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Abstract

It is well known that deep neural networks (DNNs) are
vulnerable to adversarial attacks, which are implemented
by adding crafted perturbations onto benign examples.
Min-max robust optimization based adversarial training
can provide a notion of security against adversarial attacks.
However, adversarial robustness requires a significantly
larger capacity of the network than that for the natural
training with only benign examples. This paper proposes
a framework of concurrent adversarial training and weight
pruning that enables model compression while still presery-
ing the adversarial robustness and essentially tackles the
dilemma of adversarial training. Furthermore, this work
studies two hypotheses about weight pruning in the conven-
tional setting and finds that weight pruning is essential for
reducing the network model size in the adversarial setting;
training a small model from scratch even with inherited
initialization from the large model cannot achieve neither
adversarial robustness nor high standard accuracy. Code
is available at https://github.com/yeshaokai/
Robustness—Aware—Pruning—ADMM.

1. Introduction

Deep learning or deep neural networks (DNNs) have
achieved extraordinary performance in many application
domains such as image classification [19, 39], object de-
tection and recognition [27, 35], natural language process-
ing [10, 34] and medical image analysis [28, 37]. Besides
deployments on the cloud, deep learning has become ubig-
uitous on embedded systems such as mobile phones, IoT
devices, personal healthcare wearables, autonomous driv-
ing [4, | 1], unmanned aerial systems [6, 23], etc.

It has been well accepted that DNNs are vulnerable to
adversarial attacks [14, 46, 47, 53], which raises concerns
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of DNNs in security-critical applications and may result in
disastrous consequences. For example, in autonomous driv-
ing, a stop sign may be mistaken by a DNN as a speed limit
sign; malware may escape from deep learning based detec-
tion; and in authentication using face recognition, unautho-
rized people may escalate their access rights by fooling the
DNN.

Adversarial attacks are implemented by generating ad-
versarial examples, i.e., adding sophisticated perturbations
onto benign examples, such that adversarial examples are
classified by the DNN as target (wrong) labels instead of
the correct labels of the benign examples. The adversary
may have white-box accesses to the DNN where the ad-
versary has full information about the model (e.g., struc-
ture and weight parameters) [7, 8, 52, 45]; or black-box ac-
cesses where the adversary can only make queries and ob-
serve outputs [9, 22]. The black-box scenarios are of partic-
ular interest in the Machine Learning as a Service (MLaaS)
paradigm, specifically in some cases where DNN models
trained through the cloud platform cannot be downloaded
and are accessed only through the service’s APIL.

According to [3], defenses that cause obfuscated gra-
dients may provide a false sense of security and can be
overcome with improved attack techniques such as back-
ward pass differentiable approximation, expectation over
transformation, and reparameterization. Also pointed out
in [3], adversarial training leveraging min-max robust op-
timization [33] does not have obfuscated gradients issue
and can be a promising defense mechanism. Since that re-
searchers have begun to notice the issue when designing
new defenses, more defenses have been proposed includ-
ing adversarial training based ones [29, 38, 42] and oth-
ers [40, 48, 25].

Min-max robust optimization based adversarial train-
ing [33, 41] can provide a notion of security against all
first-order adversaries (i.e., attacks that rely on gradients of
the loss function with respect to the input), by modeling an
universal first-order attack through the inner maximization
problem while the outer minimization still representing the
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training process. However, as noted by [33], adversarial ro-
bustness requires a significant larger architectural capacity
of the network than that for the natural training with only
benign examples. For example, we may need to quadru-
ple a DNN model with state-of-the-art standard accuracy
on MNIST for strong adversarial robustness. In addition,
increasing the network capacity may provide a better trade-
off between standard accuracy of an adversarially trained
model and its adversarial robustness [41].

Therefore, the required large network capacity by adver-
sarial training may limit its use for security-critical scenar-
ios especially in resource constrained application systems.
On the other hand, model compression techniques such as
weight pruning [17, 15, 49, 20, 43] have been essential
for implementing DNNs on resource constrained embed-
ded and IoT systems. Weight pruning explores weight spar-
sity to prune synapses and neurons without notable accu-
racy degradation. References [16, 44] theoretically discuss
the relationship between adversarial robustness and weight
sparsity, but do not apply any active defense techniques in
their research. The work [44] concludes that moderate spar-
sity can help with adversarial robustness in that it increases
the £, norm of adversarial examples (although DNNs with
weight sparsity are still vulnerable under attacks).

We are motivated to investigate whether and how weight
sparsity can facilitate an active defense technique i.e., the
adversarial training, by relaxing the network capacity re-
quirement. Figure 1 characterizes the weight distribution of
VGG-16 network on CIFAR dataset. We test on the origi-
nal size, 1/2 size, and 1/4 size of VGG-16 network for their
standard accuracy and adversarial accuracy. We have fol-
lowing observations: (i) Smaller model size (network ca-
pacity) indicates both lower standard accuracy and adver-
sarial accuracy for adversarially trained model. (ii) Adver-
sarially trained model is less sparse (fewer zero weights)
than naturally trained model. Therefore, pre-pruning before
adversarial training is not a feasible solution and it seems
harder to prune an adversarially trained model.

This paper tries to answer the question of whether we
can enjoy both the adversarial robustness and model com-
pression together. Basically, we integrate weight pruning
with the adversarial training to enable security-critical ap-
plications in resource constrained systems.

Our Contributions: We build a framework that
achieves both adversarial robustness and model compres-
sion through implementing concurrent weight pruning and
adversarial training. Specifically, we use the ADMM
(alternating direction method of multipliers) based prun-
ing [50, 51] in our framework due to its compatibility with
adversarial training. More importantly, the ADMM based
pruning is universal in that it supports both irregular prun-
ing and different kinds of regular pruning, and in this way
we can easily switch between different pruning schemes

for fair comparison. Eventually, our framework tackles the
dilemma of adversarial training.

We also study two hypotheses about weight pruning that
were proposed for the conventional model compression set-
ting and experimentally examine their validness for the ad-
versarial training setting. We find that the weight pruning
is essential for reducing the network model size in the ad-
versarial setting, training a small model from scratch even
with inherited initialization from the large model cannot
achieve adversarial robustness and high standard accuracy
at the same time.

With the proposed framework of concurrent adversarial
training and weight pruning, we systematically investigate
the effect of different pruning schemes on adversarial ro-
bustness and model compression. We find that irregular
pruning scheme is the best for preserving both standard ac-
curacy and adversarial robustness while pruning the DNN
models.

2. Related Work
2.1. Adversarial Training

Adversarial training [33] uses a min-max robust op-
timization formulation to capture the notion of security
against adversarial attacks. It does this by modeling an
universal first-order attack through the inner maximization
problem while the outer minimization still represents the
training process. Specifically, it solves the optimization
problem:

Hleln E(I7"/)"‘D %IéaAXL(g,JU—F(S, y) (1)

where pairs of examples x € R and corresponding la-
bels y € [k] follow an underlying data distribution D; ¢
is the added adversarial perturbation that belongs to a set
of allowed perturbations A C R? for each example x;
6 < RP presents the set of weight parameters to be opti-
mized; and L(@, x,y) is the loss function, for instance, the
cross-entropy loss for a DNN.

The inner maximization problem is solved by sign-based
projected gradient descent (PGD), which presents a power-
ful adversary bounded by the ¢..-ball around z as:

xt+1 = HI+A (.CCt + asgn(vajl/(gax7y))) (2)

where t is the iteration index, « is the step size, and sgn(-)
returns the sign of a vector. PGD is a variant of IFGSM
attack [24] and can be used with random start to add uni-
formly distributed noise to model A during adversarial
training.

One major drawback of adversarial training is that it
needs a significantly larger network capacity for achieving
strong adversarial robustness than for correctly classifying
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Figure 1: Weight distribution of VGG-16 network with (a) original size, (b) 1/2 size, and (c) 1/4 size on CIFAR dataset. For each size in one subfigure,
the weights are characterized for (i) a naturally trained model and (ii) an adversarially trained model. The standard accuracy and adversarial accuracy are

marked with the legend.

benign examples only [33]. In addition, adversarial training
suffers from a more significant overfitting issue than the nat-
ural training [36]. Later in this paper, we will demonstrate
some intriguing findings related to the above mentioned ob-
servations.

2.2. Weight Pruning

Weight pruning as a model compression technique has
been proposed for facilitating DNN implementations on
resource constrained application systems, as it explores
weight sparsity to prune synapses and consequently neu-
rons without notable accuracy degradation. There are in
general the regular pruning scheme that can preserve the
model’s structure in some sense, and otherwise the irregu-
lar pruning scheme. Regular pruning can be further catego-
rized as the filter pruning scheme and the column pruning
scheme. Filter pruning by the name prunes whole filters
from a layer. Column pruning prunes weights for all filters
in a layer, at the same locations. Please note that some refer-
ences mention channel pruning, which by the name prunes
some channels completely from the filters. But essentially
channel pruning is equivalent to filter pruning, because if
some filters are pruned in a layer, it makes the correspond-
ing channels of next layer invalid [20].

In this work, we implement and investigate the filter
pruning, column pruning, and irregular pruning schemes
in the adversarial training setting. Also, with each prun-
ing scheme, we uniformly prune every layer by the same
pruning ratio. For example, when we prune the model size
(network capacity) by a half, it means the size of each layer
is reduced by a half.

There are existing irregular pruning work [17, 15,49, 50]
and regular pruning work [20, 43, 51, 26, 30]. In addi-
tion, almost all the regular pruning work are actually filter
pruning, except the work [43] which is the first to propose
column pruning and work [51] which can implement col-

umn pruning through an ADMM based approach. In this
work, we use the ADMM approach due to its potential for
all the pruning schemes and its compatibility with adversar-
ial training, as shall be demonstrated in the later section.

Researchers have also begun to reflect and make some
hypotheses about the weight pruning. The lottery ticket
hypothesis [12] conjectures that inside the large network,
a subnetwork together with their initialization makes the
pruning particular effective, and together they are termed
as the “winning tickets”. In this hypothesis, the original
initilizaiton of the sub-network (before the large network
pruning) is needed for it to achieve competitive performance
when trained in isolation. In addition, the work [31] con-
cludes that training a predefined target model from scratch
is no worse or even better than applying structured (regular)
pruning on a large over-parameterized model to the same
target model architecture.

However, these hypotheses and findings are proposed for
the general weight pruning. In this paper, we make some
intriguing observations about weight pruning in the adver-
sarial setting, which are insufficiently explained under the
existing hypotheses [12, 31].

3. Concurrent Adversarial Training and
Weight Pruning

In this section, we provide the framework for concur-
rent adversarial training and weight pruning. We formulate
the problem in a way that lends itself to the application of
ADMM (alternating direction method of multipliers):
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Here 0, are the weight parameters in each layer.

0 if 0; € S;
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+o00  otherwise

is an indicator function to incorporate weight sparsity con-
straint (different weight pruning schemes can be defined
through the set .S;). z; are auxiliary variables that enable
the ADMM based solution.

The ADMM framework is built on the augmented La-
grangian of an equality constrained problem [5]. For prob-
lem (3), the augmented Lagrangian form becomes

L{0:},{zi}, {w}) = Eyyop [maXL(O x+4,y ]
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where {u;} are Lagrangian multipliers associated with
equality constraints of problem (3), and p > 0 is a given
augmented parameter. Through formation of the augmented
Lagrangian, the ADMM framework decomposes problem
(3) into two subproblems that are solved iteratively:

{ef} = arg?’éir}lﬁ({ai},{Zfil},{ufil}% (6)
{2} = arg r{nir]gﬁ({@ﬁfh {zi}, {uf ™)), 7
where k is the iteration index. The Lagrangian multipliers

are updated as u¥ := u*~! + p(8F — z¥).
The first subproblem (6) is explicitly given by

N
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The first term in the objective function of (8) is a min-max
problem. Same as solving the adversarial training problem
in Section 2.1, here we can use the PGD adversary (2) with
T iterations and random start for the inner maximization
problem. The inner problem is tractable under an univer-
sal first-order adversary [33]. The second convex quadratic
term in (8) arises due to the presence of the augmented term
in (5). Given the adversarial perturbation 4, we can ap-
ply the stochastic gradient decent algorithm for solving the
overall minimization problem. Due to the non-convexity of
the loss function, the global optimality of the solution is not
guaranteed. However, ADMM could offer a local optimal
solution when p is appropriately chosen since the quadratic
term in (8) is strongly convex as p > 0, which stabilizes the
convergence of ADMM [21].

On the other hand, the second subproblem (7) is given
by

N
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Note that g;(-) is the indicator function defined by S;,
thus this subproblem can be solved analytically and opti-
mally [5]. The optimal solution is

Zi T =TI, (05 +ub), (10)

where TIg, () is Euclidean projection of 8% +u¥ onto S;.

Algorithm 1 Concurrent Adversarial Training and Weight
Pruning

1: Input: dataset D, ADMM iteration number K, PGD
step size «, PGD iteration number 7', augmented pa-
rameter p, and sets .S;’s for weight sparsity constraint.
Output: weight parameters 6.
fork=1,2,..., K do

Sample batch (z,y) from D

> Solve Eq (8) over 6

fort=1,2,...,T do

Solve the inner max by Eq (2)

end for

Apply Adam optimizer on the outer min of Eq (8)
to obtain {0%}
10: Solve Eq (9) using Eq (10) to obtain {z¥}
11: uf = ul T 4 p(0F - 2h).
12: end for

R A S o

3.1. Definitions of S; for Weight Pruning Schemes

This subsection introduces how to use the weight spar-
sity constraint 8; € S; to implement different weight prun-
ing scheme. For each weight pruning scheme, we first pro-
vide the exact form of 8; € .S; constraint and then provide
the explicit form of the solution (10). Before doing that,
we reduce 6@; back into the four dimensional tensor form
as 0; € RNixCixHixWi where N;, C;, H;, and W; are re-
spectively the number of filters, the number of channels in
a filter, the height of a filter, and the width of a filter.

Filter pruning
0; € Si :=1{0; | |0;]ln=0 < i} (11

Here, ||0;||,—o means the number of filters containing non-
zero elements. To obtain the solution (10) with such con-
straint, we firstly calculate O,, = [|(8%™ + u¥),....|%,
where || - || denotes the Frobenius norm. We then keep Q;
largest values in O,, and set the rest to zeros.



Column pruning
0; € S :=1{0; | |0illc,nw=0 < Bi}- (12)

Here, ||0;|c,n,w=0 means the number of elements at the
same locations in all filters in the ith layer containing non-
zero elements. To obtain the solution (10) with such con-
straint, first we calculate O, = [|(0¥ T + u¥). o | %. We
then keep f3; largest values in O, and set the rest to zeros.

Irregular pruning

In this special case, we only constrain the number of non-
zero elements in the ith layer filters i.e., in 8;. To obtain the
solution (10), we keep y; largest magnitude elements in 6;
and set the rest to zeros.

Algorithm 1 summarizes the framework of concurrent
adversarial training and weight pruning.

In addition to ADMM based weight pruning, we also
show results of post-pruning in Appendix A, with and with-
out retraining respectively.

4. Weight Pruning in the Adversarial Setting

In this section, we examine the performance of weight
pruning in the adversarial setting. We obtain intriguing re-
sults contradictory from those [12, 31] in the conventional
model compression setting. Here we specify the proposed
framework of concurrent adversarial training and weight
pruning by the filter pruning scheme, which is a common
pruning choice to facilitate the implementation of sparse
neural networks on hardware. Other pruning schemes will
be investigated in the experiment section. In Table 1, we
summarize all the networks tested in the paper with their
model architectures specified by the width scaling factor w.

4.1. Weight Pruning vs Training from Scratch

An ongoing debate about pruning is whether weight
pruning is actually needed and why not just training a
small network from scratch. To answer this question, the
work [31] performs a large amount of experiments to find
that (i) training a large, over-parameterized model is of-
ten not necessary to obtain an efficient final model, and (ii)
the meaning of weight pruning lies in searching the archi-
tecture of the final pruned model. In another way, if we
are given with a predefined target model, it makes no dif-
ference whether we reach the target model from pruning
a large, over-parameterized model or we train the target
model from scratch. We also remark that the above conclu-
sions from [3 1] are made while performing regular pruning.

Although the findings in [31] may hold in the setting of
natural training, the story becomes different in the setting
of adversarial training. Tables 2, 3, and 4 demonstrate the
natural test accuracy / adversarial test accuracy of natu-
ral training, adversarial training, and concurrent adversarial
training and weight pruning for different datasets and net-
works. Let us take Table 2 as an example. When we natu-
rally train a network of size w = 1, we have 98.25% natural
test accuracy and 0% adversarial test accuracy. When we
adversarially train the network of size w = 1, both natural
test accuracy and adversarial test accuracy become 11.35%,
which is still quite low. It demonstrates that the network
of size w = 1 does not have enough capacity for strong
adversarial robustness. In order to promote the adversarial
robustness, we need to adversarially train the network with
size of w = 4 at least. Surprisingly, by leveraging our con-
current adversarial training and weight pruning on the net-
work of size w = 4, we can obtain a much smaller pruned
model with the target size of w = 1 but achieve competitive
natural test accuracy / adversarial test accuracy (96.22% /
89.41%) compared to the adversarially trained model of size
w = 4. To obtain a network of size w = 1 with the highest
natural and adversarial test accuracy, we should apply the
proposed framework on the network of size w = 8. Similar
observations hold for Tables 3 and 4.

In summary, the value of weight pruning is essential in
the adversarial training setting: it is possible to acquire a
network of small model size (by weight pruning) with both
high natural test accuracy and adversarial test accuracy. By
contrast, one may lose the natural and adversarial test accu-
racy if the adversarial training is directly applied to a small-
size network that is not acquired from weight pruning.

4.2. Pruning to Inherit Winning Ticket or Else?

In the natural training (pruning) setting, the lottery ticket
hypothesis [12] states that the meaning of weight pruning
is in that the small sub-network model can inherit the ini-
tialization (the so-called “winning ticket”) from the large
model. Or in another way, the weight pruning is meaning-
ful only in that it provides effective initialization to the final
pruned model.

To test whether or not the lottery ticket hypothesis is
valid in the adversarial setting, we perform adversarial
training under the similar experimental setup as [12]. The
natural/adversarial test accuracy results are summarized in
Table 5, where the result in cell wq-ws (wq; > ws) denotes
the accuracy of an adversarially trained model of size ws us-
ing the inherited initialization from an adversarially trained
model of size w;. No pruning is used in Table 5. For ex-
ample, cell 4-2 in Table 5 only yields 11.35%/11.35% accu-
racy. Recall from Table 2 that if we use our proposed frame-
work of concurrent adversarial training and weight pruning
to prune from a model with size 4 to a small model with size



Table 1: Network structures used in our experiments. FC, M, and A mean fully connected layer, max-pooling layer, and average-pooling
layer, respectively. Other numbers denote the numbers of filters in convolutional layers. We use w to denote the scaling factor of a network.

Each layer is equally scaled with w.

MNIST 2*w, 4*w, FC(196*w, 64*w), FC(64*w,10)
CIFAR LeNet 6*w, 16*w, FC(400*w, 120*w), FC(120*w, 84*w), FC(84*w,10)
CIFAR VGG | 4*w4*w,M,8*w,8*w,M,16*w,16*w,16*w,M,32*w,32*%w,32%w,M,32%*w,32*w,32*w,M,A,FC(32*w,10)
CIFAR ResNet b*w, where b denotes 1/16 of the size of ResNet18 [19]

Table 2: Natural test accuracy/adversarial test accuracy (in %) on MNIST of [column ii] naturally trained model with different size w,
[column iii] adversarially trained model with different size w, [columns iv—vii] concurrent adversarial training and weight pruning from a

large size to a small size.

w | nat baseline | adv baseline ‘ 1 2 4 8
1 98.25/0.00 | 11.35/11.35 - - - -
2 | 98.72/0.00 | 11.35/11.35 | 11.35/11.35 - - -
4 | 99.07/0.00 | 98.15/91.38 | 96.22/89.41 97.68/91.77 - -
8 99.20/0.00 | 98.85/93.51 | 97.31/92.16 98.31/93.93 98.87/94.27 -
16 | 99.31/0.00 | 99.02/94.65 | 96.19/87.79 98.07/89.95 98.87/94.77 99.01/95.44

of 2, we can have high accuracy 97.68%/91.77% in cell 4-2
of Table 2. Our results suggest that the lottery ticket hy-
pothesis requires additional careful studies in the setting of
adversarial training.

3.5
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Figure 2: The adversarial training loss of kaiming_normal initial-
ization with Adam optimizer trained from scratch on MNIST by
LeNet with size of w = 1 using different random seeds. The left
subfigure is the only successful case we found and the right sub-
figure represents a common case.

Moreover, to further explore the relationship between
initialization and model capacity in adversarial training,
we conduct additional experiment. Seven different initial-
ization methods are compared to train the smallest LeNet
model (w = 1) with 300 epochs using Adam, SGD and
CosineAnnealing [32] on MNIST. We repeat this experi-
ment 10 times with different random seed and report the av-
erage accuracy in Table B1. As suggested by Table 2, adver-
sarial training from scratch failed as w = 1, 2. In all stud-

ied scenarios, we only find two exceptions: a) Adam with
uniform initialization and b) Adam with kaiming_normal
in which 1 out of 10 trials succeeds (the losses are drawn
in Figure 2). Even for these exceptions, the corresponding
test accuracy is much worse than that of the smallest model
obtained from concurrent adversarial training and weight
pruning in Table 2. We also find that the accuracy 11.35%
corresponds to a saddle point that the adversarial training
meets in most of cases. Our results in Table B1 suggest that
without concurrent adversarial training and weight prun-
ing, it becomes extremely difficult to adversarially train a
small model from scratch even using different initialization
schemes and optimizers.

4.3. Possible Benefit of Over-Parameterization

It is clear from Sec.4.1 and 4.2 that in the adversar-
ial setting, pruning from a large model is useful, which
yields benefits in both natural test accuracy and adversar-
ial robustness. By contrast, these advantages are not pro-
vided by adversarially training a small model from scratch.
Such intriguing results could be explained from the ben-
efit of over-parameterization [54, 1, 2], which shows that
training neural networks possibly reaches the global solu-
tion when the number of parameters is larger than that is
statistically required to fit the training data. In the sim-
ilar spirit, in adversarial training setting, the larger, over-
parameterized models lead to good convergence while ad-
versarially trained small models are stuck at the saddle
points frequently. These two observations have motivated
us to propose a framework that can benefit from larger mod-
els during adversarial training and at the same time reduce
the models’ size. As a result, the remained weights preserve



Table 3: Natural test accuracy/adversarial test accuracy (in %) on CIFAR10 by LeNet of [column ii] naturally trained model with
different size w, [column iii] adversarially trained model with different size w, [columns iv—vii] concurrent adversarial training and weight
pruning from a large size to a small size.

w | natbaseline | adv baseline 1 2 4 8
1 74.84/0.01 10.00/10.00 - - - -
2 78.41/0.07 55.03/33.29 50.3/31.33 - - -
4 83.36/0.19 | 65.01/36.30 | 53.30/32.41 62.77/34.52 - -
8 85.12/0.55 | 72.80/37.67 | 52.27/31.91 62.22/35.42 70.50/37.92 -
16 | 87.22/0.93 | 74.91/38.65 | 51.28/31.30 62.10/35.55 70.59/37.93 71.93/39.00

Table 4: Natural test accuracy/adversarial test accuracy (in %) on CIFAR10 by ResNet of [column ii] naturally trained model with
different size w, [column iii] adversarially trained model with different size w, [columns iv—vii] concurrent adversarial training and weight
pruning from a large size to a small size.

w | natbaseline | adv baseline 1 2 4 8
1 84.23/0.00 | 57.16/34.40 - - - -
2 87.05/0.00 71.16/42.45 | 64.53/37.90 - - -
4 91.93/0.00 77.35/44.99 | 64.36/37.78 73.21/43.14 - -
8 93.11/0.00 | 77.26/47.28 | 64.52/38.01 73.36/43.17 78.12/45.49 -
16 | 94.80/0.00 | 82.71/49.31 | 64.17/37.99 71.80/42.86 78.85/47.19 81.83/48.00

Table 5: Natural test accuracy/adversarial test accuracy (in %)

on MNIST for validating the lottery ticket hypothesis in the ad-
versarial setting.

w | 1 2 4 8
2 | 11.35/11.35 - - -
4 | 11351135  11.35/11.35 - -
8 | 11.35/1135 97.36/90.19  98.64/94.66 -
16 | 11.35/11.35 11.35/11.35  98.42/91.63  98.96/95.49

adversarial robustness.

S. Pruning Schemes and Transfer Attacks

In this section, we examine the performance of
the proposed concurrent adversarial training and weight
pruning under different pruning schemes (i.e., fil-
ter/column/irregular pruning) and transfer attacks. The pro-
posed framework is tested on CIFAR10 using VGG-16 and
ResNet-18 networks, as shown in Figure 3. As we can
see, the natural and adversarial test accuracy decrease as the
pruned size decreases. Among different pruning schemes,
the irregular pruning performs the best while the filter prun-
ing performs the worst in both natural and adversarial test
accuracy. That is because in addition to weight sparsity, fil-
ter pruning imposes the structure constraint, which restricts
the pruning granularity compared to the irregular pruning.
Moreover, irregular pruning preserves the accuracy against
different pruned sizes. The reason is that the weight spar-

sity is beneficial to mitigate the overfitting issue [17], and
the adversarial training suffers a more significant overfitting
than the natural training [36].

In Table C1, we evaluate the performance of our PGD
adversary based robust model against C&W /., attacks. As
we can see, the concurrent adversarial training and weight
pruning yields the pruned model robust to transfer attacks.
In particular, the pruned model is able to achieve better ad-
versarial test accuracy than that of the original model prior
to pruning (baseline).

Furthermore, we design a cross transfer attack exper-
iment. Consider the baseline models in Table 2, when
w = 1,2, the models are not well-trained so we generate
adversarial examples by PGD attack from baseline model
with w = 4, 8,16 and apply them to test the pruned mod-
els. In Table 6, the results show that even the worst case
in each pruned model, the adversarial test accuracy is also
higher than that of the pruned models in Table 2. The results
imply that the model is most vulnerable against adversarial
examples generated by itself, regardless of the size of the
model.

6. Supplementary Details of Experiment Setup

We use LeNet for MNIST, and LeNet, VGG-16 and
ResNet-18 for CIFAR10. The LeNet models used here fol-
low the work [33]. Batch normalization (BN) is applied in
VGG-16 and ResNet-18. More details about the network
structures are listed in Table 1.

To solve the inner max problem in (1), we set PGD ad-
versary iterations as 40 and 10, step size « as 0.01 and



Table 6: Adversarial test accuracy (in %) on MNIST against transfer attack from baseline models (row) when w € {4, 8,16} to pruned
models (column) m — n which means pruned from original model with w = m to small model with w = n.

w | 16-1 81 41 | 162 82 42 | 164 84 | 16-8
4 [ 9170 9377 9143 | 9495 9545 9355|9726 96.56 | 97.56
8 9213 9347 9206 | 9440 9430 94.15 | 9621 95.27 | 96.46
16 | 93.05 943 93.07 | 9437 9572 9475 | 95.61 96.31 | 9537
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Figure 3: Natural and adversarial test accuracy of the proposed
framework of concurrent adversarial training and weight pruning
on CIFARI10. Filter, column, and irregular pruning schemes are
applied in the proposed framework respectively. Weight pruning
is performed from size of w = 16 to sizes of w = 1,2,4,8.
The solid lines denote natural accuracy when pruning from the
size of w = 16 to different sizes, and the dashed lines denote the
corresponding adversarial accuracy.

2/255, the {5 bound as 0.3 and 8/255 for MNIST and
CIFAR respectively, and all pixel values are normalized in
[0,1]. We use Adam with learning rate 1 x 10~ to train
our LeNet for 83 epochs as suggested by the released code
of [33]. During pruning we set p = 1 x 1072 and K = 30
for Algorithm 1. Moreover, there are controversial on the
baselines of CIFAR and we do the following to ensure our

baselines are strong enough:

1. We follow the suggestions by [31] to train our models
with a larger learning rate 0.1 as initial learning rate.

2. We train all models in CIFAR with 300 epochs and
divide the learning rate by 10 times at epoch 80 and
epoch 150 following the [33].

3. Liu et al. [31] suggests that models trained from
scratch need fair training time to compare with pruned
models. Therefore, we double the training time if the
loss is still descent at the end of the training.

4. Since there is always a trade off between natural ac-
curacy and adversarial accuracy, we report accuracy
when the models achieve the lowest average loss for
both natural and adversarial images on test dataset.

Hence, we believe that in our setting, we have fair baselines
for training from scratch.

7. Conclusion

Min-max robust optimization based adversarial training
can provide a notion of security against adversarial attacks.
However, adversarial robustness requires a significant larger
capacity of the network than that for the natural training
with only benign examples. This paper proposes a frame-
work of concurrent adversarial training and weight pruning
that enables model compression while still preserving the
adversarial robustness and essentially tackles the dilemma
of adversarial training. Furthermore, this work studies two
hypotheses about weight pruning in the conventional set-
ting and finds that weight pruning is essential for reducing
the network model size in the adversarial setting, and that
training a small model from scratch even with inherited ini-
tialization from the large model cannot achieve adversar-
ial robustness and high standard accuracy at the same time.
This work also systematically investigates the effect of dif-
ferent pruning schemes on adversarial robustness and model
compression.
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Appendix
A. Performance of Post-pruning

We performed post-pruning for adversarially trained
ResNet18 models (with variable sizes w) for CIFAR10 (the
same setting as Table 4 in the paper). We found that without
retraining, almost all cases show accuracies of 10%/10%
(No surprise if we look at Figure 1 in the paper). Then we
performed post-pruning with retraining and show the results
in following table. Consistent to our key result, pruning
from a robust larger model gives better results than training
a small model from scratch. In particular, when the dif-
ference between the original size and the pruned model’s
size becomes large, our proposed framework outperforms
the post-pruning-with-retraining. For example, the 16-to-
1 case is 64.17/37.99 in Table 4 and is only 60.26/36.18
in the following table. Furthermore, we perform additional
experiments to verify the importance of ADMM. For LeNet
under FashionMNIST, post-pruning and concurrent pruning
without using ADMM (proximal gradient descent is used
instead) give failure cases when prune rate is large, while
ADMM achieves good results under the same training time.

Table Al: Post-pruning (with retraining) for ResNetl8 on CI-
FAR10. Compared to ADMM method, post-pruning without re-
training makes almost all models drop to 10.00/10.00.

w | 1 \ 2 \ 4 \ 8
2 | 64.39/38.05 - - -
4 | 62.49/36.77 | 73.47/43.09 - -
8 | 60.40/37.05 | 72.52/43.34 | 78.64/45.19 -
16 | 60.26/36.18 | 69.47/42.14 | 78.59/46.17 | 80.79/46.4

B. Initialization Analysis

The table below contains study of how initialization af-
fects training a small robust model.

Table B1: Natural test accuracy/adversarial test accuracy (in
%) on MNIST (by LeNet with size of w = 1) with seven differ-
ent initialization methods and three optimizers: Adam, SGD, and
CosAnneal.

initialization ‘ Adam SGD CosAnneal
uniform 78.86/70.47 11.35/11.35 11.35/11.35
normal 11.35/11.35 11.35/11.35 11.35/11.35
xavier_uniform[13] 11.35/11.35  11.35/11.35 11.35/11.35
xavier_normal[ 3] 11.35/11.35 11.35/11.35 11.35/11.35
kaiming_uniform[18] | 11.35/11.35 11.35/11.35 11.35/11.35
kaiming_normal[ 18] 19.68/19.02  11.35/11.35 11.35/11.35
orthogonal 11.35/11.35  11.35/11.35 11.35/11.35

C. Performance against C& W attack

The test accuracy of our proposed framework against
C&W [/, attack.

Table C1: C&W /o, adversarial test accuracy (in %) by the pro-
posed framework on MNIST by LeNet.

w | baseline 1 2 4 8
2 11.35 11.35 - - -
4 91.42 89.63 91.75 - -
8 93.57 92.33 93.83 94.46 -
16 94.78 89.26 91.34 95.08 95.62




