office–Caltech10 (OC10) dataset. OC10 dataset [12] is
the extension of Office [26] dataset by adding another Cal-
tech domain, resulting in four domains of Amazon (A),
DSLR (D), web-cam (W), and Caltech (C). 10 common cat-
egories are chosen, leading to around 2500 images and 12
DA problem settings. This dataset reflects the domain shift
caused by appearance, viewpoint, background and image
resolution. For short, a DA task is denoted by S→T.

ImageNet–VOC2007 (IV) dataset. We also evaluate our
method on the widely-used ImageNet [7] and PASCAL
VOC2007 [8] datasets. The same 20 categories of the
VOC2007 are chosen from the ImageNet 2012 dataset to

Algorithm 1: Alternating minimization for TAISL
Input: Source data: Xs; Target data: Xt

Output: Tensor subspace: U ; Alignment matrices:M
Initialize: M (k) = I, k = 1, ...,K;
Tensor subspace dimensionality: dk, k = 1, ...,K;
Weight coefficient: λ;
Maximum iteration: T ;
for t← 1 to T do

Subspace learning over {U , Gs, Gt} as per Eq. (8);
for k ← 1 to K do

Optimization over M (k) as per Eq. (16);
Check for convergence;

form the source domain, and the test set of VOC2007 is
used as the target domain. Notice that VOC 2007 is a multi-
label dataset. IV dataset reflects the shift when transferring
from salient objects to objects in complex scenes. We use
this to verify the effectiveness of DA approaches when mul-
tiple labels occur.

Experimental protocol. In this paper, we focus on the
small-sample-size adaptation, because if enough source and
target data are made available, we have better choices with
deep adaptation techniques [11, 27] to co-adapt the feature
representation, domain distributions and the classifier. In
particular, the sampling protocol in [12] is used. Concretely,
for both datasets, 20 images are randomly sampled from
each category of the source domain (8 images if the domain
is web-cam or DSLR) in each trials. The mean and standard
deviation of average multi-class accuracy over 20 trials are
reported on OC10 dataset. For the IV dataset, we follow the
standard evaluation criterion [8] to use the average preci-
sion (AP) as the measure. Similarly, the mean and standard
deviation of AP over 10 trials are reported for each category.

Baseline approaches. Several approaches are employed
for comparisons:

• No Adaptation (NA): NA indicates to train a classifier di-
rectly using the labeled source data and applies to the tar-
get domain. This is a basic baseline.

• Principal Component Analysis (PCA): PCA is a direct
baseline compared to our NTSL approach. It assumes an
invariant vector subspace between domains.

• Daumé III [6]: Daumé III is a classical DA approach
through augmenting the feature representations. Each
source data point xs is augmented to xs

′ = (xs,xs,0),
and each target data point xt to xt

′ = (xt,0,xt).

• Transfer Component Analysis (TCA) [23]: TCA formu-
lates DA in a reproducing kernel Hilbert space by mini-
mizing the maximum mean discrepancy measure.

• Geodesic Flow Kernel (GFK) [12]: GFK proposes a
closed-form solution to bridge the subspaces of two do-
mains using a geodesic flow in a Grassmann manifold.

5

• Domain Invariant Projection (DIP) [2]: DIP seeks
domain-invariant representations by matching the source
and target distributions in a low-dimensional reproducing
kernel Hilbert space.

• Subspace Alignment (SA) [10]: SA directly adopts a
linear projection to match the differences between the
source and target subspaces. Our approach is closely re-
lated to this method.

• Low-rank Transfer Subspace Learning (LTSL) [29]:
LTSL imposes a low-rank constraint during the subspace
learning to enforce only relevant source data are used to
reconstruct the target data.

• Landmarks Selection Subspace Alignment (LSSA) [1]:
LSSA extends SA via selecting landmarks and using fur-
ther nonlinearity with Gaussian kernel.

• Correlation Alignment (CORAL) [31]: CORAL charac-
terizes domains using their covariance matrices. DA is
performed through simple whitening and recoloring.
Notice that, for a fair comparison, some methods, e.g.,

STM [5], that take source labels into account during the op-
timization are not chosen for comparison, because TAISL
does not utilize the information of source labels during DA.

Parameters setting. We extract the convolutional activa-
tions from the CONV5 3 layer of VGG–16 model [30] as
the tensor representation. We allow the input image to be of
arbitrary size, so a simple spatial pooling [14] procedure is
applied as the normalization. Specifically, each image will
be mapped into a 6× 6× 512 third-order tensor. For those
conventional approaches, convolutional activations are vec-
torized into a long vector as the representation. For NTSL
and TAISL, we empirically set the tensor subspace dimen-
sionality as d1 = d2 = 6, and d3 = 128. The first and
second modes refer to the spatial location, and the third
mode corresponds to the feature. We set such parameters
with a motivation to preserve the spatial information and
to seek the underlying commonness in the low-dimensional
subspace. The weight parameter is set to λ = 1e−5, and the
maximum iteration T = 10. Note that we adopt these hyper
parameters for all DA tasks when reporting the results. For
the comparator approaches, parameters are set according to
the suggestions of corresponding papers. One-vs-rest linear
SVMs are used as the classifiers, and the penalty parame-
ter Csvm is fixed to 1. Please refer to the Supplementary
Materials for further details and results.

5.2. Evaluation on the Office–Caltech10 dataset

Before we present the full DA results, we first highlight
the merits of tensor subspaces for DA from three aspects:
1) quantifying the domain discrepancy to show how well
TAISL preserves the discriminative power of the source do-
main, 2) evaluating the classification performance with a

A→ W C→ D

A
c
c
u

ra
c
y
 (

%
)

60

70

80

90

100
NA

CORAL

TSL

TASL

(a)
A→ W C→ D

A
−

d
i
s
t
a
n
c
e

0

0.5

1

1.5

2

(b)
A→ W C→ D

J
s

0

0.02

0.04

0.06

0.08

0.1

0.12

(c)
Figure 2: Classification accuracy (a) and domain discrep-
ancy measured by domain-level A-distance (b) and class-
level Js divergence (c) over two DA tasks.

limited number of source/target data to see what scenarios
TAISL could be applied in, and 3) replacing source data
with noisy labels to verify whether TAISL can resist noise
interference.

Quantifying the class-level domain discrepancy. A-
distance has been introduced in [3] as a popular measure
of domain discrepancy over two distributions. Estimating
this distance involves pseudo-labeling the source domain
Ps and target domain Pt as a binary classification problem.
By learning a linear classifier, A-distance can be estimated
as dA(Ps,Pt) = 2(1 − 2ε), where ε is the generalization
error of the linear classifier. The lower A-distance is, the
better two distributions align, and vice versa. Given this
measure, we empirically examine the correlation between
the classification accuracy and A-distance. Fig. 2(a) and
Fig. 2(b) illustrate these two measures of several approaches
on two DA tasks. Surprisingly, two measures exhibit a to-
tally adverse tendency. The lowest classification accuracy
conversely corresponds to the lowest A-distance. As a con-
sequence, at least for convolutional activations, we consider
that the classification accuracy has low correlations with
the domain-level discrepancy. In an effort to explain such
a phenomenon, we consider comparing the class-level do-
main discrepancy taking source labels into account. Two
local versions ofA-distance are consequently introduced as

dw
A =

1

C

C∑
i

dA(Pi
s, P̂i

s)

d b
A =

1

C(C − 1)

C∑
i=1

C∑
j=1,j 6=i

dA(Pi
s,Pj

s)

, (17)

where dw
A and db

A quantifies the within- and between-class
divergence, respectively. The superscript in Ps denotes a
specific class in C classes. In particular, considering the
fact that, if data can be classified reasonably, it should have
small within-class divergence and large between-class di-
vergence. Therefore, Js = dw

A/d
b
A is used to score the

overall class-level domain discrepancy. Fig. 2(c) shows the
value of Js over the same DA tasks. At this time, the classi-
fication accuracy shows a similar trend with the Js measure.
Our analysis justifies the tensor subspace well preserves the
discriminative power of source domain.

6

backpack

headphones

mouse

mug

(a) NA (b) CORAL (c) NTSL (d) TAISL

Figure 3: Class-level data visualization using t-SNE [32] of different methods on the DA task of C (red) → D (black). 4
classes are chosen for better visualization. For CORAL, the data coming from the source domain tend to overlap with each
other after the adaptation, a phenomenon we call over-adaptation. (Best viewed in color.)

To give a more intuitive illustration, the data distribu-
tions are visualized in Fig. 3. Indeed, the problem occurs
during the transfer of source domain. As per the yellow
circle in Fig. 3(b), different classes of the source data are
overlapped after the adaptation. We call this phenomenon
over-adaptation. According to a recent study [36], there is
a plausible explanation. [36] shows that the feature distri-
butions learned by CNNs are relatively “fat”—the within-
class variance is large, while the between-class margin is
small. Hence, a slight disturbance would cause the over-
laps among different classes. In CORAL, the disturbance
perhaps boils down to the inexact estimation of covariance
matrices caused by high feature dimensionality and limited
source data. In contrast, as shown in Fig. 3(c)-(d), our ap-
proach naturally passes the discriminative power of source
domain. Notice that, though the adaptation seems not per-
fect as target data are only aligned close to the source, the
margins of different classes are clear so that there still has a
high probability for target data to be classified correctly.

Adaptation with limited source/target data. One of the
important features of TAISL in practice is the small amount
of training data required. In other words, one can char-
acterize a domain, and thus adapt a pre-trained classifier,
with very limited data. To demostrate this point, we eval-
uate the classification accuracy while varying the number
of source/target data used for adaptation. The DA task of
D → C is used. Concretely, we first fix the number of
target data and, respectively, randomly choose from 1 to 8
source samples per category. In turn, we fix the number
of source data to 8 per category and set the target samples
per category to 2k, k = 0, 1, 2, ..., 7. Fig. 4(a)-(b) illustrate
the results of different approaches. It can be observed that,
our approach demonstrates very stable classification perfor-
mance, while other comparing methods is sensitive to the
number of source samples used. Meanwhile, the number of
target data seems not to have much impact on the classifi-
cation accuracy, because in general one prefers to transfer
the source domain so that the target domain does not change

notably. It is worth noting that TAISL works even with only
one source sample per category, which suggests that it can
be applied for effective small-sample-size adaptation.

Adaptation with noisy labels. Recent studies [41]
demonstrate that tensor representations are inherently ro-
bust to noise. To further justify this in the context of
DA, we randomly replace the source data with samples
that have different labels. We gradually increase the per-
centage of noisy data Tnoisy from 0% to 20% and moni-
tor the degradation of classification accuracy. As shown in
Fig. 4(c), TAISL consistently demonstrates superior classi-
fication performance over other approaches.

Convergence analysis and efficiency comparison. In
this part, we empirically analyze the convergence behav-
ior of TAISL. Fig. 4(d) shows the change of loss function as
the iteration increases. It can be observed that the optimiza-
tion generally converges in about 10 iterations. In addition,
we also compare the efficiency of different approaches. The
average evaluation time of each trial is reported. According
to Table 1, the efficiency of TAISL is competitive too. TCA
and LSSA are fast, because these two methods adopt kernel
tricks to avoid high-dimensional computation implicitly. In
general, learning a tensor subspace is faster than a vector
subspace in the high-dimensional case.

Recognition results. Quantitative results are listed in Ta-
ble 2. It shows that our approach is on par with or outper-
forms other related and state-of-the-art methods in terms of
both average accuracy and standard deviations. Note that
conventional methods that directly adapt vector-form con-
volutional activations sometimes have a negative effect on
the classification, even falling behind the baseline NA. The
main reason perhaps is the inexact estimation of a large
amount of parameters. For instance, in many subspace-
based approaches, one needs to estimate a flattened sub-
space from the covariance matrix. Given a data matrix

7

N
c

s

0 1 2 3 4 5 6 7 8 9

A
c
c
u

ra
c
y
 (

%
)

10

20

30

40

50

60

70

80

90

Daumé III

TCA

DIP

SA

LTSL

LSSA

CORAL

NTSL

TAISL

(a)

N
c

t

100 101 102

A
c
c
u

ra
c
y
 (

%
)

0

10

20

30

40

50

60

70

80

90

Daumé III

TCA

DIP

SA

LTSL

LSSA

CORAL

NTSL

TAISL

(b)

Tnoisy (%)
0 2 4 6 8 10 12 14 16 18 20

A
c
c
u
ra

c
y
 (

%
)

0

10

20

30

40

50

60

70

80

90

Daumé III
TCA
DIP
SA
LTSL
LSSA
CORAL
NTSL
TAISL

(c)
Iteration

0 5 10 15 20

L
o
s
s

A→C

W→A

D→C

ImageNet→VOC2007

(d)

Figure 4: Adaptation on D→C with (a) varying number of source data per class N c
s , (b) a varying number of target data per

class N c
t , and (c) noisy source labels. (d) Empirical convergence analysis of TAISL over several DA tasks.

Method Daumé III TCA GFK DIP SA
Time 0.06 0.05 3.94 9.09 3.40
Method LTSL LSSA CORAL NTSL TAISL
Time 12.34 0.59 14.81 0.16 0.92

Table 1: Average evaluation time (min) of each trial of dif-
ferent methods on A→C. (Matlab 2016a, OS: OS X 64-bit,
CPU: Intel i5 2.9GHz, RAM: 8 GB)

A ∈ Rd×n with dimension d and n samples, its covari-
ance matrix is estimated as AAT . Notice that rank(A) =
rank(AAT) = rank(ATA) ≤ min(d, n − 1). If d � n,
the vector subspace will only be spanned by less than n
eigenvectors. In addition, one also suffers from the prob-
lem of biased estimation [35] (large eigenvalues turn larger,
small ones turn smaller) when d � n. Hence, such vector
subspaces are unreliable. In contrast, our approach avoids
this problem due to the mode-wise parameters estimation.

5.3. Evaluation on the ImageNet–VOC2007 dataset

Here we evaluate our approach under a more challeng-
ing dataset than OC10. As aforementioned, VOC2007 is

HOG CONV (VGG-M) CONV (VGG-VD)

A
c
c
u
ra

c
y
 (

%
)

30

40

50

60

70

80 NA

NTSL

TAISL

(a) A→C
HOG CONV (VGG-M) CONV (VGG-VD)

A
c
c
u
ra

c
y
 (

%
)

10

20

30

40

50

60

70

80

90

NA

NTSL

TAISL

(b) W→A

Figure 5: Adaptation accuracy of three types of tensor rep-
resentations on two DA tasks.

a multi-label dataset, so many images contain multiple la-
bels. Results are listed in Table 5. Due to the space lim-
itation, we show only results of 10 categories (additional
results are attached in the Supplementary). We observe
that TAISL still demonstrates the best overall classification
performance among comparing approaches. We also no-
tice that NTSL and TAISL show comparable results. We
conjecture that, since the target domain contains too many
noisy labels, it will be hard to determine a global alignment
that just matches class-level differences. As a result, the

8

Method A→C C→A A→D D→A A→W W→A C→D D→C C→W W→C D→W W→D MEAN

NA 77.3(1.8) 89.0(2.0) 82.8(2.2) 81.1(1.9) 74.6(3.1) 74.0(2.5) 86.2(4.0) 70.5(1.9) 79.4(2.7) 63.7(2.1) 91.1(1.7) 94.9(2.4) 80.4
PCA 36.7(3.0) 57.7(5.2) 23.5(8.1) 50.2(4.8) 18.6(6.2) 51.2(6.0) 29.9(7.8) 51.0(3.3) 26.4(6.7) 51.6(3.6) 49.5(4.2) 50.8(7.0) 41.4
Daumé III 73.1(1.5) 85.9(2.5) 70.9(3.7) 59.9(7.1) 70.6(3.5) 68.7(4.4) 81.4(4.1) 56.2(6.4) 75.4(4.0) 59.6(2.6) 81.5(2.7) 86.5(4.9) 72.5
TCA 56.7(4.5) 78.1(6.1) 59.9(6.7) 61.2(4.2) 55.5(6.4) 68.3(4.1) 74.3(5.2) 51.9(2.2) 69.0(6.6) 54.7(3.8) 89.8(2.2) 90.6(3.2) 67.5
GFK 75.1(3.9) 87.6(2.3) 81.4(4.3) 90.4(1.4) 74.3(5.2) 84.0(4.4) 84.8(4.5) 82.2(2.4) 81.9(4.9) 79.1(2.7) 92.8(2.2) 95.2(2.2) 84.1
DIP 59.8(5.7) 84.8(4.3) 52.2(8.1) 76.4(3.7) 45.5(9.1) 69.3(6.9) 82.8(7.7) 61.9(6.3) 73.5(4.9) 65.2(4.5) 90.9(2.3) 94.1(3.1) 71.4
SA 67.7(4.2) 82.0(2.6) 67.8(4.8) 77.4(6.0) 61.1(5.1) 80.1(4.3) 73.7(4.3) 66.9(3.3) 65.9(4.0) 70.4(4.1) 87.3(3.1) 91.1(3.3) 74.3
LTSL 70.2(2.4) 87.5(2.8) 77.7(4.6) 69.2(4.5) 66.7(4.6) 66.6(5.7) 82.3(4.1) 60.8(3.1) 75.3(4.2) 59.1(4.4) 86.0(2.9) 90.0(3.8) 74.3
LSSA 80.3(2.3) 86.4(1.7) 90.9(1.7) 92.3(0.6) 84.0(1.7) 86.6(4.5) 73.5(2.3) 65.9(6.5) 45.4(6.6) 29.5(7.0) 93.4(2.2) 85.8(4.7) 76.2
CORAL 77.6(1.2) 80.3(1.9) 64.3(2.9) 74.2(2.2) 61.2(2.4) 69.1(2.6) 62.1(3.0) 72.0(1.7) 63.8(3.1) 66.6(2.2) 89.6(1.6) 82.8(2.8) 72.0
NTSL 78.5(2.3) 89.6(2.2) 83.1(3.3) 87.8(1.4) 77.3(3.1) 85.8(2.8) 87.7(2.9) 79.8(1.5) 80.4(3.8) 80.0(2.0) 95.4(1.4) 97.8(1.7) 85.3
TAISL 80.1(1.4) 90.0(1.9) 85.1(2.2) 87.6(2.1) 77.9(2.6) 85.6(3.5) 90.6(1.9) 84.0(1.0) 85.3(3.1) 82.6(2.2) 95.9(1.0) 97.7(1.5) 86.9

Table 2: Average multi-class recognition accuracy (%) on Office–Caltech10 dataset over 20 trials. The highest accuracy in
each column is boldfaced, the second best is marked in red, and standard deviations are shown in parentheses.

Method aero bird bottle cat cow table mbike person sheep tv mAP
NA 66.4(2.1) 65.6(4.0) 29.5(2.1) 70.6(3.4) 30.3(8.0) 35.7(5.5) 47.0(8.0) 69.3(2.9) 44.9(6.9) 56.4(3.3) 51.6
PCA 28.9(5.8) 30.2(3.9) 23.3(5.2) 44.9(4.5) 6.0(1.8) 29.0(6.9) 25.0(5.0) 70.2(1.9) 11.7(3.5) 29.0(6.6) 29.8
Daumé III 64.1(3.7) 59.7(7.4) 26.6(3.3) 65.7(5.3) 26.9(8.5) 30.0(5.4) 40.5(6.6) 68.5(2.5) 37.7(7.4) 51.9(4.4) 47.2
TCA 43.2(9.8) 44.4(10.5) 20.7(1.7) 56.7(8.2) 16.9(6.3) 27.6(8.7) 31.8(10.2) 58.1(5.7) 22.7(8.0) 33.6(10.2) 35.6
GFK 70.0(6.9) 74.6(3.8) 32.5(4.4) 73.1(6.5) 28.9(5.3) 48.3(10.4) 58.3(4.8) 75.8(3.6) 52.5(4.8) 57.1(4.5) 57.1
DIP 69.8(5.5) 78.4(4.6) 29.1(5.0) 75.9(3.7) 25.5(5.0) 42.2(8.1) 56.3(5.7) 73.5(3.1) 48.9(4.3) 59.4(5.2) 55.9
SA 64.4(10.1) 69.3(5.4) 34.4(4.6) 67.4(4.9) 18.4(6.6) 36.9(12.8) 53.7(10.9) 68.9(2.4) 31.4(10.2) 55.2(5.7) 50.0
LTSL 56.9(10.4) 61.0(7.7) 34.9(6.2) 70.8(8.8) 21.9(6.3) 43.7(12.4) 52.5(10.7) 69.9(4.3) 38.2(9.5) 54.0(7.5) 50.4
LSSA 78.7(2.0) 79.7(1.2) 38.4(4.6) 81.7(0.5) 29.5(1.9) 33.7(3.4) 56.3(9.3) 51.2(2.0) 32.5(10.6) 51.6(4.6) 53.3
CORAL 71.4(3.3) 71.7(3.6) 35.2(2.4) 72.0(4.3) 36.0(5.7) 40.6(6.7) 57.3(5.6) 67.6(2.0) 54.8(2.9) 56.9(3.6) 56.6
NTSL 76.3(4.3) 71.0(3.9) 35.7(3.7) 71.3(3.2) 34.7(9.8) 49.8(10.4) 59.7(10.2) 72.0(4.6) 53.4(6.0) 60.2(3.5) 58.4
TAISL 76.4(5.1) 71.6(3.1) 36.7(3.5) 72.0(2.1) 33.3(6.6) 50.7(10.0) 60.3(8.7) 72.2(3.8) 53.6(5.6) 60.4(3.5) 58.7

Table 3: Average precision (%) on ImageNet–VOC2007 dataset over 10 trials. The highest performance in each column is
boldfaced, the second best is marked in red, and standard deviations are shown in parentheses.

alignment may not work the way it should. In addition, ac-
cording to Tables 2 and 5, LSSA shows superior accuracy
than ours over several DA tasks/categories. It makes sense
because LSSA works at different levels with further non-
linearity and samples reweighting. However, non-linearity
is a double-edged sword. It can improve the accuracy in
some situations, while sometimes it may not. For instance,
the accuracy of LSSA drops significantly on the W→C task.

5.4. Evaluation with other tensor representations

Finally, we evaluate other types of tensor representations
to validate the generality of our approach. We do not limit
the representation from deep learning features. Other shal-
low tensor features also can be adapted by our approach.
Specifically, the improved HOG feature [9] and convolu-
tional activations extracted from the CONV5 layer of VGG–
M [4] model are further utilized and evaluated on two DA
tasks from the OC10 dataset. Results are shown in Fig. 5.
We notice that TAISL consistently improves the recognition
accuracy with various tensor representations. In addition, a
tendency shows that, the better feature representations are,
the higher the baseline achieves, which implies a fundamen-

tal rule of domain-invariant feature representations for DA.

6. Conclusion
Practical application of machine learning techniques of-

ten gives rise to situations where domain adaptation is re-
quired, either because acquiring the perfect training data is
difficult, the domain shift is unpredictable, or simply be-
cause it is easier to re-use an existing model than to train a
new one. This is particularly true for CNNs as the training
time and data requirements are significant.

The DA method proposed in this work is applicable in
the case where a tensor representation naturally captures
information that would be difficult to represent using vec-
tor arithmetic, but also benefits from the fact that it uses a
lower-dimensional representation to achieve DA, and thus
is less susceptible to noise. We have shown experimentally
that it outperforms the state of the art, most interestingly for
CNN DA, but is also much more efficient.

In future work, discriminative information from source
data may be employed for learning a more powerful invari-
ant tensor subspace.

9

Appendix

In this Appendix, we provide more details that are not included in the main text due to the page limitation. In particular,
we supplement the following content on

• how to implement the optimization of our approach efficiently;
• how to perform spatial pooling normalization to convolutional activations; we only briefly mention this procedure in

Section 5.1 of the main text;
• detailed introduction regarding used datasets;
• additional results evaluated on Office and ImageNet–VOC2007 datasets;
• parameters sensitivity.

7. Towards efficient optimization

In this section, we will reveal several important details towards efficient practical implementations. Note that
Xs ∈ Rn1×...×nK×Ns is a (K + 1)-mode tensor, the unfolding matrix Xs(k) is of size nk × n\kNs, where n\k =

n1 · · ·nk−1nk+1 · · ·nK . When computing Q(k) = Xs(k)M
T
\k in Eq. (13), MT

\k will be of size n\kNs × n\kNs, which
is extremely large and consume a huge amount of memory to store. In fact, such a matrix even cannot be constructed in a
general-purpose computer. To alleviate this, we choose to solve an equivalent optimization problem by reformulating Eq. (13)
into its sum form as

min
M(k)

Ns∑
n=1

‖M (k)Qn
(k) − Y n

(k)‖2F − λ‖M
(k)Xn

s(k)‖2F

s.t. ∀k, M (k)M (k)T = I

, (18)

where

Qn
(k) = Xn

s(k)M̂
T

\k

M̂
T

\k = M (K) ⊗ · · · ⊗M (k+1) ⊗M (k−1) ⊗ · · · ⊗M (1)
, (19)

Y n
(k) = Y (k)(:, :, n) (Y (k) has been reshaped into the size of nk × n\k ×Ns), and Xn

s(k) denotes the k-th mode unfolding
matrix of Xn

s . In following expressions, we denote Qn
(k), Y

n
(k), and Xn

s(k) by Qn, Y n, and Xn for short, respectively. By
replacing M (k)T with P , we arrive at

min
P

Ns∑
n=1

‖QT
nP − Y T

n‖2F − λ‖X
T
nP ‖2F

s.t. ∀k, P TP = I

. (20)

Considering that a standard solver needs the loss function F and its gradient ∂F/∂P as the input, we can compute them in
the following way to speed up the optimization process. For the loss function F , we have

F =

Ns∑
n=1

‖QT
nP − Y T

n‖2F − λ‖X
T
nP ‖2F

=

Ns∑
n=1

Tr
[
(QT

nP − Y T
n)

T (QT
nP − Y T

n)
]
− λ

Ns∑
n=1

Tr
[
(XT

nP)T (XT
nP)

]
=

Ns∑
n=1

Tr
[
P TQnQ

T
nP − 2P TQnY

T
n + Y nY

T
n

]
− λ

Ns∑
n=1

Tr
[
P TXnX

T
nP

]
= Tr

[
P T (

Ns∑
n=1

QnQ
T
n)P

]
− 2Tr

[
P T (

Ns∑
n=1

QnY
T
n)

]
+ Tr

[
Ns∑
n=1

Y nY
T
n

]
− λTr

[
P T (

Ns∑
n=1

XnX
T
n)P

]
, (21)

10

where Tr[·] denotes the trace of matrix. For the gradient ∂F/∂P , we have

∂F/∂P = 2

Ns∑
n=1

Qn(Q
T
nP − Y T

n)− 2λ

Ns∑
n=1

XnX
T
nP

= 2(

Ns∑
n=1

QnQ
T
n)P − 2

Ns∑
n=1

QnY
T
n − 2λ(

Ns∑
n=1

XnX
T
n)P

. (22)

Notice that both F and ∂F/∂P share some components. As a consequence, we can precompute
∑Ns

n=1 QnQ
T
n ,∑Ns

n=1 QnY
T
n ,

∑Ns

n=1 Y nY
T
n , and

∑Ns

n=1 XnX
T
n before the M-step optimization instead of directly feeding the origi-

nal variables and iteratively looping over Ns samples inside the optimization. Such a kind of precomputation speeds up the
optimization significantly.

8. Feature normalization with spatial pooling

Since we allow the input image to be of arbitrary size, a normalization step need to perform to ensure the consistency of
dimensionality. The idea of spatial pooling is similar to the spatial pyramid pooling in [14]. The difference is that we do
not pool pyramidally and do not vectorize the pooled activations, in order to preserve the spatial information. Intuitively,
Fig. 6 illustrates this process. More concretely, convolutional activations are first equally divided into Nbin bins along the
spatial modes (Nbin = 16 in Fig. 6). Next, each bin with size of h× w is normalized to a s× s bin by max pooling. In our
experiments, we set Nbin = 36 and s = 1.

9. Datasets and protocol details

Office–Caltech10 dataset. As mentioned in the main text, [12] extends Office [26] dataset by adding another Caltech
domain. They select 10 common categories from four domains, including Amazon, DSLR, web-cam, and Caltech. Amazon
consists of images used in the online market, which shows the objects from a canonical viewpoint. DSLR contains images
captured with a high-resolution digital camera. Images in web-cam are recorded using a low-end webcam. Caltech is
similar to Amazon but with various viewpoint variations. The 10 categories include backpack, bike, calculator,
headphones, keyboard, laptop computer, monitor, mouse, mug, and projector. Some images of four
domains are shown in Fig. 7. Overall, we have about 2500 images and 12 domain adaptation problems. For each problem,
we repeat the experiment 20 times. In each trail, we randomly select 20 images from each category for training if the domain
is Amazon and Caltech, or 8 images if the domain is DSLR or web-cam. All images in the target domain are employed in the
both adaptation and testing stages. The mean and standard deviation of multi-class accuracy are reported.

Office dataset. Office dataset is developed by [26] and turns out to be a standard benchmark for the evaluation of domain
adaptation. It consists of 31 categories and 3 domains, leading to 6 domain adaptation problems. Among these 31 categories,
only 16 overlap with the categories contained in the 1000-category ImageNet 2012 dataset1 [16], so Office dataset is more
challenging than its counterpart Office-Caltech10 dataset. We follow the same experimental protocol mentioned above to
conduct the experiments, so in each task we have 620 images in all from the source domain.

1The 16 overlapping categories are backpack, bike helmet, bottle, desk lamp, desk computer, file cabinet, keyboard,
laptop computer, mobile phone, mouse, printer, projector, ring binder, ruler, speaker, and trash can.

Spatial Pooling

Max Pooling

h
w

s
s

Figure 6: Illustration of spatial pooling normalization. Any size of convolutional representations will be normalized to a
fixed-size tensor.

11

Amazon DSLR web-cam Caltech

Figure 7: Some images from Office–Caltech10 dataset. 4 categories of backpack, bike, headphone, and laptop
computer are selected.

ImageNet VOC2007

Figure 8: Some images from ImageNet-VOC2007 dataset. 5 categories of person, dog, motorbike, bicycle, and
cat are presented.

ImageNet–VOC2007 dataset. As described in the main text, ImageNet and VOC 2007 datasets are used to evaluate the
domain adaptation performance from single-label to multi-label situation. The same 20 categories as the VOC 2007 dataset
are chosen from original ImageNet dataset. These 20 categories are aeroplane, bicycle, bird, boat, bottle, bus,
car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa,
train, and tv monitor. The 20-category ImageNet subset is adopted as the source domain, and the test subset of
VOC2007 is employed as the target domain. Some images of two domains are illustrated in Fig. ??. Also, the similar
experimental protocol mentioned above is used. The difference, however, is that we report the mean and standard deviation
of average precision (AP) for each category, respectively.

10. Recognition results

We compare against the same methods used in the main text, including the baseline no adaptation (NA), principal compo-
nents analysis (PCA), transfer component analysis (TCA) [23], geodesic flow kernel (GFK) [12], domain-invariant projection
(DIP) [2], subspace alignment (SA) [10], low-rank transfer subspace learning (LTSL) [29], landmarks selection subspace
alignment (LSSA) [1], and correlation alignment (CORAL) [31]. Our approach is denoted by NTSL (the naive version) and
TAISL. We also extract convolutional activations from the CONV5 3 layer of the VGG–VD–16 model [30]. We mark the
feature as VCONV and TCONV for vectorized and tensor-form convolutional activations, respectively. The same parameters
described in the main text are set to report the results.

Office results. Results of the Office dataset are listed in Table 4. Similar to the tendency shown by the results of Office-
Caltech10 dataset in the main text, our approach outperforms or is on par with other comparing methods. It is interesting
that sometimes NTSL even achieves better results than TAISL. We believe such results are sound, because a blind global
adaptation cannot always achieve accuracy improvement. However, it is clear that learning an invariant tensor space works
much better than learning a shared vector space. Furthermore, the joint learning effectively reduces the standard deviation
and thus improves the stability of the adaptation.

12

Method Feature A→D D→A A→W W→A D→W W→D MEAN

NA VCONV 53.8(2.3) 39.3(1.7) 47.7(1.7) 36.3(1.6) 77.4(1.7) 81.3(1.5) 56.0
PCA VCONV 40.5(3.3) 38.2(2.6) 36.5(2.9) 37.8(2.9) 68.7(2.5) 70.5(2.6) 48.7
DAUME VCONV 48.4(2.5) 35.2(1.5) 42.5(2.0) 33.6(1.8) 68.4(2.5) 74.2(2.4) 50.4
TCA VCONV 30.3(4.5) 20.1(4.4) 27.0(3.1) 18.1(3.0) 51.1(3.2) 53.0(3.2) 33.3
GFK VCONV 47.4(4.7) 36.2(2.9) 41.5(3.5) 33.4(2.6) 75.3(1.6) 78.0(2.4) 51.9
DIP VCONV 36.8(4.5) 13.8(1.8) 29.6(5.0) 17.8(2.6) 77.4(1.8) 81.5(2.0) 42.8
SA VCONV 28.6(3.5) 37.1(2.1) 29.0(2.1) 34.9(2.9) 75.1(2.4) 75.1(2.7) 46.6
LTSL VCONV 32.0(5.5) 28.6(1.6) 24.2(3.7) 27.1(2.0) 60.9(4.0) 73.9(3.3) 41.1
LSSA VCONV 56.6(2.0) 45.6(1.6) 52.2(1.6) 40.7(2.0) 73.0(2.1) 63.5(3.8) 55.3
CORAL VCONV 39.9(1.7) 42.7(0.9) 39.7(1.7) 40.7(1.0) 82.0(1.3) 79.5(1.4) 54.1

NTSL TCONV 56.1(2.4) 45.7(1.5) 50.8(2.3) 42.6(2.2) 84.4(1.6) 88.2(1.4) 61.3
TAISL TCONV 56.4(2.4) 45.9(1.1) 50.7(2.0) 43.2(1.7) 84.5(1.4) 88.5(1.2) 61.5

Table 4: Average multi-class recognition accuracy (%) on Office dataset over 20 trials. The highest accuracy in each column
is boldfaced, the second best is marked in red, and standard deviations are shown in parentheses.

ds

1 2 3 4 5 6

A
c
c
u
ra

c
y

50

55

60

65

70

75

80

85

90
Spatial Mode

NTSL

TAISL

df

100 101 102

A
c
c
u
ra

c
y

0

10

20

30

40

50

60

70

80

90
Feature Mode

NTSL

TAISL

λ

10-10 10-5 100

A
c
c
u
ra

c
y

70

72

74

76

78

80

82

84

86

88

90
Sensitivity of λ

Figure 9: Sensitivity of tensor subspace dimensionality and weight coefficient λ on the DA task of W→C.

ImageNet–VOC2007 results. Table 5 shows the complete results on ImageNet–VOC2007 dataset (only partial results are
presented in the main text due to the page limitation). Our approach achieves the best mean accuracy in 4 and the second
best in 6 out of 20 categories. In general, when noisy labels exist in the target domain, our approach demonstrates a stable
improvement in accuracy. Moreover, compared to the baseline NTSL, the standard deviation is generally reduced, which
means aligning the source domain to the target not only promotes the classification accuracy but also improves the stability
of tensor space.

11. Parameters Sensitivity
Here we investigate the sensitivity of 3 parameters involved in our approach. Specifically, they are the spatial mode

dimensionality ds (d1 and d2 in the main text, we assume d1 = d2 = ds), the feature mode dimensionality df (d3 in the main
text), and the weight coefficient λ. We monitor how the classification accuracy changes when these parameters vary. At each
time, only one parameter is allowed to change. By default, ds = 6, df = 128, and λ = 1e−5. A DA task of W→C from
the Office-Caltech10 dataset is chosen. Results are illustrated by Fig. 9. According to Fig. 9, we can make the following
observations:
• In general, there exhibits a tendency for increased ds to increased classification accuracy, which implies that the adaptation

can benefit from extra spatial information. This is why we preserve the original spatial mode as it is.
• As per the feature mode dimensionality df , a dramatic growth appears when df increases from 1 to 16. However, the

13

VOC 2007 test aero bike bird boat bottle bus car cat chair cow

NA VCONV 66.4(2.1) 65.3(2.9) 65.6(4.0) 56.1(9.0) 29.5(2.1) 51.2(3.4) 70.9(4.5) 70.6(3.4) 19.3(2.0) 30.3(8.0)

PCA VCONV 28.9(5.8) 25.3(7.2) 30.2(3.9) 14.0(4.8) 23.3(5.2) 15.6(6.3) 41.5(7.5) 44.9(4.5) 11.2(0.9) 6.0(1.8)

Daumé III VCONV 64.1(3.7) 60.4(4.2) 59.7(7.4) 53.5(7.8) 26.6(3.3) 49.0(5.1) 66.3(5.1) 65.7(5.3) 18.6(3.5) 26.9(8.5)

TCA VCONV 43.2(9.8) 46.0(17.0) 44.4(10.5) 25.3(13.0) 20.7(1.7) 30.4(7.7) 59.5(8.6) 56.7(8.2) 17.1(3.0) 16.9(6.3)

GFK VCONV 70.0(6.9) 66.0(7.6) 74.6(3.8) 40.7(11.8) 32.5(4.4) 55.0(6.9) 71.3(5.2) 73.1(6.5) 16.3(3.6) 28.9(5.3)

DIP VCONV 69.8(5.5) 65.8(7.2) 78.4(4.6) 34.2(9.1) 29.1(5.0) 54.4(7.3) 75.7(3.9) 75.9(3.7) 20.1(4.6) 25.5(5.0)

SA VCONV 64.4(10.1) 54.4(9.3) 69.3(5.4) 50.8(12.7) 34.4(4.6) 50.8(6.5) 64.3(9.5) 67.4(4.9) 11.2(1.9) 18.4(6.6)

LTSL VCONV 56.9(10.4) 59.8(6.3) 61.0(7.7) 50.6(15.6) 34.9(6.2) 50.9(9.6) 66.9(3.6) 70.8(8.8) 11.4(1.5) 21.9(6.3)

LSSA VCONV 78.7(2.0) 71.8(1.5) 79.7(1.2) 18.5(2.0) 38.4(4.6) 64.1(3.2) 69.4(2.2) 81.7(0.5) 57.2(2.4) 29.5(1.9)

CORAL VCONV 71.4(3.3) 63.3(4.3) 71.7(3.6) 58.6(9.5) 35.2(2.4) 61.9(3.6) 62.7(7.1) 72.0(4.3) 18.7(2.7) 36.0(5.7)

NTSL TCONV 76.3(4.3) 61.6(5.5) 71.0(3.9) 65.9(8.3) 35.7(3.7) 56.1(7.1) 70.1(4.8) 71.3(3.2) 16.6(2.6) 34.7(9.8)

TAISL TCONV 76.4(5.1) 62.3(4.8) 71.6(3.1) 64.9(7.7) 36.7(3.5) 57.0(6.6) 71.2(4.3) 72.0(2.1) 15.7(2.9) 33.3(6.6)

table dog horse mbike person plant sheep sofa train tv mAP

NA VCONV 35.7(5.5) 47.9(6.4) 35.5(11.4) 47.0(8.0) 69.3(2.9) 25.6(3.9) 44.9(6.9) 46.9(5.3) 71.8(4.4) 56.4(3.3) 50.3

PCA VCONV 29.0(6.9) 32.5(4.6) 23.2(6.2) 25.0(5.0) 70.2(1.9) 9.3(4.3) 11.7(3.5) 16.2(2.8) 29.0(6.7) 29.0(6.6) 25.8

Daumé III VCONV 30.0(5.4) 43.6(6.9) 28.3(8.7) 40.5(6.6) 68.5(2.5) 23.6(3.5) 37.7(7.4) 44.5(5.6) 67.6(5.4) 51.9(4.4) 46.4

TCA VCONV 27.6(8.7) 43.2(7.6) 29.0(14.6) 31.8(10.2) 58.1(5.7) 11.6(4.5) 22.7(8.0) 24.0(9.4) 52.3(8.9) 33.6(10.2) 34.7

GFK VCONV 48.3(10.4) 56.7(7.4) 59.2(16.7) 58.3(4.8) 75.8(3.6) 15.2(4.6) 52.5(4.8) 44.7(6.0) 79.9(4.9) 57.1(4.5) 53.8

DIP VCONV 42.2(8.1) 53.7(5.4) 64.7(7.1) 56.3(5.7) 73.5(3.1) 14.7(4.2) 48.9(4.3) 39.8(10.0) 80.5(5.6) 59.4(5.2) 53.1

SA VCONV 36.9(12.8) 54.2(5.7) 39.5(15.5) 53.7(10.9) 68.9(2.4) 20.9(6.7) 31.4(10.2) 29.3(6.1) 73.5(5.2) 55.2(5.7) 47.4

LTSL VCONV 43.7(12.4) 55.4(7.4) 53.4(13.1) 52.5(10.7) 69.9(4.3) 18.8(8.2) 38.2(9.5) 28.9(13.2) 67.1(9.9) 54.0(7.5) 48.3

LSSA VCONV 33.7(3.4) 56.9(2.5) 41.1(5.4) 56.3(9.3) 51.2(2.0) 15.3(5.7) 32.5(10.6) 43.4(8.4) 81.1(1.4) 51.6(4.6) 52.6

CORAL VCONV 40.6(6.7) 53.8(5.3) 34.8(6.8) 57.3(5.6) 67.6(2.0) 24.2(1.5) 54.8(2.9) 47.7(6.2) 71.7(3.5) 56.9(3.6) 53.0

NTSL TCONV 49.8(10.4) 58.3(5.1) 40.9(12.9) 59.7(10.2) 72.0(4.6) 25.0(4.5) 53.4(6.0) 49.8(4.6) 75.3(3.6) 60.2(3.5) 55.2

TAISL TCONV 50.7(10.0) 57.6(3.8) 39.0(14.0) 60.3(8.7) 72.2(3.8) 26.6(5.4) 53.6(5.6) 49.8(5.6) 74.2(4.9) 60.4(3.5) 55.3

Table 5: Average precision (%) on ImageNet-VOC2007 dataset over 10 trials. The highest AP in each column is boldfaced,
the second best is marked in red, and standard deviations are shown in parentheses.

classification accuracy starts to level off when df exceeds 16. Such results make sense, because when the feature di-
mensionality is relatively small, the discriminative power of feature representations cannot be guaranteed. Overall, our
approach demonstrates stable classification performance over a wide range of feature mode dimensionality.

• Only a slight fluctuation occurs when λ varies between 1e−9 and 1e1. The classification accuracy is virtually insensitive
to the weight coefficient λ. This is another good property of our approach.

Acknowledgments. This work was supported in part by the National High-tech R&D Program of China (863 Program)
under Grant 2015AA015904 and in part by the National Natural Science Foundation of China under Grant 61502187.

References
[1] R. Aljundi, R. Emonet, D. Muselet, and M. Sebban. Landmarks-based kernelized subspace alignment for unsupervised domain

adaptation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 56–63, 2015.
[2] M. Baktashmotlagh, M. T. Harandi, B. C. Lovell, and M. Salzmann. Unsupervised domain adaptation by domain invariant projection.

In Proc. IEEE International Conference on Computer Vision (ICCV), pages 769–776, 2013.
[3] S. Ben-David, J. Blitzer, K. Crammer, F. Pereira, et al. Analysis of representations for domain adaptation. In Advances in Neural

Information Processing Systems (NIPS), volume 19, page 137, 2007.
[4] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In

Proc. British Machine Vision Conference (BMVC), 2014.
[5] W.-S. Chu, F. De La Torre, and J. F. Cohn. Selective transfer machine for personalized facial action unit detection. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), June 2013.
[6] H. Daumé III. Frustratingly easy domain adaptation. In Proc. Association for Computational Linguistics (ACL), 2007.

14

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 248–255, 2009.

[8] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (VOC) challenge.
International Journal of Computer Vision, 88(2):303–338, 2010.

[9] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9):1627–1645, 2010.

[10] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In Proc.
IEEE International Conference on Computer Vision (ICCV), pages 2960–2967, 2013.

[11] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In Proc. International Conference on Machine
Learning (ICML), pages 1180–1189, 2015.

[12] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2066–2073, 2012.

[13] R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition: An unsupervised approach. In Proc. IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 999–1006, 2011.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 37(9):1904–1916, 2015.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[16] J. Hoffman, E. Tzeng, J. Donahue, Y. Jia, K. Saenko, and T. Darrell. One-shot adaptation of supervised deep convolutional models.
In Proc. International Conference on Learning Representations Workshops (ICLRW), 2013.

[17] T. K. Kim and R. Cipolla. Canonical correlation analysis of video volume tensors for action categorization and detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 31(8):1415–1428, Aug 2009.

[18] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review, 51(3):455–500, 2009.
[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in

Neural Information Processing Systems (NIPS), pages 1097–1105, 2012.
[20] X. Li, W. Hu, Z. Zhang, X. Zhang, and G. Luo. Robust visual tracking based on incremental tensor subspace learning. In Proc. IEEE

International Conference on Computer Vision (ICCV), pages 1–8. IEEE, 2007.
[21] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 3431–3440, June 2015.
[22] H. Lu, Z. Cao, Y. Xiao, and Y. Zhu. Two-dimensional subspace alignment for convolutional activations adaptation. Pattern Recogni-

tion, 71:320–336, 2017.
[23] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain adaptation via transfer component analysis. IEEE Transactions on Neural

Networks, 22(2):199–210, Feb 2011.
[24] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa. Visual domain adaptation: A survey of recent advances. IEEE Signal Processing

Magazine, 32(3):53–69, 2015.
[25] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proc.

Advances in Neural Information Processing Systems (NIPS), pages 91–99, 2015.
[26] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In Proc. European Conference on

Computer Vision (ECCV), pages 213–226, 2010.
[27] O. Sener, H. O. Song, A. Saxena, and S. Savarese. Learning transferrable representations for unsupervised domain adaptation. In

Advances in Neural Information Processing Systems (NIPS), pages 2110–2118, 2016.
[28] G. Shakhnarovich and B. Moghaddam. Face recognition in subspaces. In Handbook of Face Recognition, pages 19–49. Springer,

2011.
[29] M. Shao, D. Kit, and Y. Fu. Generalized transfer subspace learning through low-rank constraint. International Journal of Computer

Vision, 109(1-2):74–93, 2014.
[30] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
[31] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. In Proc. AAAI Conference on Artificial Intelligence,

2016.
[32] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research, 9(2579–2605):85, 2008.
[33] M. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles: Tensorfaces. In Proc. European Conference on

Computer Vision (ECCV), pages 447–460. Springer, 2002.
[34] M. A. O. Vasilescu and D. Terzopoulos. Multilinear subspace analysis of image ensembles. In Proc. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), volume 2, pages II–93. IEEE, 2003.
[35] L. Wang, J. Zhang, L. Zhou, C. Tang, and W. Li. Beyond covariance: Feature representation with nonlinear kernel matrices. In Proc.

IEEE International Conference on Computer Vision (ICCV), pages 4570–4578, 2015.

15

[36] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative feature learning approach for deep face recognition. In Proc. European
Conference on Computer Vision (ECCV), pages 499–515. Springer, 2016.

[37] Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints. Mathematical Programming, 142(1-2):397–
434, 2013.

[38] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks? In Advances in Neural
Information Processing Systems (NIPS), pages 3320–3328, 2014.

[39] L. Zhang, W. Wei, C. Tian, F. Li, and Y. Zhang. Exploring structured sparsity by a reweighted laplace prior for hyperspectral
compressive sensing. IEEE Transactions on Image Processing, 25(10):4974–4988, 2016.

[40] L. Zhang, W. Wei, Y. Zhang, C. Shen, A. van den Hengel, and Q. Shi. Dictionary learning for promoting structured sparsity in
hyperspectral compressive sensing. IEEE Transactions on Geoscience and Remote Sensing, 54(12):7223–7235, 2016.

[41] Q. Zhao, L. Zhang, and A. Cichocki. Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 37(9):1751–1763, Sept 2015.

16

