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Abstract

This paper is about few-shot segmentation of foreground
objects in images. We train a CNN on small subsets of
training images, each mimicking the few-shot setting. In
each subset, one image serves as the query and the other(s)
as support image(s) with ground-truth segmentation. The
CNN first extracts feature maps from the query and sup-
port images. Then, a class feature vector is computed as
an average of the support’s feature maps over the known
foreground. Finally, the target object is segmented in the
query image by using a cosine similarity between the class
feature vector and the query’s feature map. We make two
contributions by: (1) Improving discriminativeness of fea-
tures so their activations are high on the foreground and low
elsewhere; and (2) Boosting inference with an ensemble of
experts guided with the gradient of loss incurred when seg-
menting the support images in testing. Our evaluations on
the PASCAL-5i and COCO-20i datasets demonstrate that
we significantly outperform existing approaches.

1. Introduction
This paper is about few-shot segmentation of foreground

objects in images. As Fig. 1 shows, given only a few train-
ing examples – called support images – and their ground-
truth segmentation of the target object class, our goal is to
segment the target class in the query image. This problem is
challenging, because the support and query images may sig-
nificantly differ in the number of instances and 3D poses of
the target class, as illustrated in Fig. 1. This important prob-
lem arises in many applications dealing with scarce training
examples of target classes.

Recently, prior work has addressed this problem by train-
ing an object segmenter on a large training set, under the
few-shot constraint [26, 6, 20]. The training set is split
into many small subsets. In every subset, one image serves
as the query and the other(s) as the support image(s) with
known ground truth(s). As shown in Fig. 1, their frame-
work uses a CNN – e.g., VGG [27] or ResNet [12] – for
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Figure 1. Our goal is to segment a foreground object class in a
query image, given a single (few) support image(s) showing the
same class with the known ground-truth segmentation mask(s).
The target class may appear in the query and support images in
different numbers of instances and 3D poses. Recent work uses
cosine similarity to first estimate a similarity map between CNN
features of the query and support images. The similarity map is
then used for segmentation of the target class in the query image.

extracting feature maps from the support and query im-
ages. The support’s feature maps are first pooled over
the known ground-truth foreground. Then, the support’s
masked-pooled features are used to estimate a cosine simi-
larity map with the query’s features. The resulting similarity
map and the query’s features are finally passed to a few con-
volutional layers in order to segment the target object class
in the query. The incurred loss between the prediction and
the query’s ground-truth is used for the CNN’s training.

The above framework has two critical limitations which
we address in this paper. First, we experimentally found that
the CNN has a tendency to learn non-discriminative features
with high activations for different classes. To address this
issue, as Fig. 2 shows, our first contribution extends prior
work by efficiently estimating feature relevance so as to en-
courage that their activations are high inside the ground-
truth locations of the target class, and low elsewhere in the
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Figure 2. Our few-shot learning from a single support image: Prior work averages a class feature vector over the known foreground of the
support image. A dot product of this class feature vector and feature maps of the query image gives a similarity map. The similarity map
and features of the query image are used for segmenting the target class in the query. We extend prior work by additionally estimating
feature relevance (contribution 1). Our contribution 2 is shown in Fig. 3.

image. This is formulated as an optimization problem, for
which we derive a closed-form solution.

Second, learning from few support images is prone to
overfitting and poor generalization to the query in the face
of the aforementioned large variations of the target class.
To address this issue, as Fig. 3 shows, our second contribu-
tion is a new boosted inference, motivated by the traditional
ensemble learning methods which are robust to overfitting
[9, 10]. We specify an ensemble of experts, where each ex-
pert adapts the features initially extracted from the support
image. This feature adaptation is guided by the gradient of
loss incurred when segmenting the support image relative
to its provided ground truth. The ensemble of experts pro-
duce the corresponding ensemble of object segmentations
of the query image, whose weighted average is taken as our
final prediction. Importantly, while we use the first contri-
bution in both training and testing, similar to the traditional
ensemble learning methods, our second contribution is ap-
plied only in testing for boosting the performance of our
CNN-based segmenter.

For K-shot setting, both contributions are naturally ex-
tended for segmenting the query image by jointly analyzing
the provided support images and their ground-truths rather
than treating support images independently as in prior work.

For evaluation, we compare with prior work on the
benchmark PASCAL-5i dataset [26]. Our results demon-
strate that we significantly outperform the state of the art.
In addition, we perform evaluation on the larger and more
challenging COCO-20i dataset [16]. To the best of our
knowledge, we are the first to report results of few-shot ob-
ject segmentation on COCO-20i.

In the following, Sec. 2 reviews previous work, Sec. 3
specifies our two contributions, Sec. 4 describes our imple-

mentation details and complexity, and Sec. 5 presents our
experimental results.

2. Related Work

This section reviews related work on few-shot image
classification and semantic segmentation.

Few-shot classification predicts image class labels with
access to few training examples. Prior work can be broadly
divided into three groups: transfer learning of models
trained on classes similar to the target classes [28, 22, 29,
30], meta-learning approaches that learn how to effectively
learn new classes from small datasets [8, 18], and generative
approaches aimed at data-augmentation [31, 25].

Semantic segmentation labels all pixels in the image.
Recently, significant advances have been made by using
fully convolutional network (FCN) [17] and its variants —
including SegNet [1], UNet [23], RefineNet [15], PSPNet
[33], DeepLab v1[2], v2 [3], v3 [4], v3+ [5] — all of which
are usually evaluated on the PASCAL VOC 2012 [7] and
MSCOCO [16] datasets. However, these approaches typi-
cally require very large training sets, which limits their ap-
plication to a wide range of domains.

Few-shot semantic segmentation labels pixels of the
query image that belong to a target object class, conditioned
by the ground-truth segmentation masks of a few support
images. Prior work typically draws from the above men-
tioned approaches to few-shot image classification and se-
mantic segmentation. For example, the one-shot learning
method OSLSM [26] and its extensions — namely, Co-
FCN [20, 21], PL+SEG [6], and SG-One [32] — consist of
the conditioning and segmentation branches implemented
as VGG [27] and FCN-32s [17], respectively. The condi-
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Figure 3. Our new boosted inference: We generate an ensemble of the support’s features guided by the gradient of loss, incurred when
segmenting the target object in the support image. A dot product between the query’s feature maps and the ensemble of the support’s
features gives the corresponding ensemble of similarity maps, whose weighted average is taken as our final segmentation of the query.

tioning branch analyzes the target class in the support im-
age, and conditions the segmentation branch for object seg-
mentation in the query image. Co-FCN improves OSLSM
by segmenting the query image based on a concatenation of
pooled features from the support image and feature maps
from the query image. PL+SEG first estimates a distance
between the query’s feature maps and prototypes predicted
from the support image, and then labels pixels in the query
image with the same class as their nearest neighbor proto-
types. SG-One also estimates similarity between a pooled
feature from the support image and feature maps of the
query for predicting the query’s segmentation. Our ap-
proach extends SG-One with the two contributions specified
in the next section.

3. Our Approach
An object class is represented by K support images with

ground-truth segmentation masks. Given a query image
showing the same object class in the foreground, our goal
is predict the foreground segmentation mask. For K = 1,
this problem is called one-shot semantic segmentation. Be-
low, and in the following Sec. 3.1 and Sec. 3.2, we consider
the one-shot setting, for simplicity. Then, we discuss the
K-shot setting, K > 1, in Sec. 3.3

Given a large set of training images showing various ob-
ject classes and the associated ground-truth segmentation
masks, our approach follows the common episodic train-
ing strategy. In each training episode, we randomly sam-

ple a pair of support and query images, xs and xq , with
binary segmentation masks, ms andmq , of the target object
class in the foreground. Elements of the mask are set to 1,
ms,i = 1, for pixels i occupied by the target class; other-
wise, ms,i = 0. The same holds for mq . We use ms to
condition the target class in the query image.

The standard cross-entropy loss, L(m̂q,mq), between
the binary ground-truthmq and predicted query mask m̂q =
fθ(xs,ms, xq), is used for the end-to-end training of param-
eters θ of our deep architecture, θ∗ = argminθ L(m̂q,mq).

3.1. Training of Our Deep Architecture

Fig. 2 shows the episodic training of a part of our deep
architecture (without our second contribution which is not
trained) on a pair of support xs and query xq images. We
first use a CNN to extract feature maps Fs ∈ Rd×w×h
from xs, and feature maps Fq ∈ Rd×w×h from xq , where
d is the feature dimensionality, and w and h denote the
width and height of the feature map. Then, we average
Fs over the known foreground locations in ms, resulting
in the average class feature vector fs of the support image.
For this masked feature averaging, ms is down-sampled to
m̃s ∈ {0, 1}w×h with the size w × h of the feature maps,
and fs is estimated as

fs =
1

|m̃s|

wh∑
i=1

Fs,i m̃s,i. (1)



where |m̃s| =
∑
i m̃s,i is the number of foreground loca-

tions in m̃s. Next, we compute the cosine similarity be-
tween fs and every feature vector Fq,i from the query fea-
ture maps Fq . This gives a similarity map, σq ∈ [0, 1]w×h,
between the support and query image:

σq,i = cos(fs, Fq,i) =
fTs Fq,i

‖fs‖2 · ‖Fq,i‖2
, i = 1, . . . , w h.

(2)
We expect that σq provides informative cues for object seg-
mentation, as high values of σq,i indicate likely locations of
the target class in the query image.

Before we explain how to finally predict m̂q from σq and
Fq , in the following, we specify our first technical contribu-
tion aimed at extending the above framework.

Contribution 1: Feature Weighting. For learning more
discriminative features of the target class from a single (or
very few) support image(s), we introduce a regularization
that encourages high feature activations on the foreground
and simultaneoulsy low feature activations on the back-
ground of the support image. This is formalized as an op-
timization problem for maximizing a sum of relevant dif-
ferences between feature activations. Let φs∈Rd×1 denote
a vector of feature differences normalized over the fore-
ground and background areas in the segmentation map of
the support image as

φs =

wh∑
i=1

Fs,i

[
m̃s,i

|m̃s|
− 1− m̃s,i

wh− |m̃s|

]
, (3)

The relevance r ∈ Rd×1 of features in φs is estimated by
maximizing a sum of the feature differences:

maximize
r

φ>s r, s.t. ‖r‖2 = 1 . (4)

The problem in (4) has a closed-form solution:

r∗ =
φs
‖φs‖2

. (5)

We use the estimated feature relevance r∗ when comput-
ing the similarity map between the support and query im-
ages. Specifically, we modify the cosine similarity between
fs and Fq , given by (2), as

σ∗q,i = cos(fs, Fq,i, r
∗) =

(fs � r∗)T (Fq,i � r∗)
‖fs � r∗‖2 · ‖Fq,i � r∗‖2

,

(6)
where � is the element-wise product between two vectors.

Note that we account for feature relevance in both train-
ing and testing. As r∗ has a closed-form solution, it can
be computed very efficiently. Also, the modification of the
similarity map in (6) is quite simple and cheap to implement
in modern deep learning frameworks.

As shown in Fig. 2, in the final step of our processing, we
concatenate σ∗q and Fq together, and pass them to a network
with only two convolutional layers for predicting m̂q .

3.2. Contribution 2: Feature Boosting

In testing, the CNN is supposed to address a new ob-
ject class which has not been seen in training. To improve
generalization to the new class, in testing, we use a boosted
inference – our second contribution – inspired by the gradi-
ent boosting [10]. Alg.1 summarizes our boosted inference
in testing. Note that in testing parameters of the CNN and
convolutional layers remain fixed to the trained values.

As shown in Fig. 3, given a support image with ground-
truth ms and a query image, in testing, we predict not only
the query mask m̂q , but also the support mask m̂s using the
same deep architecture as specified in Sec. 3.1. m̂s is esti-
mated in two steps. First, we compute a similarity map, σ∗s ,
as a dot product between fs � r∗ and Fs,i � r∗, as in (6).
Second, we pass σ∗s and Fs to the two-layer convolutional
network for predicting m̂s. Third, we estimate the stan-
dard cross-entropy loss L(m̂s,ms), and iteratively update
the average class features as

fn+1
s = fns − ν ∂L(m̂n

s ,ms)/∂f
n
s , (7)

where ν is the learning rate. fns , n = 1, . . . , N , are ex-
perts that we use for predicting the corresponding query
masks m̂n

q , by first estimating the similarity map σ∗q,i =
cos(fns , Fq,i, r

∗), i = 1, ...wh, as in (6), and then passing
σ∗q and Fq to the two-layer network for computing m̂n

q .
Finally, we fuse the ensemble {m̂n

q : n = 1, . . . , N} into
the final segmentation, m̂q , as

m̂q =

N∑
n=1

m̂n
q ρ

n, (8)

Algorithm 1: Guided Ensemble Inference in Testing
Input: Fs, fs, Fq , ms, ν
Output: m̂q

// Guided ensemble of experts
1. Initialize: f1s = fs, E = {}, R = {};
2. for n = 1, . . . , N do

a. σ∗s,i = cos(fns , F
n
s,i, r

∗), i = 1, ...wh, as in (6) ;
b. m̂n

s = Conv(σ∗s , F
n
s );

c. ρn = IoU(m̂n
s ,ms);

d. Compute cross-entropy loss: L(m̂n
s ,ms);

e. fn+1
s = fns − ν ∂L(m̂n

s ,ms)/∂f
n
s ;

f. E = E ∪ {fns }, R = R ∪ {ρn},
end
// Inference using E and R
4. for n = 1, . . . , N do

a. σ∗q,i = cos(fns , Fq,i, r
∗), i = 1, ...wh, as in (6) ;

b. m̂n
q = Conv(σ∗q , Fq);

end
5. m̂q =

∑N
n=1 m̂

n
q ρ

n



where ρn denotes our estimate of the expert’s confidence
in correctly segmenting the target class, computed as the
intersection-over-union score between m̂n

s and ms:

ρn = IoU(m̂n
s ,ms). (9)

3.3. K-shot Setting

When the number of support images K > 1, prior work
[20, 21, 6, 32] predicts m̂k

q for each support image indepen-
dently, and then estimates m̂q as an average over these pre-
dictions, m̂q =

1
K

∑K
k=1 m̂

k
q . In contrast, our two contribu-

tions can be conveniently extended to the K-shot setting so
as to further improve our robustness, beyond the standard
averaging over K independent segmentations of the query.

Our contribution 1 is extended by estimating relevance
r ∈ Rd×1 of a more general difference vector of feature
activations defined as

φs =

K∑
k=1

wh∑
i

F ks,i

[
m̃k
s,i

|m̃k
s |
−

1− m̃k
s,i

wh− |m̃k
s |

]
(10)

Similar to (4) and (5), the optimal feature relevance has a
closed-form sulution r∗ = φs

‖φs‖2 . Note that we estimate r∗

jointly over all K support images, rather than as an average
of independently estimated feature relevances for each sup-
port image. We expect the former (i.e., our approach) to be
more robust than the latter.

Our contribution 2 is extended by having a more robust
update of fn+1

s than in (7):

fn+1
s = fns − ν ∂

K∑
k=1

L(m̂k
s ,m

k
s)/∂f

n
s , (11)

where L(m̂k
s ,m

k
s) is the cross entropy loss incurred for pre-

dicting the segmentation mask m̂k
s using the unique vector

fns given by (11) for every support image k, as explained in
Sec. 3.2. Importantly, we do not generate K independent
ensembles of experts {fns : n = 1, . . . , N}k=1,K for each
of the K support images. Rather, we estimate a single en-
semble of experts more robustly over all K support images,
starting with the initial expert f1s = 1

K

∑K
k=1 f

k
s .

4. Implementation Details and Complexity
Implementation. The CNN we use is a modified version

of either VGG-16 [27] or ResNet-101 [12]. Our CNN has
the last two convolutional layers modified so as to have the
stride equal to 1 instead of 2 in the original networks. This is
combined with a dilated convolution to enlarge the receptive
field with rates 2 and 4, respectively. So the final feature
maps of our network have stride = 8, which is 1/8 of the
input image size. For the two-layer convolutional network
(Conv) aimed at producing the final segmentation, we use

a 3 × 3 convolution with ReLU and 128 channels, and a
1× 1 convolution with 2 output channels – background and
foreground. It is worth noting that we do not use a CRF as
a common post-processing step [14].

For implementation, we use Pytorch [19]. Following the
baselines [32, 20, 21], we pretrain the CNN on ImageNet
[24]. Training images are resized to 512× 512, while keep-
ing the original aspect ratio. All test images keep their origi-
nal size. Training is done with the SGD, learning rate 7e−3,
batch size 8, and in 10,000 iterations. For the contribution 2,
the number of expertsN is analyzed in Sec. 5. For updating
fns in (7), we use Adam optimizer [13] with ν = 1e−2.

Complexity. In training, prior work [32, 20, 21]: (1)
Uses a CNN with complexity O(CNN) for extracting fea-
tures from the support and query images, (2) Computes the
similarity map with complexity O(d w h), and (3) [32] ad-
ditionally uses a convolutional network for segmenting the
query with complexity O(Conv). Note that O(Conv) =
O(d w h) as both the similarity map and convolutions in the
Conv network are computed over feature maps with the size
d×w×h. Also, note that O(d w h) is significantly smaller
than O(CNN). Our contribution 1 additionally computes
the feature relevance using the closed-form solution with a
linear complexity in the size of the feature maps O(d w h).
Therefore, our total training complexity is equal to that of
prior work [32, 20, 21]: O(Train) = O(CNN)+O(d w h).

In testing, complexity of prior work [32, 20, 21] is the
same as O(Train). Our contribution 2 increases complex-
ity in testing by additionally estimating the ensemble of N
segmentations of the query image. Therefore, in testing, our
complexity isO(Test) = O(CNN)+O(N d w h). Thus, in
testing, we increase only the smaller term of the total com-
plexity. For small N , we have that the first term O(CNN)
still dominates the total complexity. As we show in Sec. 5,
forN = 10, we significantly outperform the state of the art,
which justifies our slight increase in testing complexity.

5. Experiments
Datasets. For evaluation, we use two datasets: (a)

PASCAL-5i which combines images from the PASCAL
VOC 2012 [7] and Extended SDS [11] datasets; and (b)
COCO-20i which is based on the MSCOCO dataset [16].
For PASCAL-5i, we use the same 4-fold cross-validation
setup as prior work [26, 20, 6]. Specifically, from the
20 object classes in PASCAL VOC 2012, for each fold
i = 0, ..., 3, we sample five as test classes, and use the re-
maining 15 classes for training. Tab. 1 specifies our test
classes for each fold of PASCAL-5i. As in [26], in each
fold i, we use 1000 support-query pairs of test images sam-
pled from the selected five test classes.

We create COCO-20i for evaluation on a more challeng-
ing dataset than PASCAL-5i, since MSCOCO has 80 ob-
ject classes and its ground-truth segmentation masks have



Dataset Test classes
PASCAL-50 aeroplane, bicycle, bird, boat, bottle
PASCAL-51 bus, car, cat, chair, cow
PASCAL-52 diningtable, dog, horse, motorbike, person
PASCAL-53 potted plant, sheep, sofa, train, tv/monitor

Table 1. Evaluation on PASCAL-5i uses the 4-fold cross-
validation. The table specifies 5 test classes used in each fold
i = 0, ..., 3. The remaining 15 classes are used for training.

lower quality than those in PASCAL VOC 2012. To the
best of our knowledge, no related work has reported one-
shot object segmentation on MSCOCO. For evaluation on
COCO-20i, we use 4-fold cross-validation. From the 80
object classes in MSCOCO, for each fold i = 0, ..., 3, we
sample 20 as test classes, and use the remaining 60 classes
for training. Tab. 2 specifies our test classes for each fold
of COCO-20i. In each fold, we sample 1000 support-query
pairs of test images from the selected 20 test classes.

Figure 4. The mIoU of B+C1+C2 as a function of the number of
experts N in the one-shot setting on PASCAL-5i. Part 0 – Part 3
denote the four folds of cross-validation.

COCO-200 COCO-201 COCO-202 COCO-203

1 Person 2 Bicycle 3 Car 4 Motorcycle
5 Airplane 6 Bus 7 Train 8 Truck
9 Boat 10 T.light 11 Fire H. 12 Stop

13 Park meter 14 Bench 15 Bird 16 Cat
17 Dog 18 Horse 19 Sheep 20 Cow
21 Elephant 22 Bear 23 Zebra 24 Giraffe
25 Backpack 26 Umbrella 27 Handbag 28 Tie
29 Suitcase 30 Frisbee 31 Skis 32 Snowboard
33 Sports ball 34 Kite 35 B. bat 36 B. glove
37 Skateboard 38 Surfboard 39 T. racket 40 Bottle
41 W. glass 42 Cup 43 Fork 44 Knife
45 Spoon 46 Bowl 47 Banana 48 Apple
49 Sandwich 50 Orange 51 Broccoli 52 Carrot
53 Hot dog 54 Pizza 55 Donut 56 Cake
57 Chair 58 Couch 59 P. plant 60 Bed
61 D. table 62 Toilet 63 TV 64 Laptop
65 Mouse 66 Remote 67 Keyboard 68 Cellphone
69 Microwave 70 Oven 71 Toaster 72 Sink
73 Fridge 74 Book 75 Clock 76 Vase
77 Scissors 78 Teddy 79 Hairdrier 80 Toothbrush

Table 2. Evaluation on COCO-20i uses the 4-fold cross-validation.
The table specifies 20 test classes used in each fold i = 0, ..., 3.
The remaining 60 classes are used for training.

Phase B B+C1 B+C2 B+C1+C2
VGG Train 171 172 171 172

Test 148 150 211 211
ResNet Train 386 388 386 388

Test 268 280 360 360
Table 3. Training and test times per example in milliseconds, with
1 Nvidia 1080 Ti GPU on PASCAL-5i, for different ablations indi-
cated in the top row. Using C2 increases only the test time. Specif-
ically, we use K = 10 in our experiments

Metrics. As in [26, 20, 6], we use the mean intersection-
over-union (mIoU) for quantitative evaluation. IoU of class
l is defined as IoUl = TPl

TPl+FPl+FNl
, where TP, FP and

FN are the number of pixels that are true positives, false
positives and false negatives of the predicted segmentation
masks, respectively. The mIoU is an average of the IoUs
of different classes, mIoU = 1

nl

∑
l IoUl, where nl is the

number of test classes. We report the mIoU averaged over
the four folds of cross-validation.

Baselines, Ablations, and Variants of Our Approach.
As a baseline B, we consider the approach depicted in
the gray box “PRIOR WORK” in Fig. 2 and specified in
Sec. 3.1 before our contribution 1. We also consider sev-
eral ablations of our approach: B+C1 – extends the baseline
B with contribution 1 only; B+C2 – extends the baseline
B with contribution 2 only; and B+C1+C2 – represents our
full approach. These ablations are aimed at testing the ef-
fect of each of our contributions on performance. In addi-
tion, we consider two alternative neural networks – VGG
16 and ResNet 101 – as the CNN for extracting image fea-
tures. VGG 16 has also been used in prior work [26, 20, 6].
We also compare with an approach called Upper-bound that
represents a variant of our full approach B+C1+C2 trained
such that both training and testing datasets consist of the
same classes. As Upper-bound does not encounter new
classes in testing, it represents an upper bound of our full
approach. Finally, in the K-shot setting, we consider an-
other baseline called Average. It represents our full ap-
proach B+C1+C2 that first independently predicts segmen-
tations of the query image for each of the K > 1 support
images, and then averages all of the predictions. Our ap-
proach for the K-shot setting is called Our-K-shot, and dif-
fers from Average in that we rather jointly analyze all of
the K support images than treat them independently, as ex-
plained in Sec. 3.3.

Training/testing time. The training/testing time is re-
ported in Tab. 3. We can see that the contribution 1 just
adds very small computational overhead over the baseline
but significantly outperforms the baseline. Additionally, al-
though contribution 2 has substantially larger testing time
(about 40% with VGG backbone and 35% with ResNet
backbone compare to the baseline), but it yields more sig-
nificant performance gain than contribution 1 does.



Backbone Methods PASCAL-50 PASCAL-51 PASCAL-52 PASCAL-53 Mean
VGG 16 OSLSM [26] 33.60 55.30 40.90 33.50 40.80

co-FCN [20] 36.70 50.60 44.90 32.40 41.10
PL+SEG+PT [6] - - - - 42.70
SG-One [32] 40.20 58.40 48.40 38.40 46.30

VGG 16 B 42.39 57.43 47.84 42.55 47.55
B + C1 43.34 56.72 50.64 44.01 48.68
B + C2 46.49 60.27 51.45 46.67 51.22
B + C1 + C2 47.04 59.64 52.61 48.27 51.90
Upper-bound 51.33 64.20 61.72 58.02 58.82

ResNet 101 B 43.24 60.82 52.58 48.57 51.30
B + C1 46.06 61.22 54.90 48.65 52.71
B + C2 47.46 63.76 54.11 51.50 54.21
B + C1 + C2 51.30 64.49 56.71 52.24 56.19
Upper-bound 61.34 72.85 70.20 67.90 68.07

Table 4. Mean IoU of one-shot segmentation on PASCAL-5i. The best results are in bold.

Backbone Methods PASCAL-50 PASCAL-51 PASCAL-52 PASCAL-53 Mean
VGG 16 OSLSM [26] 35.90 58.10 42.70 39.10 43.95

co-FCN [20] 37.50 50.00 44.10 33.90 41.38
PL+SEG+PT [6] - - - - 43.70
SG-One [32] 41.90 58.60 48.60 39.40 47.10

VGG 16 Average 48.01 59.43 54.53 48.50 52.62
ResNet 101 Average 51.72 64.99 61.05 53.34 57.78
VGG 16 Our-K-shot 50.87 62.86 56.48 50.09 55.08
ResNet 101 Our-K-shot 54.84 67.38 62.16 55.30 59.92

Table 5. Mean IoU of five-shot segmentation on PASCAL-5i. The best results are in bold.

One-shot Segmentation. Tab. 4 compares our
B+C1+C2 with the state of the art, ablations, and afore-
mentioned variants in the one-shot setting on PASCAL-
5i. B+C1+C2 gives the best performance for both VGG
16 and ResNet 101, where the latter configuration signifi-
cantly outperforms the state of the art with the increase in
the mIoU averaged over the four folds of cross-validation by
13.49%. Relative to B, our first contribution evaluated with
B+C1 gives relatively modest performance improvements.
From the results for B+C2, our second contribution pro-
duces larger gains in performance relative to B and B+C1,
suggesting that contribution 2 in and of itself is more critical
than contribution 1. Interestingly, combining both contribu-
tion 1 and contribution 2 significantly improves the results
relative to using either contribution only. We also observe
that performance of our B+C1+C2 for some folds of cross-
validation (e.g., PASCAL-52 and PASCAL-53) comes very
close to that of Upper-bound, suggesting that our approach
is very effective in generalizing to new classes in testing.
Fig. 4 shows the mIoU of B+C1+C2 as a function of the
number of experts N in the one-shot setting on PASCAL-
5i. As can be seen, for N ≥ 10 our approach is not sensi-
tive to a particular choice of N . We use N = 10 as a good
trade-off between complexity and accuracy.

Figure 5. Examples from PASCAL-50. Top row: the support im-
ages with ground-truth segmentations in yellow. Middle row: the
query images and segmentations in red predicted by B+C1+C2 in
the one-shot setting. Bottom row: the query images and segmen-
tations in red predicted by Our-K-shot in the five-shot setting (the
remaining four support images are not shown). Our-K-shot in gen-
eral improves performance over B+C1+C2, as Our-K-shot effec-
tively uses the higher level of supervision in the five-shot setting.
Best viewed in color.

Five-shot Segmentation. Tab. 5 compares Our-K-shot
with the state of the art and Average in the five-shot setting



Backbone Methods COCO-200 COCO-201 COCO-202 COCO-203 Mean
VGG 16 B 12.13 11.65 14.86 22.09 13.26

B+C1 15.65 13.91 15.36 23.50 17.11
B+C2 13.28 14.91 19.50 23.22 17.73
B+C1+C2 18.35 16.72 19.59 25.43 20.02

ResNet 101 B 13.11 14.80 14.54 26.48 17.23
B+C1 15.48 14.76 16.85 28.35 18.86
B+C2 14.09 17.82 18.46 27.85 19.56
B+C1+C2 16.98 17.98 20.96 28.85 21.19
Table 6. The mIoU of ablations in the one-shot setting on COCO-20i.

Backbone Methods COCO-200 COCO-201 COCO-202 COCO-203 Mean
VGG 16 Average 20.76 16.87 20.55 27.61 21.45
ResNet 101 Average 18.73 18.46 21.27 29.20 21.92
VGG 16 Our-K-shot 20.94 19.24 21.94 28.39 22.63
ResNet 101 Our-K-shot 19.13 21.46 23.93 30.08 23.65

Table 7. The mIoU of B+C1+C2 in the five-shot setting on COCO-20i.

on PASCAL-5i. Our-K-shot gives the best performance for
both VGG 16 and ResNet 101, where the latter configura-
tion significantly outperforms the state of the art with the
increase in the mIoU averaged over the four folds of cross-
validation by 15.97%. In comparison with Average, the
joint analysis of K support images by Our-K-shot appears
to be more effective, as Our-K-shot gives superior perfor-
mance in every fold of cross-validation.

Results on COCO-20i. Tab. 6 and Tab. 7 shows our
ablations’ results in the one-shot and five-shot settings on
COCO-20i. The former results are obtained with B+C1+C2
and the latter, with Our-K-shot. The lower values of mIoU
relative to those in Tab. 4 and Tab. 5 indicate that COCO-
20i is more challenging than PASCAL-5i. Surprisingly, in
fold COCO-200, B+C1+C2 with VGG 16 outperforms its
counterpart with ResNet 101 in the one-shot setting. The
same holds for Our-K-shot in the five-shot setting. On av-
erage, using ResNet 101 gives higher results. As expected,
the increased supervision in the five-shot setting in general
gives higher accuracy than the one-shot setting.

Qualitative Results. Fig. 5 shows challenging examples
from PASCAL-50, and our segmentation results obtained
with B+C1+C2 with ResNet 101 for the one-shot setting,
and Our-K-shot with ResNet 101 for the five-shot setting.
In the leftmost column, the bike in the support image has
different pose from the bike in the query image. While this
example is challenging for B+C1+C2, our performance im-
proves when using Our-K-shot. In the second column from
left, the query image shows a partially occluded target – a
part of the bottle. With five support images, Our-K-shot im-
proves performance by capturing the bottle’s shadow. The
third column from left shows that the bike’s features in the
support image are insufficiently discriminative as the per-
son also gets segmented along with the bike. With more ex-

amples, the bike is successfully segmented by Our-K-shot.
In the rightmost column, the plane in the support image is
partially occluded, and thus in the query image B+C1+C2
can only predict the head of the airplane while Our-K-shot’s
predicted segment covers most of the airplane.

6. Conclusion

We have addressed one-shot and few-shot object seg-
mentation, where the goal is to segment a query image,
given a support image and the support’s ground-truth seg-
mentation. We have made two contributions. First, we have
formulated an optimization problem that encourages high
feature responses on the foreground and low feature activa-
tions on the background for more accurate object segmen-
tation. Second, we have specified the gradient boosting of
our model for fine-tuning to new classes in testing. Both
contributions have been extended to the few-shot setting
for segmenting the query by jointly analyzing the provided
support images and their ground truths, rather than treating
the support images independently. For evaluation, we have
compared with prior work, strong baselines, ablations and
variants of our approach on the PASCAL-5i and COCO-20i

datasets. We significantly outperform the state of the art on
both datasets and in both one-shot and five-shot settings.
Using only the second contribution gives better results than
using only the first contribution. Our integration of both
contributions gives a significant gain in performance over
each.
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