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Figure 1: Point-MVSNet performs multi-view stereo reconstruction in a coarse-to-fine fashion, learning to predict the 3D flow of each point
to the groundtruth surface based on geometry priors and 2D image appearance cues dynamically fetched from multi-view images and regress
accurate and dense point clouds iteratively.

Abstract

We introduce Point-MVSNet, a novel point-based deep
framework for multi-view stereo (MVS). Distinct from
existing cost volume approaches, our method directly
processes the target scene as point clouds. More specifically,
our method predicts the depth in a coarse-to-fine manner.
We first generate a coarse depth map, convert it into a point
cloud and refine the point cloud iteratively by estimating
the residual between the depth of the current iteration
and that of the ground truth. Our network leverages 3D
geometry priors and 2D texture information jointly and
effectively by fusing them into a feature-augmented point
cloud, and processes the point cloud to estimate the 3D flow
for each point. This point-based architecture allows higher
accuracy, more computational efficiency and more flexibility
than cost-volume-based counterparts. Experimental results
show that our approach achieves a significant improvement
in reconstruction quality compared with state-of-the-art
methods on the DTU and the Tanks and Temples dataset.
Our source code and trained models are available at
https://github.com/callmeray/PointMVSNet.

* Equal contribution.

1. Introduction

Recent learning-based multi-view stereo (MVS)
methods [12, 29, 10] have shown great success compared
with their traditional counterparts as learning-based
approaches are able to learn to take advantage of scene
global semantic information, including object materials,
specularity, and environmental illumination, to get more
robust matching and more complete reconstruction. All
these approaches apply dense multi-scale 3D CNNs to
predict the depth map or voxel occupancy. However, 3D
CNNs require memory cubic to the model resolution,
which can be potentially prohibitive to achieving optimal
performance. While Maxim et al. [24] addressed this
problem by progressively generating an Octree structure,
the quantization artifacts brought by grid partitioning
still remain, and errors may accumulate since the tree is
generated layer by layer.

In this work, we propose a novel point cloud multi-view
stereo network, where the target scene is directly processed
as a point cloud, a more efficient representation, particularly
when the 3D resolution is high. Our framework is composed
of two steps: first, in order to carve out the approximate
object surface from the whole scene, an initial coarse depth
map is generated by a relatively small 3D cost volume and
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then converted to a point cloud. Subsequently, our novel
PointFlow module is applied to iteratively regress accurate
and dense point clouds from the initial point cloud. Similar to
ResNet [8], we explicitly formulate the PointFlow to predict
the residual between the depth of the current iteration and
that of the ground truth. The 3D flow is estimated based on
geometry priors inferred from the predicted point cloud and
the 2D image appearance cues dynamically fetched from
multi-view input images (Figure 1).

We find that our Point-based Multi-view Stereo Network
(Point-MVSNet) framework enjoys advantages in accuracy,
efficiency, and flexibility when it is compared with previous
MVS methods that are built upon a predefined 3D volume
with the fixed resolution to aggregate information from
views. Our method adaptively samples potential surface
points in the 3D space. It keeps the continuity of the surface
structure naturally, which is necessary for high precision
reconstruction. Furthermore, because our network only
processes valid information near the object surface instead
of the whole 3D space as is the case in 3D CNNs, the
computation is much more efficient. Lastly, the adaptive
refinement scheme allows us to first peek at the scene at
coarse resolution and then densify the reconstructed point
cloud only in the region of interest. For scenarios such as
interaction-oriented robot vision, this flexibility would result
in saving of computational power.

Our method achieves state-of-the-art performance on
standard multi-view stereo benchmarks among learning-
based methods, including DTU [1] and Tanks and
Temples [15]. Compared with previous state-of-the-art, our
method produces better results in terms of both completeness
and overall quality. Besides, we show potential applications
of our proposed method, such as foveated depth inference.

2. Related work
Multi-view Stereo Reconstruction MVS is a classical
problem that had been extensively studied before the rise of
deep learning. A number of 3D representations are adopted,
including volumes [26, 9], deformation models [3, 31], and
patches [5], which are iteratively updated through multi-view
photometric consistency and regularization optimization.
Our iterative refinement procedure shares a similar idea
with these classical solutions by updating the depth map
iteratively. However, our learning-based algorithm achieves
improved robustness to input image corruption and avoids
the tedious manual hyper-parameters tuning.

Learning-based MVS Inspired by the recent success of
deep learning in image recognition tasks, researchers began
to apply learning techniques to stereo reconstruction tasks
for better patch representation and matching [7, 22, 16].
Although these methods in which only 2D networks are
used have made a great improvement on stereo tasks, it is

difficult to extend them to multi-view stereo tasks, and their
performance is limited in challenging scenes due to the lack
of contextual geometry knowledge. Concurrently, 3D cost
volume regularization approaches have been proposed [14,
12, 13], where a 3D cost volume is built either in the camera
frustum or the scene. Next, the 2D image features of multi-
views are warped in the cost volume, so that 3D CNNs can
be applied to it. The key advantage of 3D cost volume is
that the 3D geometry of the scene can be captured by the
network explicitly, and the photometric matching can be
performed in 3D space, alleviating the influence of image
distortion caused by perspective transformation and potential
occlusions, which makes these methods achieve better results
than 2D learning based methods. Instead of using voxel
grids, in this paper we propose to use a point-based network
for MVS tasks to take advantage of 3D geometry learning
without being buredened by the inefficiency found in 3D
CNN computation.

High-Resolution MVS High-resolution MVS is critical to
real applications such as robot manipulation and augmented
reality. Traditional methods [17, 5, 18] generate dense 3D
patches by expanding from confident matching key-points
repeatedly, which is potentially time-consuming. These
methods are also sensitive to noise and change of viewpoint
owing to the usage of hand-crafted features. Recent learning
methods try to ease memory consumption by advanced space
partitioning [21, 27, 24]. However, most of these methods
construct a fixed cost volume representation for the whole
scene, lacking flexibility. In our work, we use point clouds
as the representation of the scene, which is more flexible and
enables us to approach the accurate position progressively.

Point-based 3D Learning Recently, a new type of deep
network architecture has been proposed in [19, 20], which
is able to process point clouds directly without converting
them to volumetric grids. Compared with voxel-based
methods, this kind of architecture concentrates on the
point cloud data and saves unnecessary computation. Also,
the continuity of space is preserved during the process.
While PointNets have shown significant performance and
efficiency improvement in various 3D understanding tasks,
such as object classification and detection [20], it is under
exploration how this architecture can be used for MVS task,
where the 3D scene is unknown to the network. In this paper,
we propose PointFlow module, which estimates the 3D flow
based on joint 2D-3D features of point hypotheses.

3. Method
This section describes the detailed network architecture

of Point-MVSNet (Figure 2). Our method can be divided
into two steps, coarse depth prediction, and iterative depth
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Figure 2: Overview of Point-MVSNet architecture. A coarse depth map is first predicted with low GPU memory and computation cost and
then unprojected to a point cloud along with hypothesized points. For each point, the feature is fetched from the multi-view image feature
pyramid dynamically. The PointFlow module uses the feature augmented point cloud for depth residual prediction, and the depth map is
refined iteratively.

refinement. Let I0 denote the reference image and {Ii}Ni=1

denote a set of its neighbouring source images. We first
generate a coarse depth map for I0 (subsection 3.1). Since
the resolution is low, the existing volumetric MVS method
has sufficient efficiency and can be used. Second we
introduce the 2D-3D feature lifting (subsection 3.2), which
associates the 2D image information with 3D geometry
priors. Then we propose our novel PointFlow module
(subsection 3.3) to iteratively refine the input depth map
to higher resolution with improved accuracy.

3.1. Coarse depth prediction

Recently, learning-based MVS [12, 29, 11] achieves state-
of-the-art performance using multi-scale 3D CNNs on cost
volume regularization. However, this step could be extremely
memory expensive as the memory requirement is increasing
cubically as the cost volume resolution grows. Taking
memory and time into consideration, we use the recently
proposed MVSNet [29] to predict a relatively low-resolution
cost volume.

Given the images and corresponding camera parameters,
MVSNet [29] builds a 3D cost volume upon the reference
camera frustum. Then the initial depth map for reference
view is regressed through multi-scale 3D CNNs and the
soft argmin [15] operation. In MVSNet, feature maps are
downsampled to 1/4 of the original input image in each
dimension and the number of virtual depth planes are 256 for
both training and evaluation. On the other hand, in our coarse
depth estimation network, the cost volume is constructed
with feature maps of 1/8 the size of the reference image,
containing 48 or 96 virtual depth planes for training and
evaluation, respectively. Therefore, our memory usage of
this 3D feature volume is about 1/20 of that in MVSNet.

3.2. 2D-3D feature lifting

Image Feature Pyramid Learning-based image features
are demonstrated to be critical to boosting up dense pixel
correspondence quality [29, 23]. In order to endow points
with a larger receptive field of contextual information at
multiple scales, we construct a 3-scale feature pyramid.
2D convolutional networks with stride 2 are applied to
downsample the feature map, and each last layer before
the downsampling is extracted to construct the final feature
pyramid Fi = [F1

i ,F
2
i ,F

3
i ] for image Ii. Similar to common

MVS methods[29, 11], feature pyramids are shared among
all input images.

Dynamic Feature Fetching The point feature used in our
network is compromised of the fetched multi-view image
feature variance with the normalized 3D coordinates in world
space Xp. We will introduce them separately.

Image appearance features for each 3D point can
be fetched from the multi-view feature maps using a
differentiable unprojection given corresponding camera
parameters. Note that features F1

i ,F
2
i ,F

3
i are at different

image resolutions, thus the camera intrinsic matrix should
be scaled at each level of the feature maps for correct feature
warping. Similar to MVSNet [29], we keep a variance-based
cost metric, i.e. the feature variance among different views,
to aggregate features warped from an arbitrary number of
views. For pyramid feature at level j, the variance metric for
N views is defined as below:

Cj =

N∑
i=1

(
Fj

i − Fj
)2

N
, (j = 1, 2, 3) (1)
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To form the features residing at each 3D point, we
do a concatenation of the fetched image feature and the
normalized point coordinates:

Cp = concat[Cj
p,Xp], (j = 1, 2, 3) (2)

This feature augmented point Cp is the input to our
PointFlow module.

As shall be seen in the next section, since we are
predicting the depth residual iteratively, we update the point
position Xp after each iteration and fetch the point feature
Ck

p from the image feature pyramid, an operation we name as
dynamic feature fetching. Note that this step is distinct from
cost-volume-based methods, by which the fetched features
at each voxel are determined by the fixed space partition
of the scene. In contrast, our method can fetch features
from different areas of images dynamically according to the
updated point position. Therefore, we can concentrate on
the regions of interest in the feature maps, instead of treating
them uniformly.

3.3. PointFlow

Depth maps generated from subsection 3.1 have limited
accuracy due to the low spatial resolution of 3D cost volume.
We propose PointFlow, our novel approach to iteratively
refine the depth map.

With known camera parameters, we first un-project the
depth map to be a 3D point cloud. For each point, we aim to
estimate its displacement to the ground truth surface along
the reference camera direction by observing its neighboring
points from all views, so as to push the points to flow to
the target surface. Next, we discuss the components of our
module in detail.

Point Hypotheses Generation It is non-trivial to regress
depth displacement of each point from the extracted image
feature maps. Due to perspective transformation, the spatial
context embedded in 2D feature maps cannot reflect the
proximity in 3D Euclidean space.

In order to facilitate the modeling of network, we propose
to generate a sequence of point hypotheses p̃ with different
displacement along the reference camera direction as shown
in Figure 3. Let t denote the normalized reference camera
direction, and s denote the displacement step size. For
an unprojected point p, its hypothesized point set {p̃k} is
generated by

p̃k = p + kst, k = −m, . . . ,m (3)

These point hypotheses are critical for the network to infer
the displacement, for the necessary neighbourhood image
feature information at different depth are gathered in these
points along with spatial geometry relationship.

unprojected point
hypothesized point

reference 
camera

p
~p

Figure 3: Illustraion of point hypotheses generation and
edge construction: For each unprojected point p, the 2m +
1 point hypotheses {p̃k} are generated along the reference
camera direction. Directed edges are constructed between each
hypothesized point and its kNN points for edge convolution.

Edge Convolution Classical MVS methods have
demonstrated that local neighborhood is important for robust
depth prediction. Similarly, we take the strategy of recent
work DGCNN [28] to enrich feature aggregation between
neighboring points. As shown in Figure 3, a directed graph
is constructed on the point set using k nearest neighbors
(kNN ), such that local geometric structure information
could be used for the feature propagation of points.

Denote the feature augmented point cloud by Cp̃ =
{Cp̃1

, . . . ,Cp̃n
}, then edge convolution is defined as:

C′p̃ = �
q∈kNN(p̃)

hΘ (Cp̃, Cp̃ −Cq) (4)

where hΘ is a learnable non-linear function parameterized by
Θ, and� is a channel-wise symmetric aggregation operation.
There are multiple options for the symmetry operation,
including max pooling, average pooling, and weighted sum.
We compared max pooling and average pooling and observed
similar performance after tuning hyper-parameters carefully.

Flow Prediction The network architecture for flow
prediction is shown in Figure 4. The input is a feature
augmented point cloud, and the output is a depth residual
map. We use three EdgeConv layers to aggregate point
features at different scales of the neighborhood. Shortcut
connections are used to include all the EdgeConv outputs
as local point features. Finally, a shared multilayer
perceptron (MLP) is used to transform the pointwise
features, which outputs a probability scalar with softmax
among hypothesized points of each unprojected point. The
displacement of the unprojected points are predicted as the
probabilistic weighted sum of the displacement among all
predicted point hypotheses:

∆dp = E(ks) =

m∑
k=−m

ks× Prob(p̃k) (5)
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Figure 4: Network architecture of the proposed PointFlow module.

Note that this operation is differentiable. The output depth
residual map is obtained by projecting the displacement back,
which will be added to the initial input depth map for depth
refinement.

Iterative Refinement with Upsampling Because of the
flexibility of our point-based network architecture, the flow
prediction can be performed iteratively, which is much
harder for 3D cost-volume-based methods, because the space
partitioning is fixed after the construction of cost volume. For
depth map D(i) from coarse prediction or former residual
prediction, we can first upsample it using nearest neighbor to
higher spatial resolution and then perform the flow prediction
to obtain D(i+1). Moreover, we decrease the depth interval
s between the unprojected points and hypothesized points
at each iteration, so that more accurate displacement can be
predicted by capturing more detailed features from closer
point hypotheses.

3.4. Training loss

Similar to most deep MVS networks, we treat this
problem as a regression task and train the network with the
L1 loss, which measures the absolute difference between the
predicted depth map and the groundtruth depth map. Losses
for the initial depth map and iteratively refined ones are all
considered:

Loss =

l∑
i=0

λ(i)

s(i)

∑
p∈Pvalid

∥∥∥DGT (p)−D(i) (p)
∥∥∥

1


(6)

where Pvalid represents the valid groundtruth pixel set and
l is the iteration number. The weight λ(i) is set to 1.0 in
training.

4. Experiments
4.1. DTU dataset

The DTU dataset [1] is a large-scale MVS dataset, which
consists of 124 different scenes scanned in 7 different
lighting conditions at 49 or 64 positions. The data for each
scan is composed of an RGB image and corresponding

Acc. (mm) Comp. (mm) Overall (mm)

Camp [2] 0.835 0.554 0.695
Furu [5] 0.613 0.941 0.777

Tola [25] 0.342 1.190 0.766
Gipuma [6] 0.283 0.873 0.578

SurfaceNet [12] 0.450 1.040 0.745
MVSNet [29] 0.396 0.527 0.462

Ours 0.361 0.421 0.391
Ours-HiRes 0.342 0.411 0.376

Table 1: Quantitative results of reconstruction quality on the DTU
evaluation dataset (lower is better).

camera parameters. The dataset is split into training,
validation, and evaluation sets.

4.2. Implementation details

Training We train Point-MVSNet on the DTU training
dataset. For data pre-processing, we follow MVSNet [29]
to generate depth maps from the given groundtruth point
clouds. During training, we set input image resolution to
640× 512, and number of views to N = 3. The input view
set is chosen with the same view selection strategy as in
MVSNet (Section 4.1). For coarse prediction, we construct a
3D cost volume withD = 48 virtual depth planes, which are
uniformly sampled from 425mm to 921mm. For the depth
refinement step, we set flow iterations l = 2, with depth
intervals being 8mm and 4mm, respectively. The number of
nearest neighbor points = 16. We use RMSProp of initial
learning rate 0.0005 which is decreased by 0.9 for every 2
epochs. The coarse prediction network is trained alone for 4
epochs, and then, the model is trained end-to-end for another
12 epochs. Batch size is set to 4 on 4 NVIDIA GTX 1080Ti
graphics cards.

Evaluation We use D = 96 depth layers for initial depth
prediction and set flow iterations l = 3 for depth refinement.
We predict the reference view depth map for each N = 5
view set. Then we fuse all depth maps to point clouds using
same post-processing provided by [29]. We evaluate our
method in two different input image resolutions: 1280×960
(“Ours”), and 1600× 1152 (“Ours-HiRes”).
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MVSNet [29] Ours Ground Truth

Figure 5: Qualitative results of scan 9 of DTU dataset. Top: Whole point cloud. Bottom: Visualization of normals in zoomed local area. Our
Point-MVSNet generates detailed point clouds with more high-frequency component than MVSNet. For fair comparison, the depth maps
predicted by MVSNet are interpolated to the same resolution as our method.
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Figure 6: F-score, accuracy and completeness of different distance
thresholds on the DTU evaluation dataset (higher is better). For fair
comparison, we upsample the depth map predicted by MVSNet to
the same resolution as our method before depth fusion (288× 216
to 640× 480).

4.3. Benchmarking on DTU dataset

We evaluate the proposed method on the DTU evaluation
dataset. Quantitative results are shown in Table 1 and
Figure 6, where the accuracy and completeness are computed
using the official code from the DTU dataset, and the f-
score is calculated as mentioned in [15] as the measure of
overall performance of accuracy and completeness. While
Gipuma [6] performs the best in terms of accuracy, our Point-
MVSNet outperforms start-of-the-art in both completeness
and overall quality. Qualitative results are shown in
Figure 5. Point-MVSNet generates a more detailed point
cloud compared with MVSNet. Especially in those edgy
areas, our method can capture high-frequency geometric
features.

4.4. PointFlow iteration

Because of the continuity and flexibility of point
representation, the refinement and densification can be
performed iteratively on former predictions to give denser
and more accurate predictions. While the model is trained
using l = 2 iterations, we test the model using iteration
ranging from 0 to 3. For each iteration, we upsample
the point cloud and decrease the depth interval of point
hypotheses simultaneously, enabling the network to capture
more detailed features. We compare the reconstruction
quality, depth map resolution, GPU memory consumption
and runtime at different iterations, along with performance
reported by state-of-the-art methods in Table 2. The
reconstruction quality improves significantly with multiple
iterations, which verifies the effectiveness of our methods.
Note that our method already outperforms the state-of-the-
art after the second iteration. Qualitative results are shown
in Figure 7.

4.5. Ablation study

In this section we provide ablation experiments and
quantitative analysis to evaluate the strengths and limitations
of the key components in our framework. For all the
following studies, experiments are performed and evaluated
on the DTU dataset, and both accuracy and completeness
are used to measure the reconstruction quality. We set the
iteration number to l = 2, and all other experiment settings
are the same as Figure 4.2.

Edge Convolution By replacing the edge convolution ( 4)
with geometry-unaware feature aggregation:

C′p̃ = �
q∈kNN(p̃)

hΘ (Cq) , (7)

6



Initial Iter1 Iter2 Iter3

Figure 7: Qualitative results at different flow iterations. Top: Whole point cloud. Bottom: Zoomed local area. The generated point cloud
becomes denser after each iteration, and more geometry details can be captured.

Iter. Acc. (mm) Comp. (mm) Overall (mm) 0.5mm f-score Depth Map Res. Depth Interval (mm) GPU Mem. (MB) Runtime (s)

- 0.693 0.758 0.726 47.95 160×120 5.30 7219 0.34
1 0.674 0.750 0.712 48.63 160×120 5.30 7221 0.61
2 0.448 0.487 0.468 76.08 320×240 4.00 7235 1.14
3 0.361 0.421 0.391 84.27 640×480 0.80 8731 3.35

MVSNet[29] 0.456 0.646 0.551 71.60 288×216 2.65 10805 1.05

Table 2: Comparison result at different flow iterations measured by reconstruction quality and depth map resolution on the DTU evaluation
set. Due to the GPU memory limitation, we decrease the resolution of MVSNet [29] to 1152×864×192.

where the features of neighbor points are treated equally
with no regard for their geometric relationship to the
centroid point, the reconstruction quality drops significantly
as shown in Table 3, which illustrates the importance of
local neighborhood relationship information (captured by
Cp̃ −Cq) for feature aggregation.

Euclidean Nearest Neighbour In this part, we construct
the directed graph G using points belonging to adjacent
pixels in the reference image, instead of searching the k-NN
points, which leads to decreased reconstruction quality. The
reason is that, for images of 3D scenes, near-by pixels may
correspond to distant objects due to occlusion. Therefore,
using neighboring points in the image space may aggregate
irrelevant features for depth residual prediction, leading to
descending performance.

Feature Pyramid In this part, point cloud only fetches
features from the last layer of the feature map, instead of
from the whole feature pyramid. As shown in Table 3, in
contrast to the relatively stable performance for changing

edge convolution strategies as discussed above, the drop will
be significant in the absence of the other two components,
which demonstrates the effectiveness of the leveraging
context information at different scales for feature fetching.

4.6. Reliance on initial depth maps

Our method uses state-of-the-art approaches to get a
coarse depth map prediction, which is then iteratively refined
by predicting depth residuals. We found that our approach
is robust to noisy initial depth estimation in a certain range
through the following experiments. We added Gaussian
noise of different scales to the initial depth map and evaluated
the reconstruction error. Figure 8 shows that the error
increases slowly and is smaller than MVSNet within 6mm
noise.

4.7. Comparison to point cloud upsampling

Our work can also be considered as a data-driven point
cloud upsampling method with assisting information from
reference views. Therefore, we compare our method with
PU-Net [30], where multi-level features are extracted from

7



EDGE EUCNN PYR Acc. (mm) Comp. (mm)

X X X 0.448 0.487
X X 5 0.455 0.489
X 5 X 0.455 0.492
5 X X 0.501 0.518
X 5 5 0.475 0.504
5 X 5 0.574 0.565
5 5 X 0.529 0.532

Table 3: Ablation study on network architectures on the DTU
evaluation dataset, which demonstrates the effectiveness of different
components. EDGE denotes edge convolution, EUCNN denotes
grouping by nearest neighbour points in Euclidean distance, and
PYR denotes the usage of image feature pyramid.
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Figure 8: Reconstruction error w.r.t. initial depth map noise. AVG
denotes average pooling, MAX denotes max pooling.

Acc. (mm) Comp. (mm) Overall (mm)

PU-Net [30] 1.220 0.667 0.943
Ours 0.361 0.421 0.391

Table 4: Comparison of reconstruction quality on the DTU
evaluation dataset with PU-Net [30].

the coarse point cloud to reconstruct an upsampled point
cloud.

We use the same coarse depth prediction network as in
our model, and train PU-Net to upsample the coarse point
cloud. We use the same joint loss as mentioned in their
paper, which consists of two losses — the Earth Mover’s
distance (EMD) [4] loss between the predicted point cloud
and the reference groundtruth point cloud and a repulsion
loss. For evaluation, the PU-Net is applied on the coarse
predicted point cloud twice to generate a denser point cloud
with 16 times more points. Quantitative result is shown in
Table 4. Our Point-MVSNet can generate a more accurate
point cloud from the coarse one by inducing flow for each
point from observation of context information in multi-view
images.

4.8. Foveated depth inference

The point-based network architecture enables us to
process an arbitrary number of points. Therefore, instead

Figure 9: Illustration of foveated depth inference with our proposed
method. Different point density levels are denoted by different
colors: Gray for sparsest, Brown for intermediate, Green for
densest.

of upsampling and refining the whole depth map, we can
choose to only infer the depth in the region of interest (ROI)
based on the input image or the predicted coarse depth map.
As shown in Figure 9, we generate a point cloud of three
different density levels by only upsampling and refining the
ROI in the previous stage.

4.9. Generalizability of the PointFlow Module

In order to evaluate the generalizability of our PointFlow
module, we test it on the Tanks and Temples intermediate
dataset [15], which is a large outdoor dataset captured in
complex environments. We first generate coarse depth maps
using MVSNet [29], and then apply our PointFlow module
to refine them. The f-score increases from 43.48 to 48.27
(larger is better) and the rank rises from 13.12 to 7.25 (lower
is better, date: Mar. 22, 2019). Reconstructed point clouds
are shown in supplementary materials.

5. Conclusion
We present a novel point-based architecture for high-

resolution multi-view stereo reconstruction. Instead of
building a high-resolution cost volume, our proposed Point-
MVSNet processes the scene as a point cloud directly,
which reduces unnecessary computation and preserves the
spatial continuity. Experiments show that Point-MVSNet is
able to produce high-quality reconstruction point clouds on
benchmarks. Additionally, Point-MVSNet is applicable to
foveated depth inference to greatly reducing computation,
which cannot be easily implemented for cost-volume-based
methods.
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Supplementary Materials
6. Additional Ablation Study
6.1. Number of Point Hypotheses

In this section, we conduct an ablation study to verify the
influence of the number of point hypotheses. In the main
paper, we choose m = 2 for both the training and evaluation.
We change to m = 1 and m = 3, and conduct the evaluation
on the DTU evaluation set [1]. Table 5 shows the comparison
result. Our proposed algorithm achieves best reconstruction
quality in terms of completeness and overall quality when
the number of point hypotheses is m = 2.

Point Hypotheses Acc.(mm) Comp.(mm) Overall(mm)
1 0.442 0.515 0.479
2 0.448 0.487 0.468
3 0.468 0.499 0.484

Table 5: Ablation study of different number of point hypotheses m
on the DTU evaluation set [1]. (The model is trained with m = 2.)

6.2. Number of Views

In this section, we study the influence of the number of
input views N . Utilizing a variance-based cost metric, our
Point-MVSNet can process an arbitrary number of input
views. Although the model is trained using N = 3, we
can evaluate the model using either N = 2, 3, 5 on the
DTU evaluation set [1]. Table 6 demonstrates that the
reconstruction quality improves with an increasing number
of input views, which is consistent with common knowledge
of MVS reconstruction.

Number of Views Acc.(mm) Comp. (mm) Overall(mm)
2 0.462 0.604 0.533
3 0.448 0.507 0.478
5 0.448 0.487 0.468

Table 6: Ablation study on different number of input views N on
the DTU evaluation set [1]. (The model is trained with N = 3)

7. Memory, runtime and overhead of kNN
Table 7 compares our memory usage and running speed

against MVSNet. Our method is able to predict different
resolutions of depth maps at different speed by changing the
iterations. Naı̈ve kNN of point cloud of N points can be
memory-consuming with O(N2) complexity. However, we
notice the kNN of a point tend to come from its nearby 2D
pixels in the depth map. By leveraging this fact and taking
the hypothetical points into consideration, we restrict the
kNN search of each point from the whole point cloud to its

k × k × (2m+ 1) neighborhood. Furthermore, we parallel
the distance computation by using a fixed weight 3D kernel.

Iter.
Overall Err.

(mm)
Resolution

GPU Mem.
(MB)

Runtime
(s)

0 0.726 160×120 7219 0.34
1 0.712 160×120 7221 0.61
2 0.468 320×240 7235 1.14
2† 0.474 320×240 7233 0.97
3 0.391 640×480 8731 3.35

MVSNet 0.551 288×216 10805 1.05

Table 7: Comparison of memory consumption and runtime. kNN
is used for grouping, where all iterations adopt Euclidean distance,
except for the iteration that is indicated by †, which uses pixel
neighbor.

8. Post-processing
In this section, we describe the post-processing procedure

in details. Similar to MVSNet [29], our post-processing is
composed of three steps: photometric filtering, geometric
consistency filtering, and depth fusion.

For photometric filtering, we use predicted probability
of the most likely depth layer as the confidence metric and
filter out points whose confidence is below a threshold. The
filtering threshold is set to 0.5 and 0.2 for coarse and our
PointFlow stage, respectively. For geometric consistency, we
calculate the discrepancy of predicted depths among multi-
view predictions through reverse-projection. Points with
discrepancy larger than 0.12mm are discarded. For depth
fusion, we take average value of all reprojected depths of
each point in visible views as the final depth prediction and
produce the 3D point cloud.

9. Reconstruction Results
This section shows the reconstruction results of DTU

dataset [1] and Tanks and Temples dataset [15] in Figure 10
and Figure 11 respectively. Point-MVSNet is able to
reconstruct dense and accurate point clouds for all scenes.
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Figure 10: Reconstruction results on the DTU evaluation set [1].
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Figure 11: Reconstruction results on the intermediate set of Tanks and Temples [15].
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