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Abstract

Images play a crucial role for people to express their
opinions online due to the increasing popularity of social
networks. While an affective image retrieval system is use-
ful for obtaining visual contents with desired emotions from
a massive repository, the abstract and subjective charac-
teristics make the task challenging. To address the prob-
lem, this paper introduces an Attention-aware Polarity Sen-
sitive Embedding (APSE) network to learn affective repre-
sentations in an end-to-end manner. First, to automatically
discover and model the informative regions of interest, we
develop a hierarchical attention mechanism, in which both
polarity- and emotion-specific attended representations are
aggregated for discriminative feature embedding. Second,
we present a weighted emotion-pair loss to take the inter-
and intra-polarity relationships of the emotional labels into
consideration. Guided by attention module, we weight the
sample pairs adaptively which further improves the perfor-
mance of feature embedding. Extensive experiments on four
popular benchmark datasets show that the proposed method
performs favorably against the state-of-the-art approaches.

1. Introduction

With the increasing popularity of online social networks,

people are more likely to express their opinions through

posting images on social platforms such as Flickr and In-

stagram. Recently, affective image analysis that studies the

emotional response of humans on visual stimuli has drawn

attention from both psychologists [38, 49, 32] and computer

vision researchers [30, 63] due to its wide applicability, e.g.

opinion mining [36, 39], image captioning [8, 31], etc.

How to search affective images based on human per-

ception is a meaningful yet challenging task. Various

emotion-based image retrieval (EBIR) systems have been

proposed [54, 24, 34, 65]. Compared to content-based

image retrieval (CBIR), EBIR involves high-level abstract
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Figure 1. Illustration of retrieving affective images in the embed-

ding space. The two regions in the space represent binary senti-

ment polarities, i.e. positive and negative. For the given query im-

age, the retrieved image from exactly the same emotion category

is shown in a green box, while the images from the same polarity

but different category and the opposite polarity are in blue and red

boxes, respectively.

semantics and human perception subjectivity. To bridge

the “affective gap” between low-level features and high-

level affective semantics, some hand-crafted features are

proposed according to psychology and art theory [30, 68].

To capture the semantic similarity among affective images,

Zhao et al. [72] employ multi-graph learning for affective

image retrieval based on features of different levels includ-

ing low-level color, texture, and other high-level features

that contribute to expressing image emotions. More re-

cently, deep learning has been harnessed to predict emo-

tions evoked by images via embedding images into a fea-

ture space [58, 41, 52, 47], which results in breakthrough

performance. Pang et al. [37] develop a unit density

model over the multi-modal space using a deep Boltzmann

machine, which enables emotion-oriented cross-modal re-

trieval. Yang et al. [57] propose a multi-task framework

to simultaneously optimize the classification and retrieval

losses, in which the performances of both tasks are boosted.



However, there are two important characteristics in vi-

sual emotion (shown in Fig. 1), which are neglected in exist-

ing methods for affective image retrieval. On the one hand,

informative regions of interest are crucial to image emo-

tion (see the heat map of each sample image) [12, 3, 50],

which can evoke emotional stimuli to people; on the other

hand, there exist sentiment polarities in emotional label

space other than concrete categories. Note that polarity in-

dicates the coarse-level classes {positive, negative}, and the

concrete-level emotions are defined as {amusement, con-

tentment, awe, excitement, fear, anger, disgust, sadness} as

per [32, 63]. In this paper, the term ‘class’ is utilized to

mean both sentiment polarity and emotion category. Given

a query image, our goal is to rank the retrieved images ac-

cording to the relationship with the given image in the fol-

lowing order: the same emotion category, the same polarity

but different emotion categories, different polarity.

In the paper, we propose an attention-aware polarity sen-

sitive embedding (APSE) network for affective image re-

trieval according to aforementioned characteristics of visual

emotion. In detail, there exists a correlation between senti-

ment polarity and low-level features [42, 29, 68], while spe-

cific emotion categories are mainly determined by semantic

content. Therefore, in the attention module, we utilize the

polarity-specific attention in lower layers of the network,

and exploit emotion-specific attention in higher layers. In

the embedding process, we introduce a polarity sensitive

feature embedding strategy based on the proposed weighted

emotion-pair (WEP) loss. We separate binary sentiment po-

larities in the embedding space, while also effectively dis-

tinguishing different emotions in the same polarity. Guided

by the attention module, hard negative examples are im-

posed stronger penalty so as to improve the learning per-

formance. The unified architecture is optimized by the total

loss consisting of WEP and attention losses to learn dis-

criminative feature embedding.

Our contributions are twofold. 1) We propose to take

multi-level attended local features into account for affec-

tive image retrieval, based on the observation that low-level

and high-level image features concern different levels of the

emotion hierarchy. 2) We introduce an attention-aware po-

larity sensitive embedding (APSE) network, which takes the

inter- and intra-polarity relationships of the emotional labels

into consideration. Our proposed WEP loss effectively con-

nects the attention module and embedding process for more

effective learning. Extensive experiments demonstrate the

effectiveness of the proposed method.

2. Related Work

2.1. Visual Emotion Analysis

In the field of visual emotion analysis, most existing

methods focus on emotion prediction [73, 35, 70, 57, 62,

69, 40, 23]. Early work uses a variety of hand-crafted fea-

tures [30, 60] including shape features [29] and principles-

of-art features [68] to represent the emotions evoked by

images. In addition, Borth et al. [2] propose adjective

noun pairs (ANP) to bridge the affective gap between low-

level features and high-level emotion semantics. With ex-

tensive applications of deep learning models, numerous

methods [52, 41, 74] exploit convolutional neutral net-

works (CNNs) to extract deep features for emotion rep-

resentations, which perform well on image emotion clas-

sification [6, 56, 58], emotion label distribution predic-

tion [71, 67], and affective image retrieval [72].

While many methods have been devoted to image emo-

tion prediction, far less attention is paid to affective image

retrieval. Wang et al. [54] propose an EBIR system that

allows users to perform retrieval using sentiment seman-

tic words, and the system is further improved for different

tasks [24, 34]. Zhao et al. [72] utilize multi-graph learning

to retrieve affective images that are similar to the query im-

age in emotion. A deep framework which simultaneously

optimizes the classification and retrieval tasks is proposed

in [57]. Different from the existing methods, we develop a

polarity sensitive embedding method based on multi-level

attended features for affective image retrieval.

2.2. Visual Attention Mechanism

Attention mechanism is widely used in various visual

tasks [44, 55, 1, 66, 5, 4, 11], since it can find image re-

gions that play a decisive role in networks. Wang et al. [51]

train deep residual networks for image classification by in-

troducing an attention based learning method. SCA-CNN

network integrating spatial and channel-wise attention is

proposed in [4] for image captioning. According to psycho-

logical theory [50, 12], affective content is easier to hold

human attention than non-affective content. Unlike specific

salient objects which have well-defined boundaries, the re-

gion arousing emotion may be ambiguous and abstract [56].

For affective images, prior methods [59, 61] detect emo-

tional attention regions from numerous candidate bounding

boxes, increasing the computational burden. Our method

generates soft attention maps with the single shot based on

the feature activations in an end-to-end manner. Moreover,

we integrate features from multiple layers and build a hi-

erarchical attention mechanism for learning robust repre-

sentations in the embedding space. That is, both polarity-

specific features from lower layers and emotion-specific

features from higher layers are combined together in our

framework.

2.3. Feature Embedding Learning

Recently, numerous methods have utilized embedding

learning to measure image similarity for various tasks [28,

9, 17, 64, 53, 20]. Based on the popular pairwise loss [10],
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Figure 2. Pipeline of the proposed approach. In the weighted emotion-pair (WEP) loss, we employ similar emotion categories in the FI

dataset [63] with the number of categories N = 8. Here, four categories are positive and the other four are negative. The details of the

process of generating attention maps are presented in Fig. 3. Att.1 and Att.2 represent polarity-specific attention and emotion-specific

attention, respectively. V p and V e mean polarity and emotion-level weight matrices for sample pairs. CLB denotes cross-level bilinear

operation. fi and f+
i represent the features of anchor point and positive example from the ith category, respectively.

Song et al. [33] utilize a matrix consisting of pairwise dis-

tances of the mini-batch to create a loss function which in-

corporates all samples to form a lifted embedding structure.

In order to produce effective training samples, Harwood et
al. [18] conduct a smart mining procedure to train the model

effectively. In addition, Duan et al. [15] employ deep ad-

versarial learning to generate hard negatives from easy neg-

atives for building more robust models. Motivated by the

fact that emotional classes have a hierarchical relationship,

i.e., from coarse polarity to concrete emotions, we develop

polarity-sensitive WEP loss to measure the similarity of the

query and the retrieved images.

3. Methodology

We propose APSE network which can be trained in an

end-to-end manner. It contains two main closely related

components, as shown in Fig. 2. First, the proposed method

integrates polarity- and emotion-specific attended features

extracted by hierarchical attention mechanism (Sec. 3.1).

Second, we learn polarity-sensitive and discriminative fea-

ture embedding by optimizing WEP loss guided by the at-

tention module (Sec. 3.2).

3.1. Hierarchical Attention Mechanism

In addition to the regions for specific emotions obtained

from higher layers in the deep network, we also learn the at-

tended regions for specific polarities from lower layers. We

propose a simple yet effective attention mechanism (Fig. 3),

whose module consists of attention head and output head,

which is applied to both attention levels.

The attention head receives the lth level feature activa-

tions F l ∈ R
c×h×w as input, and outputs Kl attention

maps, where c, h and w are the number of channels, and

the height and width of the feature activations, and Kl rep-

resents the number of corresponding labels for layers at the

lth level. First, we sum up the received feature activation

tensor through the channel direction. Thus, an h × w 2-D

aggregation map Al is derived from 3-D feature activations

F l, i.e., Al =
∑c

n=1 F
l
n. Then a spatial attention mask Zl

is obtained by spatial-wise softmax operation on Al. Based

on Zl, we implement spatial-wise attention on the feature

activations F l resulting in spatially-attended feature maps,

i.e., F̂ l = F l �Zl, where � denotes Hadamard Product by

broadcasting, i.e. repeating Zl for each channel of F l. Then

a 1× 1 conv layer is applied to reduce the dimension of F̂ l

to Kl × h × w, denoted as Sl ∈ R
Kl×h×w, with each 2-D

feature activation corresponding to a sentiment polarity or

specific emotion category depending on the level. Sl is put

through a global average pooling layer and a softmax layer

successively, resulting in confidence score vector Cl whose

elements lie in the range of [0, 1] and sum to 1.

The output head at the lth level receives 2-D feature acti-
vations Sl and corresponding confidence scores. Each con-
fidence score c can be regarded as the degree of tendency
towards the corresponding class. Therefore, final attention
map U is obtained by adding up all 2-D feature activations
Sj weighted by confidence scores:

U = norm(
K∑

j=1

cjSj), (1)

where norm denotes the normalization operation. Note that
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Figure 3. Overview of attention map generation. The class-aware

activation and corresponding confidence score are derived in the

attention head. In the output head, the attention map is obtained

by weighting each activation map. In the lower layers, the atten-

tion module generates a polarity-specific attention map, whereas

an emotion-specific attention map is generated in higher layers.

K = 2 in lower layers means binary sentiment polarities,
while K = 8 in higher layers denotes eight emotion cate-
gories in Mikels’ wheel [32]. Afterward, U is element-wise

multiplied with F̂ by broadcasting so as to generate dis-

criminative attended features Fw = F̂ �U . Based on labels
of different hierarchies, we can assign different constraints
in the same form on layers of different depths. Therefore,
the attention loss can be drawn with the following unified
formula:

Latt = − 1

M

M∑
m=1

K∑
j=1

1[zm = j] log cj , (2)

where 1[s] = 1 if the condition s is true, and 0 otherwise.

M denotes the number of input images, and zm the corre-

sponding label ID of the mth input image Im. The attention

loss is exploited in both lower and higher layers simultane-

ously. What is different is that lower layers are supervised

by binary polarities, while higher layers are supervised by

eight specific emotion categories.

The features from different layers put particular empha-

sis on different information [41, 52, 74]. For the sake of

integrating polarity- and emotion-specific attended features

effectively, we use the bilinear operation [26] to make them

interact with each other. We first downsample attended fea-

ture activation output from the low-level layer to the size

of the attended feature activations from the high-level layer.

Then we utilize the cross-level bilinear operation (CLB) to

model the interactions of features of different levels and es-

tablish pairwise correlations between the channels.

3.2. Polarity Sensitive Embedding Learning

In this section, considering the polarity characteristic of

sentiment, we propose the polarity sensitive emotion-pair

(EP) loss inspired by N-pair loss. In the embedding process,

sample pairs are further adaptively weighted based on con-

fidence scores from the attention module, generating WEP

loss. Specifically, the harder anchor-negative pairs are to

separate, the higher the weight of them should be, so as to

augment their proportion when training the network.

Review on N-pair loss. Given N categories, the N-pair
loss function proposed in [46] optimizes to identify a pos-
itive example from N − 1 negative examples. Define{
(f1, f

+
1 ), · · · , (fN , f+

N )
}

as N pairs of convolution fea-

tures from N different categories, where fi denotes the ith

category anchor point, and f+
i represents a positive exam-

ple of the ith category. Meanwhile, f+
i can also be regarded

as a negative example of the jth category (∀i �= j). The
value of f�f+ has positive correlation with the similarity
between f and f+. Therefore, the N-pair loss function can
be formulated as

Lnp =
1

N

N∑
i=1

log(1 +
∑
i �=j

exp(f�
i f+

j − f�
i f+

i )). (3)

EP loss. In general, N-pair loss can embed features ef-
fectively and efficiently. However, for affective image re-
trieval, the polarity characteristic cannot be considered by
the approach directly. Therefore, it is essential to differ-
entiate different negative examples based on their polarity
when learning feature embedding. More specifically, im-
age features from the same polarity should be more similar
than those from opposite polarity. Therefore, our proposed
inter-polarity loss is formulated as

Linter =
1

N

N∑
i=1

log(1 + exp(
1

NQi

∑
j∈Qi

f�
i f+

j

− 1

NPi

∑
j∈Pi,i �=j

f�
i f+

j )),

(4)

where Pi and Qi denote the sets of emotion categories with

the same and opposite polarities to the anchor from the ith

category, respectively. NPi and NQi are the numbers of the

corresponding categories.

The inter-polarity loss is very important for affective im-
age retrieval, because it can largely avoid dramatic failure
that the retrieved result has many images with opposite sen-
timent polarity, which may cause unpleasant user experi-
ence. That is, the inter-polarity loss ensures the returned
images are consistent with query images in sentiment po-
larity. Further, the more challenging task is to learn dis-
criminative feature embedding within the same polarity. To
achieve this, we introduce a new intra-polarity loss to dif-
ferentiate similar categories in the same polarity as follows:

Lintra =
1

N

N∑
i=1

log(1 +
∑

j∈Pi,i �=j

exp(f�
i f+

j − f�
i f+

i )). (5)

Therefore, the EP loss is obtained by combining inter-
polarity loss and intra-polarity loss as:

Lep = Linter + Lintra. (6)



Weighting sample pairs. Given an affective image I, we

can obtain its confidence scores regarding both polarity and

emotion as demonstrated in Sec. 3.1. For an anchor Ia
i from

the ith category and one of its negative samples In
j from

the jth category, a higher confidence of Ia
i w.r.t. the jth

category or In
j w.r.t. the ith category denotes that the pair

is harder to separate. Consequently, we assign a stronger

penalty term on this pair in the training process.
Specifically, cpij and ceij represent the confidences of Ia

i

w.r.t. the jth category in polarity- and emotion-level, while

c+p
ij and c+e

ij represent the confidences of In
i w.r.t. the jth

category in polarity- and emotion-level. The weights are
formed as

vpij = exp(cpij) · exp(c+p
ji ), (7)

veij = exp(ceij) · exp(c+e
ji ), (8)

where vpij denotes the polarity-level weight of the pair con-
structed by Ia

i and In
j , and veij denotes the emotion-level

weight of the pair constructed by Ia
i and In

j . Note that vpij
will be set to be 1 if the ith and jth categories belong to
the same polarity. Then vpij and veij form the weight matrix
V p and V e respectively as shown in Fig. 2, whose diago-
nal elements are set to 1 (i.e. vpii = 1, veii = 1). The final
weight ṽij = vpij · veij . The value of ṽij (∀i �= j) determines
the importance during learning. We set the weight of any
anchor-positive pair to be 1, i.e., ṽii = 1. Therefore, we
introduce WEP (weighted EP) loss:

Lwep =
1

N

N∑
i=1

log[(1 + exp(
1

NQi

∑
j∈Qi

ṽijf
�
i f+

j

− 1

NPi

∑
j∈Pi,i �=j

ṽijf
�
i f+

j ))(1 +
∑

j∈Pi,i �=j

exp(ṽijf
�
i f+

j

− f�
i f+

i ))].
(9)

We define the total loss consisting of attention and WEP
losses to optimize the unified embedding network simulta-
neously:

Ltotal = λLwep + (1− λ)Latt, (10)

where λ is the weight to control the trade-off between two

types of losses.

4. Experiments
In this section, we conduct extensive experiments on the

most commonly used affective datasets to evaluate the pro-

posed algorithm against the state-of-the-art methods.

4.1. Datasets

We perform our experiments on four popular datasets,

including Flickr and Instagram (FI) [63], Subset A of IAPS

(IAPSa) [32], Artistic dataset (ArtPhoto) [30], and Abstract

paintings (Abstract) [30]. FI is collected from social web-

sites by querying Mikels’ eight emotions as keywords, re-

sulting in 23,308 labeled images. IAPSa consists of 395

images collected from International Affective Picture Sys-

tem (IAPS) [32], while ArtPhoto contains 806 artistic pho-

tographs searched by emotion categories. The Abstract is

composed of 228 peer rated abstract paintings which con-

tain abundant color and texture.

4.2. Evaluation Metrics

Following previous work [72, 57], we adopt the follow-

ing metrics as our evaluation criteria. The mean precision

of the retrieval results are represented by mean Average

Precision (mAP). We concern both mAP of eight emotion-

specific categories (mAP8) and mAP of the two polarities

(mAP2). Nearest neighbor rate (NN) denotes the proportion

of the rank-1 sample belonging to the same category with

the query. First tier (FT) and second tier (ST) both repre-

sent the recall of the retrieval results. FT denotes the top-n
recall, while ST is defined as the top-2n recall. Here, n is

the number of all the positive examples. Discounted cumu-

lative gain (DCG) [21] measures the importance of different

positions of relevant samples in the ranking sequence of re-

turned results. F1 score is a measure combining Precision

and Recall, as their harmonious mean. Average normalized

modified retrieval rank (ANMRR) [16] considers the rank-

ing sequence of relevant images within the retrieved results.

Smaller values of ANMRR represent better retrieval results,

while for other evaluation metrics the larger the better.

4.3. Baselines

We compare the proposed method with different base-

lines. First, we extract low-level local descriptors (i.e.

SIFT and HOG), whose dimensions are fixed to 1000. We

also extract mid-level features, including 1200-dimensional

ANP detectors of SentiBank [2], 2089-dimensional features

of DeepSentiBank [7], and 4342-dimensional features of

MVSO (English) [22]. For CNN methods, we fine-tune

deep models with softmax loss based on different architec-

tures, including AlexNet, VggNet, GoogleNet, and ResNet-

50, and extract the features from the last FC layer for re-

trieval. Also, we train different embedding learning meth-

ods based on ResNet-50, including contrastive loss [10],

triplet loss [43], N-pair loss [46], and retrieve images using

2048-dimensional features. We also compare with the state-

of-the-art methods for affective image retrieval, including

Yang et al. [57] and Multi-Graph [72].

4.4. Implementation Details

Following [57], each image in the test set of FI dataset is

treated as a query image to retrieve relevant images in the

training set. For small-scale datasets, we use each image to

retrieve the rest of images. We rank the retrieved images

based on the similarity between them and the query image.

The proposed framework is based on ResNet-50 [19]

pre-trained on the ImageNet [14]. The original images are



Table 1. Retrieval performance on the FI dataset. We evaluate the proposed method against different algorithms, including traditional

methods (TRA), existing CNN models (CNN), and embedding learning methods (EMB). Note that ‘S’ denotes using softmax loss for

training, and ‘Dim.’ represents the dimension of features.

Methods Dim. mAP8 ↑ mAP2 ↑ FT↑ ST↑ NN↑ DCG↑ ANMRR↓
SIFT [27] 1000 0.1705 0.5913 0.1830 0.3513 0.2462 0.4507 0.6553

TRA HOG [13] 1000 0.2115 0.6002 0.1926 0.3620 0.3225 0.4639 0.6424

Sentibank [2] 1200 0.2337 0.6168 0.2422 0.4232 0.3990 0.5223 0.5934

DeepSentiBank [7] 2089 0.2559 0.6247 0.2658 0.4468 0.4583 0.5509 0.5655

MVSO [22] 4342 0.2798 0.6366 0.2877 0.4761 0.5158 0.5731 0.5346

AlexNet (S) [25] 4096 0.2709 0.6328 0.2795 0.4693 0.5038 0.5633 0.5463

CNN VggNet (S) [45] 4096 0.3013 0.6552 0.3007 0.4887 0.5511 0.5860 0.5161

GoogleNet (S) [48] 2048 0.3583 0.6773 0.3571 0.5619 0.5816 0.6403 0.4517

ResNet (S) [19] 2048 0.4380 0.7068 0.4286 0.6079 0.6084 0.6816 0.3998

WSCNet [56] 4096 0.5060 0.7381 0.4653 0.6223 0.6358 0.6910 0.3872

EMB

Contrastive loss (ResNet) [10] 2048 0.3842 0.6972 0.3768 0.5702 0.5711 0.6508 0.4396

Triplet loss (ResNet) [43] 2048 0.5130 0.7120 0.4864 0.6216 0.5710 0.6843 0.3860

N-pair loss (ResNet) [46] 2048 0.5217 0.8062 0.4785 0.7075 0.5341 0.7310 0.3089

Yang et al. (GoogleNet) [57] 640 0.4885 0.8098 0.4834 0.6978 0.6023 0.7802 0.3135

Yang et al. (ResNet) [57] 544 0.6395 0.8081 0.5995 0.7354 0.6164 0.7866 0.2518

APSE (ours) 512 0.7344 0.9079 0.6985 0.7817 0.6613 0.8114 0.2201

(a)  Artphoto (b)  Abstract (c) IAPSa
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Figure 4. Retrieval performance on the three small datasets (Artphoto, Abstract, and IAPSa).
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Figure 5. Effect of λ for total loss on mAP8 and mAP2 testing on

FI dataset. Note that λ is the weight of Lwep, and 1 − λ is the

weight of Latt.

resized to 256 × 256 followed by a center 224 × 224 crop-

ping. We initialize the learning rate as 0.001 and drop down

one-tenth every 40 epochs. The gross number of epochs is

100 for fine tuning all layers by stochastic gradient descent

(SGD) with a batch size of 32 ensuring images from each

emotion. We optimize the parameters of the framework by

SGD with the weight decay of 0.0005 and a momentum of

0.9. Considering both effectiveness and consumption of pa-

rameters, we choose the features from last layer of conv3

and conv5 to represent the low-level and high-level fea-

tures, respectively. For contrastive and triplet losses, we

set the margin γ to 0.4 and 0.2 respectively. We adopt the

semi-hard triplet sampling method in triplet loss. In our ar-

chitecture, the dimension of the output embedding feature

after being compacted is 512 according to the experience

from [26]. The FI dataset is split randomly into 80% train-

ing, 5% validation, and 15% testing sets. For small-scale

datasets, we transfer the parameters of the network fine-

tuned on FI to them. 5-fold validation is performed and

the average performance is reported.

4.5. Retrieval Performance

We evaluate the retrieval performance with different

methods on four affective datasets. As shown in Tab. 1,



Table 2. Ablation experiments on the FI dataset. The fundamental framework is ResNet-50 pre-trained on ImageNet. Here, AT represents

the attention loss consisting of two softmax losses. HA denotes hierarchical attention, and SA denotes the emotion-specific attention on

the last convolutional layer. CLB represents cross-level bilinear operation. SO means using the feature from the last convolution layer, and

MO means using the feature from the last layer from both conv3 and conv5, respectively. When CLB is not selected, the features from

different layers are concatenated directly. The weights of all parts in the combined loss are the same.

AT N-pair EP WEP SA HA CLB SO MO mAP8 ↑ mAP2 ↑ FT↑ ST↑ NN↑ DCG↑ ANMRR↓
√ √

0.4380 0.7068 0.4286 0.6079 0.6084 0.6816 0.3998√ √
0.5217 0.8062 0.4785 0.7075 0.5341 0.7310 0.3089√ √
0.5680 0.8558 0.5247 0.7187 0.5623 0.7602 0.2789√ √ √
0.6225 0.7816 0.5779 0.7255 0.5975 0.7451 0.2623√ √ √
0.6430 0.8241 0.6036 0.7485 0.6110 0.7863 0.2551√ √ √
0.6680 0.8325 0.6365 0.7504 0.6278 0.7885 0.2421

√ √ √ √
0.6938 0.8605 0.6417 0.7604 0.6290 0.7883 0.2396√ √ √ √
0.7051 0.8733 0.6696 0.7595 0.6393 0.7952 0.2388√ √ √ √ √
0.7190 0.8912 0.6824 0.7677 0.6495 0.8052 0.2294√ √ √ √ √
0.7344 0.9079 0.6985 0.7817 0.6613 0.8114 0.2201

we compare our proposed method with traditional methods,

CNN-based methods and other embedding learning meth-

ods on FI. We can see that current popular deep representa-

tions outperform the hand-crafted features. In general, em-

bedding learning methods get remarkable improvements in

all evaluation metrics other than NN as presented in Tab. 1,

compared with the CNN architectures trained by softmax

loss. This is because softmax loss only concerns the loca-

tion of single data rather than a holistic distribution in metric

space. In addition, we compare our method with other com-

petitive and influential embedding learning approaches as

well as the state-of-the-art algorithms. For fair comparison,

we also implement the state-of-the-art [57] using ResNet-50

architecture as this work. Our framework improves about

10% on mAP8 and mAP2 respectively as compared to state

of the arts. The other evaluation metrics are also improved

obviously.

For other three small-scale datasets, we transfer the

model trained on the FI dataset for fine-tuning on the tar-

get datasets. As reported in Fig. 4, we draw similar conclu-

sions on the small-scale datasets as FI, where the proposed

method still obtains the best retrieval results. This illustrates

that our framework has robust generalization ability.

4.6. Influence of Parameter λ

In Eqn. (10), the value of λ controls the relative impor-

tance between the WEP loss and attention loss. The bigger

the value of λ is, the more important the WEP loss is. We

use the two essential metrics, which are mAP8 and mAP2,

on FI dataset to demonstrate how λ influences the perfor-

mance of total loss on FI. Note that the two losses are not

isolated absolutely, so we only concern the results with λ
ranging from 0.1 to 0.9. As shown in Fig. 5, we can find

through the curves that: (1) mAP8 is more sensitive than

mAP2 for the variation of λ; (2) When λ = 0.5, mAP8 and

mAP2 both achieve the best performance. On the whole,

the values of the two metrics are stable, which demonstrates

that our method is robust for affective image retrieval.

4.7. Ablation Study

In order to demonstrate the contribution of different

components in the proposed method, we further examine

the advantage of each component through ablation experi-

ments on FI dataset. First, AT is the attention loss consisting

of two softmax losses on conv3 and conv5, respectively. As

shown in the first part of Tab. 2, our EP loss has obvious

superiority compared with the softmax and N-pair losses

in all criteria. The results on mAP8 and mAP2 illustrate

the architecture optimized by the EP loss improves the pre-

cision of retrieved images considering sentiment polarities

other than specific emotions. As can be seen, integrating

the AT and EP losses can enhance the performance on all

the evaluation criteria other than mAP2, because they ben-

efit each other in the process of training. On the one hand,

the AT provides category-specific cues for EP loss; on the

other hand, the AT in the last convolution layer neglects the

distinction between polarity, resulting in a weak decline on

mAP2, which can be recovered in our attention mechanism

and multi-level output.

In addition, experiments are also performed to verify the

effect of attention mechanism as shown in the second part

of Tab. 2. The result of only using SA exceeds about 3%

on both mAP8 and mAP2 compared with the performance

of framework without any attention. Furthermore, hierar-

chical attention mechanism also has obvious benefits com-

pared with SA, when both of them utilize features from both

conv3 and conv5. It demonstrates that the attended features

from different levels are complementary, resulting in im-

provement on overall retrieval performance.

In order to make the features from different levels inter-

act effectively, the cross-level bilinear (CLB) is exploited

to integrate multi-level information, leading to further per-



(a)

Query Images Top-5 Retrieval Images using N-pair loss

DisgustSadFearExcitementAweContentmentAmusement Anger

(b) (c)

Top-5 Retrieval Images using Our method

Figure 6. Top 5 results of sample query images from the FI dataset. (a) are sample query images from FI. (b-c) are the retrieval results of

networks trained by the N-pair loss and our method, respectively. Image frames with different colors represent different emotions.

(a) (b) (c)

Figure 7. Visualization of attention maps from different levels. The

images from the FI dataset are presented in column (a), and the vi-

sualizations of polarity- and emotion-specific attention results are

presented in column (b) and column (c), respectively. The classes

of the two sample images are disgust and sadness, respectively.

formance improvement over the baseline that directly fuses

them by concatenation. More importantly, the proposed

method of weighting sample pairs adaptively (i.e. WEP

loss) improves the overall performance effectively.

4.8. Visualization

We show top-5 retrieved images from the FI dataset. As

shown in Fig. 6(b), the results are obtained by utilizing N-

pair loss to embed features. For the first two query images,

the retrieved results contain several negative sentiment im-

ages, which may greatly impact the user experience. The

results of the proposed method are shown in Fig. 6(c). The

last two query images all obtain the correct feedback in top

5 results. Nevertheless, there is one failure case in the rank-

5 result for the first query image. As we can see, though the

failure image belongs to the contentment category, it also

brings positive effect to the viewer’s emotion, which is con-

sistent with the polarity of the query image.

We present some attention visualization results of sam-

ples in Fig. 7. The polarity-specific attention considers the

distinct color or texture details which can represent certain

emotional tendency. Although these regions scatter in the

image, they carry significant information which contributes

to the specific emotion involved in the image. In the first

image, the polarity-specific attention regions cover a great

mass of blood. It guides to disgust emotion as the cue and

enhance the high-level attention features in some ways. The

ragged and shabby wall in the second image is attended by

polarity-specific attention, while the region containing the

person is drawn more attention in the emotion-specific at-

tention map. Therefore, the polarity-specific attention can

supplement this deficiency of emotion-specific attention.

5. Conclusion
In this paper, we propose an attention-aware polarity

sensitive embedding network for affective image retrieval.

The polarity- and emotion-specific attended features are in-

tegrated effectively. We present a weighted emotion-pair

(WEP) loss, which constrains features from inter- and intra-

polarity respectively. Then the sample pairs are weighted

based on confidence scores derived from attention mod-

ule adaptively. Finally, the total loss consisting of WEP

and attention losses is exploited to optimize the architec-

ture. Extensive experiments on four datasets indicate that

our method outperforms the state-of-the-art approaches.
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