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Abstract
We present an imaging framework which converts three

images from a gated camera into high-resolution depth
maps with depth accuracy comparable to pulsed lidar mea-
surements. Existing scanning lidar systems achieve low
spatial resolution at large ranges due to mechanically-
limited angular sampling rates, restricting scene under-
standing tasks to close-range clusters with dense sampling.
Moreover, today’s pulsed lidar scanners suffer from high
cost, power consumption, large form-factors, and they fail
in the presence of strong backscatter. We depart from
point scanning and demonstrate that it is possible to turn
a low-cost CMOS gated imager into a dense depth cam-
era with at least 80 m range – by learning depth from three
gated images. The proposed architecture exploits seman-
tic context across gated slices, and is trained on a syn-
thetic discriminator loss without the need of dense depth
labels. The proposed replacement for scanning lidar sys-
tems is real-time, handles back-scatter and provides dense
depth at long ranges. We validate our approach in simula-
tion and on real-world data acquired over 4,000 km driv-
ing in northern Europe. Data and code are available at
https://github.com/gruberto/Gated2Depth.

1. Introduction
Active depth cameras, such as scanning lidar systems,

have not only become a cornerstone imaging modality for
autonomous driving and robotics, but are emerging in ap-
plications across disciplines, including autonomous drones,
remote sensing, human-computer interaction, and aug-
mented or virtual reality. Depth cameras that provide dense
range allow for dense scene reconstructions [26] when com-
bined with color cameras, including correlation time-of-
flight cameras (C-ToF) [19, 30, 33] such as Microsoft’s
Kinect One, or structured light cameras [1, 42, 43, 49].
These acquisition systems facilitate the collection of large-
scale RGB-D data sets that fuel research on core computer
vision problems, including scene understanding [23, 53]
and action recognition [40]. However, while existing depth
cameras provide high-fidelity depth for close ranges in-
doors [26, 39], dense depth imaging at long ranges and in
dynamic outdoor scenes is an open challenge.

Active imaging at long ranges is challenging because dif-
fuse scene points only return a small fraction of the emitted
photons back to the sensor. For perfect Lambertian surfaces,
this fraction decreases quadratically with distance, posing a
fundamental limitation as illumination power can only be
increased up to the critical eye-safety level [51, 54, 60]. To
tackle this constraint, existing pulsed lidar systems employ
sensitive silicon avalanche photo-diodes (APDs) with high
photon detection efficiency in the NIR band [60]. The cus-
tom semiconductor process for these sensitive detectors re-
stricts current lidar systems to a single (or few) APDs in-
stead of monolithic sensor arrays, which requires point-by-
point scanning. Although scanning lidar approaches facili-
tate depth imaging at large ranges, scanning reduces their
spatial resolution quadratically with distance, prohibiting
semantic tasks for far objects, as shown in Figure 1. Re-
cently, single-photon avalance diodes (SPADs) [4, 5, 41, 46]
are emerging as a promising technology that may enable
sensor arrays in the CMOS process [59] in the future. Al-
though SPADs are sensitive to individual photons, existing
designs are highly photon-inefficient due to very low fill
factors around 1% [58] and pile-up distortions at higher
pulse powers [12]. Moreover, passive depth estimation
techniques do not offer a solution, including stereo cam-
eras [20, 49] and depth from monocular imagery [13, 16,
48]. These approaches perform poorly at large ranges for
small disparities, and they fail in critical outdoor scenarios,
when ambient light is not sufficient, e.g. at night, and in
the presence of strong back-scatter, e.g. in fog or snow, see
Figure 2.

Gated imaging is an emerging sensing technology that
tackles these challenges by sending out pulsed illumination
and integrating a scene response between temporal gates.
Coarse temporal slicing allows for the removal of back-
scatter due to fog, rain and snow, and can be realized in
readily available CMOS technology. In contrast to pulsed
lidar, gated imaging offers high signal measurements at long
distances by integrating incoming photons over a large tem-
poral slice, instead of time-tagging the first returns of indi-
vidual pulses. However, although gated cameras offer an el-
egant, low-cost solution to outdoor imaging challenges, the
sequential acquisition of the individual slices prohibits their
use as depth cameras today, restricting depth information to
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Figure 1: We propose a novel real-time framework for dense depth estimation (top-left) without scanning mechanisms. Our
method maps measurements from a flood-illuminated gated camera behind the wind-shield (inset right), captured in real-
time, to dense depth maps with depth accuracy comparable to lidar measurements (center-left). In contrast to the sparse
lidar measurements, these depth maps are high-resolution enabling semantic understanding at long ranges. We evaluate our
method on synthetic and real data, collected with a testing and a scanning lidar Velodyne HDL64-S3D as reference (right).

a sparse set of wide temporal bins spanning more than 50 m
in depth. Note that using narrow slices does not offer a solu-
tion, because the slice width is inversely proportional to the
number of captures, and thus frame-rate and narrow slices
also means integrating less photons. With maximum frame
rates of 120 Hz to 240 Hz, existing systems [18] are limited
to a range of 4 to 7 slices for dynamic scenes.

In this work, we present a method that recovers high-
fidelity dense depth from sparse gated images. By learn-
ing to exploit semantic context across gated slices, the pro-
posed architecture achieves depth accuracy comparable to
scanning based lidar in large-range outdoor scenarios, es-
sentially turning a gated camera into a low-cost dense flash
lidar that captures dense depth at long distances and also
sees through fog, snow and rain. The method jointly solves
depth estimation, denoising, inpainting of missing or unreli-
able measurements, shadow and multi-path removal, while
being highly efficient with real-time frame rates on con-
sumer GPUs.

Specifically, we make the following contributions:

• We introduce an image formation model and analytic
depth estimation method using less than a handful of
gated images.

• We propose a learning-based approach for estimating
dense depth from gated images, without the need for
dense depth labels for training.

• We validate the proposed method in simulation and
on real-world measurements acquired with a prototype
system in challenging automotive scenarios. We show

that the method recovers dense depth up to 80 m with
depth accuracy comparable to scanning lidar.

• We provide the first long-range gated data set, cover-
ing over 4,000 km driving throughout northern Europe.
The data set includes driving scenes in snow, rain, ur-
ban driving and sub-urban driving.

2. Related Work

Depth Estimation from Intensity Images. A large body
of work explores methods for extracting depth from con-
ventional color image sensors. A first line of research
on structure from motion methods sequentially captures a
stack of monocular images and extracts geometry by ex-
ploiting temporal correlation in the stack [29, 56, 57, 63].
In contrast, multi-view depth estimation methods [20] do
not rely on sequential acquisition but exploit the dispar-
ity in simultaneously acquired image pairs [52]. Recent
approaches to estimating stereo correspondences allow for
interactive frame-rates [8, 28, 44]. Over the last years, a
promising direction of research aims at estimating depth
from a single monocular image [9, 13, 16, 32, 48], no
longer requiring multi-view or sequential captures. Sax-
ena et al. [48] introduce a Markov Random Field that in-
corporates multiscale image features for depth estimation.
Eigen et. al [13] demonstrate that CNNs are well-suited for
monocular depth estimation by learning priors on semantic-
dependent depth [10, 16, 32]. While consumer time-of-
flight cameras facilitate the acquisition of large datasets for
small indoor scenes [23, 53], supervised training in large
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Figure 2: Sensor performance in a fog chamber with very
dense fog. The first row shows recordings without fog while
the second row shows the same scene in dense fog.

outdoor environments is an open challenge. Recent ap-
proaches tackle the lack of dense training data by propos-
ing semi-supervised methods relying on relative depth [10],
stereo images [15, 16, 31], sparse lidar points [31] or seman-
tic labels [62]. Passive methods have in common that their
precision is more than an order of magnitude below that of
scanning lidar systems which makes them no valid alterna-
tive to ubitious lidar ranging in autonomous vehicles [51].
In this work, we propose a method that allows to close this
precision gap using low-cost gated imagers.

Sparse Depth Completion. As an alternative approach
to recover accurate dense depth, a recent work proposes
depth completion from sparse lidar measurements. Simi-
lar to monocular depth estimation, learned encoder-decoder
architectures have been proposed for this task [11, 27, 37].
Jaritz et al. [27] propose to incorporate color RGB data for
upsampling sparse depth samples but also require sparse
depth samples in down-stream scene understanding tasks.
To allow for an independent design of depth estimation and
scene analysis algorithms, the completion architecture has
to be trained with varying sparsity patterns [27, 37] or ad-
ditional validity maps [11]. While these depth completion
methods offer improved depth estimates, they suffer from
the same limitation as scanned lidar: low spatial resolu-
tion at long ranges due to limited angular sampling, low-
resolution detectors, and costly mechanical scanning.

Time-of-Flight Depth Cameras. Amplitude-modulated C-
ToF cameras [19, 30, 33], such as Microsoft’s Kinect One,
have become broadly adopted for indoor sensing [23, 53].
These cameras measure depth by recording the phase shift
of periodically-modulated flood light illumination, which
allows to extract the time-of-flight for the reflected flood
light from the source to scene and back to the camera. How-
ever, in addition to the modulated light, this sensing ap-
proach also records all ambient background light. While
per-pixel lock-in amplification removes background com-
ponents efficiently in indoor scenarios [33], and learned ar-
chitectures can alleviate multi-path distortions [55], exist-
ing C-ToF cameras are limited to ranges of a few meters in
outdoor scenarios [22] in strong sunlight.

Gated cameras send out pulses of flood-light and only

record photons from a certain distance by opening and clos-
ing the camera after a given delay. Gated imaging has first
been proposed by Heckman et al. [21]. This acquisition
mode allows to gate out backscatter from fog, rain, and
snow [18]. Busck et al. [3, 6, 7] use gated imaging for
high-resolution depth sensing by capturing large sequences
of narrow gated slices. However, as the depth accuracy is
inversely related to the gate width, and hence the number
of required captures, sequentially capturing high-resolution
gated depth is infeasible at real-time frame-rates. Recently,
a line of research proposes analytic reconstruction mod-
els for known pulse and integration shapes [34, 35, 61].
These approaches require perfect knowledge of the integra-
tion and pulse profiles, which is impractical due to drift,
and they provide low precision for broad gating windows
in real-time capture settings. Adam et al. [2], and Schober
et al. [50], present Bayesian methods for pulsed time-of-
flight imaging of room-sized scenes. These methods solve
probabilistic per-pixel estimation problems using priors on
depth, reflectivity and ambient light, which is possible when
using nanosecond exposure profiles [2, 50] for room-sized
scenes. In this work, we demonstrate that exploiting spatio-
temporal scene semantics allows to recover dense and lidar-
accurate depth from only three slices, with exposures two
orders of magnitude longer (> 100 ns), acquired in real-
time. Using such wide exposure gates allows us to rely
on low-cost gated CMOS imagers instead of detectors with
high temporal resolution, such as SPADs.

3. Gated Imaging
In this section, we review gated imaging and propose an

analytic per-pixel depth estimation method.

Gated Imaging Consider the setup shown in Figure 3,
where an amplitude-modulated source flood-illuminates the
scene with broad rect-shaped “pulses” of light. The syn-
chronized camera opens after a delay ξ to receive only pho-
tons with round-trip path-length longer than ξ · c, where c
is the speed of light. Assuming a dominating lambertian
reflector at distance r, the detector gain is temporally mod-
ulated with the gating function g resulting in the exposure
measurement

I (r) = α C (r) =

∞∫
−∞

g (t− ξ)κ (t, r) dt, (1)

where κ is the temporal scene response, α the albedo of
the reflector, and C (r) the range-intensity profile. With the
reflector at distance r, the temporal scene response can be
described as

κ (t, r) = αp

(
t− 2r

c

)
β (r) . (2)

where p is here the laser pulse profile and atmospheric ef-
fects, e.g. in a scattering medium, are modeled by the



Figure 3: A gated system consists of a pulsed laser source
and a gated imager that are time synchronized. By setting
the delay between illumination and image acquisition, the
environment can be sliced into single images that contain
only a certain distance range.

distance-dependent function β. Note that we ignore am-
bient light in Eq. (2) which is minimized by a notch-filter
in our setup and eliminated by subtraction with a separate
capture without active illumination. In order to prevent the
laser from overheating, the number of laser pulses in a cer-
tain time is limited and therefore a passive image can be
obtained at no cost during laser recovery. The exposure pro-
files are designed to have the same passive component. The
range-intensity profileC(r) can be calibrated with measure-
ments on targets with fixed albedo. We extract depth from
three captures with different delays ξi, i ∈ {1, 2, 3}, result-
ing in a set of profiles Ci(r) and measurements Ii(r). We
approximate the profiles with Chebychev polynomials of
degree 6 as C̃(r). Figure 4 shows the range-intensity pro-
files used in this work and their approximations, see sup-
plemental material for details on the exposure profile de-
sign. The final measurement, after read-out, is affected by
photon shot noise and read-out noise as

z = I(r) + ηp (I(r)) + ηg, (3)

for a given pixel location, with ηp being a Poissonian signal-
dependent noise component and ηg a Gaussian signal-
independent component, which we adopt from [14].

Measurement Distortions A number of systematic and
random measurement distortions make depth estimation
from gated images challenging. Scene objects with low re-
flectance only return few signal photons, prohibiting an un-
ambiguous mapping from intensities to depth and albedo in
the presence of the Poissonian-Gaussian measurement fluc-
tuations from Eq. (3). Systematic distortions include multi-
path bounces of the flash illumination, see also [55]. In
typical driving scenarios, severe multi-path reflection can
occur due to wet roads acting as mirroring surfaces in the
scene. Note that these are almost negligible in line or point-
based scanning-lidar systems [1]. Automotive applications
require large laser sources that cannot be placed next to
the camera, inevitably resulting in shadow regions without
measurements available. Severe ambient sunlight, present
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Figure 4: Discrete measurements (marked with crosses) of
the three range-intensity profilesCi(r), i ∈ {1, 2, 3} used in
this work, and their continuous Chebychev approximations
C̃i(r) plotted with distance r [m].

as an offset in all slices, reduces the dynamic range of the
gated measurements. In this work, we demonstrate a recon-
struction architecture which addresses all of these issues in
a data-driven approach, relying on readily available sparse
lidar depth as training labels. Before describing the pro-
posed approach, we introduce a per-pixel baseline estima-
tion method.

Per-Pixel Least-Squares Estimate. Ignoring all of the
above measurement distortions, assuming no drift in the
pulse and exposure profiles and Gaussian noise only in
Eq. (3), an immediate baseline approach is the following
per-pixel least-squares estimation. Specifically, for a single
pixel, we stack the measurements z{1,2,3} for a sequence of
delays ξ{1,2,3} in a single vector z = [z1, . . . , z3]. We can
estimate the depth and albedo jointly as

r̂LS = argmin
r,α

∣∣∣∣∣∣z− αC̃(r)
∣∣∣∣∣∣2
2
, (4)

where C̃(r) = [C̃1(r), . . . , C̃3(r)] is a Chebychev intensity
profile vector. Since the range-intensity profiles are non-
linear, we solve this nonlinear least-squares estimation us-
ing the Levenberg-Marquardt optimization method, see de-
tails in the supplemental document.

4. Learning Depth from Gated Images
In this section, we introduce the Gated2DepthNet net-

work. The proposed model is the result of a systematic
evaluation of different input configurations, network archi-
tectures, and training schemes. We refer the readers to the
supplemental document for a comprehensive study on all
evaluated models.

The proposed network architecture is illustrated in Fig-
ure 5. The input to our network are three gated slices, al-
lowing it to exploit the corresponding semantics across the
slices to estimate accurate pixel-wise depth. An immedi-
ately apparent issue for this architecture is that dense ground
truth depth for large-scale scenes is not available. This issue
becomes crucial when designing deep models that require
large training datasets to avoid overfitting. We address this
problem with a training strategy that transfers dense depth
semantics learned on synthetic data to a network trained on
sparse lidar data.
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Figure 5: The proposed GATED2DEPTH architecture estimates dense depth from a set of three gated images (actual recon-
struction and real captures shown). To train the proposed generator network G using sparse depth from lidar point samples,
we rely on three loss-function components: a sparse multi-scale loss Lmult which penalizes sparse depth differences on three
different binned scales, a smoothness loss Lsmooth, and an adversarial loss Ladv. The adversarial loss incorporates a discrimi-
nator network which was trained on synthetic data, using a separate throw-away generator, and allows to transfer dense depth
details from synthetic data without domain adaptation.

The proposed Gated2DepthNet is composed of a gener-
ator G, which we train for our dense depth estimation task.
G is a multi-scale variant of the popular U-net [47] archi-
tecture. To transfer dense depth from synthetically gener-
ated depth maps to sensor data, we introduce a discrimina-
tor D, a variant of PatchGAN [25], and train the network
in a two-stage process. In the first stage, we train a net-
work (G and D) on synthetic data as generative adversarial
network [17]. The generator and discriminator are trained
in alternating fashion in a least-square GAN [38] approach:
G is trained to generate accurate dense depth estimations,
using synthetic ground truth, and to convince D that the es-
timations correspond to a real depth maps; D is trained to
detect whether a dense depth map comes from G or is a real
one. In the second stage, we train the network on real gated
images that follow the target domain distribution. We now
use sparse lidar measurements as groundtruth and keep the
discriminator fixed. To use sparse lidar measurements in
the final training stage, we introduce a multi-scale loss (see
Section 4.1) that penalizes differences to sparse lidar points
by binning these to depth maps at multiple scales.

Our generator consists of 4 pairs of convolutions with a
max pooling operation after each pair. The encoder portion
produces internal maps 1

2 , 1
4 , 1

8 , and 1
16 of the original input

size. The decoder consists of four additional convolutions,
and transposed convolutions after each pair. As the depth
estimate shares semantics with the input, we use symmetric
skip connections, see Figure 5.

In the discriminator, we use a PatchGAN variant to best
represent high-frequency image content. To this end, we
define a fully convolutional network with five layers, each
layer consisting of 4x4 kernels with stride 2, and leaky Re-
LUs with slope 0.2. The network classifies overlapping
patches of a dense depth map instead of the whole map.

4.1. Loss Function

We train our proposed network to minimize a three-
component loss, L, with each component modeling differ-
ent statistics of the target depth

L = Lmult + λsLsmooth + λaLadv (5)

Multi-scale loss (Lmult) This loss component penalizes
differences between the ground truth labels and the depth
estimates. We define Lmult as a multi-scale loss over the
generator’s output d and its corresponding target d̃

Lmult(d, d̃) =

M∑
i=1

λmiLL1(d
(i), d̃(i)), (6)

where d(i) and d̃(i) are the generator’s output and target at
a scale (i), LL1(d

(i), d̃(i)) is the loss at scale (i), and λmi

is the weight of the loss at the same scale. We define three
scales 1/2i with i ∈ {0, 1, 2}, binning as illustrated in Fig-
ure 5. For a scale (i), we define LL1(d

(i), d̃(i)) as the mean
absolute error

LL1(d
(i), d̃(i)) =

1

N

∑
j,k

|d(i)jk − d̃
(i)
jk |, (7)

with the subscript jk indicates here a discretized bin corre-
sponding to pixel position (j, k). When training with syn-
thetic data, we compute LL1 over all pixels. For training
with real data, we only compute this loss at bins that include
at least one lidar sample point. LL1 is formally defined as

LL1(d
(i), d̃(i)) =

1

N

∑
j,k

|d(i)jk − d̃
(i)
jk |m

(i)
jk (8)

where mjk = 1 when the bin (j, k) contains at least one
lidar sample, and mjk = 0 otherwise. For smaller scales,
we average all samples per bin.



Weighted Smoothness Loss (Lsmooth) We rely on an ad-
ditional smoothness loss Lsmooth to regularize the depth es-
timates. Specifically we use a total variation loss weighted
by the input image gradients [62], that is

Lsmooth =
1

N

∑
i,j

|∂xdi,j |ε−|∂xzi,j | + |∂ydi,j |ε−|∂yzi,j |, (9)

where z is here the input image. As sparse lidar data is sam-
pled on horizontal lines due to the rotating scanning setup, a
generator trained on this data is biased to outputs with simi-
lar horizontal patterns. We found that increasing the weight
of the vertical gradient relative to the horizontal one helps
to mitigate this problem.

Adversarial loss (Ladv) We define the adversarial loss
following [38] with the PatchGAN [25] discriminator:

Ladv =
1

2
Ey∼pdepth(y)[(D(y)− 1)2]+

1

2
Ex∼pgated(x)[(D(G(x)))2]

(10)

Note the discriminator is fixed in the second training stage.

4.2. Training and Implementation Details

We use ADAM optimizer with the learning rate set to
0.0001. For the global loss function, we experimentally de-
termined λs = 0.0001 and λa = 0.001. For the multi-scale
loss, we define λm0 = 1, λm1 = 0.8, and λm2 = 0.6. The
full system runs at real-time rates of 25 Hz, including all
captures and inference (on a single TitanV).

5. Datasets
In this section, we describe the real and synthetic data

sets used to train and evaluate the proposed method.

Real Dataset To the best of our knowledge, we provide
the first long-range gated dataset, covering snow, rain, ur-
ban and sub-urban driving during 4,000 km in-the-wild ac-
quisition. To this end, we have equipped a testing vehi-
cle with a standard RGB stereo camera (Aptina AR0230),
lidar system (Velodyne HDL64-S3) and a gated camera
(BrightwayVision BrightEye) with flood-light source inte-
grated into the front bumper, shown in Figure 1. Both cam-
eras are mounted behind the windshield, while the lidar
is mounted on the roof. The stereo camera runs at 30 Hz
with a resolution of 1920x1080 pixels. The gated cam-
era provides 10 bit images with a resolution of 1280x720
at a framerate of 120 Hz, which we split up in three slices
plus an additional ambient capture without active illumina-
tion. The car is equipped with two vertical-cavity surface-
emitting laser (VCSEL) modules, which are diffused, with
a wavelength of 808 nm and a pulsed optical output peak
power of 500 W each. The peak power is limited due to
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Figure 6: Dataset distribution.

Figure 7: Examples of real dataset (rgb/gated/lidar).

Figure 8: Examples of synthetic dataset (rgb/gated/depth).

eye-safety regulations. Our reference lidar systems is run-
ning with 10 Hz and yields 64 lines. All sensors are cali-
brated and time-synchronized. During a four-week acquisi-
tion time in Germany, Denmark and Sweden, we recorded
17,686 frames in different cities (Hamburg, Kopenhagen,
Gothenburg, Vårgårda, Karlstad, Örebro, Västerås, Stock-
holm, Uppsala, Gävle, Sundsvall, Kiel). Figure 6 visual-
izes the distribution of the full dataset, and Figure 7 shows
qualitative example measurements. We captured images
during night and day and in various weather conditions
(clear, snow, fog). The samples in clear weather conditions
(14,277) are split into a training (7,478 day / 4,460 night)
and test set (1,789 day / 550 night). Since snow and fog dis-
turbs the lidar data, we do not use snowy nor foggy data for
training.

Synthetic Dataset While existing simulated datasets con-
tain RGB and depth data, they do not provide enough in-
formation to synthesize realistic gated measurements that
require NIR modeling and sunlight-illumination. We mod-
ify the GTA5-based simulator from [45] to address this is-
sue. Please see the supplemental document for detailed de-
scription. We simulate 9,804 samples, and use 8,157 (5,279
day / 2,878 night) for training and 1,647 (1,114 day / 533
night) for testing. See Figure 6 and Figure 8 for visual-
izations.

6. Assessment

Evaluation Setting We compare the proposed method
against state-of-the-art depth estimation methods. As per-
pixel baseline methods, we compare to the least-squares
baseline from Eq. (4) and against the Bayesian estimate
from Adam et al. [2]. We compare against recent methods
using monocular RGB images [16], stereo images [8], and



RGB images in combination with sparse lidar points [37].
For completeness, we also evaluate monocular depth esti-
mation [16] applied on the integral of the gated slices, i.e.
an actively illumination scene image without gating, which
we dub full gated image. Moreover, we also demonstrate
Gated2Depth trained on full gated images only, validating
the benefit of the coarse gating itself. For the method of Go-
dard et al. [16], we resized our images to the native size the
model was trained on, as we noticed a substantial drop in
performance when changing resolution at test time. For all
other algorithms, we did not observe this behavior and we
used the full resolution images. For a fair comparison, we
finetuned [16] on RGB stereo pairs taken from the training
set of our real dataset starting from the best available model.
For the comparisons in simulation, we calibrated the sam-
pling pattern of the experimental lidar system and use this
pattern for the Sparse-to-dense [37] method. For [24] we
only had a hardware implementation available running in
our test vehicle which does not allow synthetic evaluations.

We evaluate the methods with the metrics from [13],
namely RMSE, MAE, ARD and δi < 1.25i for i ∈
{1, 2, 3}. On the synthetic dataset, we compute the metrics
over the whole depth maps. On the real dataset, we com-
pute the metrics only at the predicted pixels that correspond
to measured sparse lidar points. We observed that our li-
dar reference system degrades at distances larger than 80 m
and therefore we limit our evaluation to 80 m. For a fair
comparison to methods that rely on laser illumination, we
do not evaluate on non-illuminated pixels and introduce at
the same time a completeness metric that describes on how
many ground truth pixels is evaluated. Being [z1, z2, z3] a
set of input gated slices, we define non-illuminated pixels as
the ones that satisfy max([z1, z2, z3])−min([z1, z2, z3]) <
55. This definition allows us to avoid evaluation over out-
liers at extreme distances and with very low SNR.

6.1. Results on Synthetic Dataset

Table 1 (top) shows that the proposed method outper-
forms all other reference methods by a large margin. The
second-best method without gated images is the depth com-
pletion based on lidar and RGB [36], which yields better
results than monocular or stereo methods because it uses
sparse lidar ground truth samples as input. While monoc-
ular approaches struggle to recover absolute scale, stereo
methods achieve low accuracy over the large distance range
due to the limited baseline.

Figure 9c shows an output example of our method and
compares it with others. Our method captures better fine-
grained details of a scene at both close and far distances.

6.2. Results on Real Dataset

Table 1 (bottom) shows that the proposed method out-
performs all compared methods, including the one that uses

METHOD
RMSE ARD MAE δ1 δ2 δ3 Compl.
[m] [m] [%] [%] [%] [%]

Simulated Data – Night (Evaluated on Dense Ground Truth Depth)

DEPTH FROM MONO ON RGB [16] 74.40 0.62 58.47 7.76 13.67 29.17 100
DEPTH FROM MONO ON FULL GATED [16] 84.48 0.69 68.74 2.53 7.03 20.33 100
DEPTH FROM STEREO [8] 72.67 0.67 59.94 4.73 10.88 19.05 100
SPARSE-TO-DENSE ON LIDAR (GT INPUT) [37] 64.08 0.33 42.33 56.74 63.19 67.87 100
DEPTH FROM TOF, REGRESSION TREE [2] 40.33 0.45 26.03 37.33 55.96 68.47 45
LEAST SQUARES 30.45 0.29 18.66 60.82 77.41 83.61 34
GATED2DEPTH 12.99 0.07 3.96 94.24 97.28 98.34 100

Simulated Data – Day (Evaluated on Dense Ground Truth Depth)

DEPTH FROM MONO ON RGB [16] 75.68 0.63 59.95 6.27 14.14 28.28 100
DEPTH FROM MONO ON FULL GATED [16] 81.67 0.69 66.44 2.71 8.43 20.04 100
DEPTH FROM STEREO [8] 75.04 0.70 62.06 3.76 8.86 14.97 100
SPARSE-TO-DENSE ON LIDAR (GT INPUT) [37] 60.97 0.31 39.63 58.84 65.30 69.77 100
DEPTH FROM TOF, REGRESSION TREE [2] 27.17 0.52 20.05 25.53 47.77 66.30 23
LEAST SQUARES 15.52 0.36 10.32 55.44 73.29 82.35 16
GATED2DEPTH 9.10 0.05 2.66 96.41 98.47 99.16 100

Real Data – Night (Evaluated on Lidar Ground Truth Points)

DEPTH FROM MONO ON RGB [16] 16.87 0.38 11.64 21.74 63.15 80.96 100
DEPTH FROM MONO ON RGB [16] (FT) 11.41 0.23 6.18 76.64 89.53 94.19 100
DEPTH FROM MONO ON FULL GATED [16] 16.26 0.36 10.19 54.03 74.44 85.00 100
DEPTH FROM MONO ON FULL GATED [16] (FT) 15.41 0.52 11.33 31.72 71.23 88.74 100
DEPTH FROM STEREO [8] 14.58 0.21 8.34 68.75 82.63 89.36 100
DEPTH FROM STEREO [24] 15.51 0.36 8.75 63.94 76.19 82.31 63
SPARSE-TO-DENSE ON LIDAR (GT INPUT) [37] 8.79 0.21 4.38 87.64 93.74 95.88 100
DEPTH FROM TOF, REGRESSION TREE [2] 10.54 0.24 6.01 76.73 89.74 93.45 40
LEAST SQUARES 13.13 0.42 8.88 43.60 55.80 63.54 31
GATED2DEPTH - FULL GATED 14.86 0.29 8.84 58.79 58.79 79.84 100
GATED2DEPTH 8.39 0.15 3.79 87.52 93.00 95.21 100

Real Data – Day (Evaluated on Lidar Ground Truth Points)

DEPTH FROM MONO ON RGB [16] 17.67 0.37 12.28 13.87 60.93 79.17 100
DEPTH FROM MONO ON RGB [16] (FT) 10.24 0.18 5.47 80.49 91.78 95.61 100
DEPTH FROM MONO ON FULL GATED [16] 13.89 0.24 8.50 60.05 79.62 89.92 100
DEPTH FROM MONO ON FULL GATED [16] (FT) 13.33 0.40 9.51 36.64 81.63 92.86 100
DEPTH FROM STEREO [8] 13.94 0.19 7.78 71.32 84.67 91.38 100
DEPTH FROM STEREO [24] 9.63 0.17 4.59 85.80 92.72 95.20 86
SPARSE-TO-DENSE ON LIDAR (GT INPUT) [37] 8.21 0.16 4.05 88.52 94.71 96.87 100
DEPTH FROM TOF, REGRESSION TREE [2] 15.83 0.49 11.40 56.30 75.54 82.45 23
LEAST SQUARES 19.52 0.75 14.05 43.42 54.63 63.76 16
GATED2DEPTH - FULL GATED 13.75 0.26 8.16 62.48 62.48 82.93 100
GATED2DEPTH 7.61 0.12 3.53 88.07 94.32 96.60 100

Table 1: Comparison of our proposed framework and state-
of-the-art methods on unseen synthetic and real test data
sets. GT INPUT: uses sparse ground truth as input. FT:
model finetuned on our real data.

ground truth lidar points as input [37]. Hence, the method
achieves high depth accuracy comparable to scanning lidar
systems, while, in contrast, providing dense depth. More-
over, Table 1 validates the benefit of using multiple slices
compared to a single continuously illuminated image.

Figures 9a and 9b visualizes the dense depth estimation,
and scene details captured by our method in comparison to
state-of-the-art methods. Especially for fine details around
pedestrians or small scene objects, the proposed method
achieves higher resolution. In the example from Figure 9a
our method shows all scene objects (two pedestrians, two
cars), which are also recovered in both gated per-pixel esti-
mation methods, but not at high density. While the sparse
depth completion method misses major scene objects, our
method preserves all of them. The same can be observed
in the second example for the posts and the advertising col-
umn in Figure 9b. Figure 10 illustrates the robustness of
our method in (unseen) snowing conditions. While the lidar
shows strong clutter, our method provides a very clear depth
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(a) Experimental night time results.
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(b) Experimental day time results.
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(c) Daytime simulation results.

Figure 9: Qualitative results for our method and reference methods over real and synthetic examples. For each example,
we include the corresponding RGB and full gated image, along with the lidar measurements. Our method generates more
accurate and detailed maps over different distance ranges of the scenes in comparison to the other methods. For the simulation
results in (c) we only show models finetuned on simulated data.

RGB Lidar in Snow Gated2Depth

Figure 10: Results for strong backscatter in snow, with lidar
clutter (larger points) around a pedestrian and in the sky.

RGB Least-Squares Gated2Depth

Figure 11: Multipath Interference. In contrast to existing
methods, such as the Least-Squares method, our method
eliminates most multi-path interference (on the road here).

estimation, as a by-product of the gated imaging acquisition
itself. Figure 11 compares per-pixel estimation with the
proposed approach. The proposed method is able to fill in
shadows and surfaces with low reflectance. Multi-path in-
terference is suppressed by using the contextual information
present in the whole image.

7. Conclusions and Future Work

In this work, we turn a CMOS gated camera into a cost-
sensitive high-resolution dense flash lidar. We propose a

novel way of transfer learning that allows us to leverage
datasets with sparse depth labels for dense depth estimation.
The proposed method outperforms state-of-the-art methods,
which we validate in simulation and experimentally on out-
door captures with large depth range of up to 80 m (limited
by the range of the scanned reference lidar system).

An interesting direction for future research is the inclu-
sion of RGB data, which could provide additional depth
clues in areas with little variational information in the gated
images. However, fusing RGB images naively as an ad-
ditional input channel to the proposed architecture would
lead to severe bias for distortions due to backscatter, see
Figure 2, which is properly handled by the proposed sys-
tem. Exciting future applications of the proposed method
include large-scale semantic scene understanding and ac-
tion recognition using the proposed architecture either for
dataset generation or in an end-to-end-fashion.

This work has received funding from the European Union un-
der the H2020 ECSEL Programme as part of the DENSE project,
contract number 692449. Werner Ritter supervised this project at
Daimler AG, and Klaus Dietmayer supervised the project portion
at Ulm University. We thank Robert Bhler, Stefanie Walz and Yao
Wang for help processing the large dataset. We thank Fahim Man-
nan for fruitful discussions and comments on the manuscript.
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