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Abstract

Normalization methods are essential components in con-
volutional neural networks (CNNs). They either standard-
ize or whiten data using statistics estimated in predefined
sets of pixels. Unlike existing works that design normal-
ization techniques for specific tasks, we propose Switch-
able Whitening (SW), which provides a general form unify-
ing different whitening methods as well as standardization
methods. SW learns to switch among these operations in
an end-to-end manner. It has several advantages. First, SW
adaptively selects appropriate whitening or standardization
statistics for different tasks (see Fig.1), making it well suited
for a wide range of tasks without manual design. Second, by
integrating the benefits of different normalizers, SW shows
consistent improvements over its counterparts in various
challenging benchmarks. Third, SW serves as a useful tool
for understanding the characteristics of whitening and stan-
dardization techniques.

We show that SW outperforms other alternatives on
image classification (CIFAR-10/100, ImageNet), semantic
segmentation (ADE20K, Cityscapes), domain adaptation
(GTAS, Cityscapes), and image style transfer (COCO). For
example, without bells and whistles, we achieve state-of-
the-art performance with 45.33% mloU on the ADE20K
dataset. Code is available at https://github.com/
XingangPan/Switchable—-Whitening.

1. Introduction

Normalization methods have been widely used as a ba-
sic module in convolutional neural networks (CNNs). In
various applications, different normalization techniques like
Batch Normalization (BN) [13], Instance Normalization
(IN) [31] and Layer Normalization (LN) [!] are proposed.
These normalization techniques generally perform stan-
dardization that centers and scales features. Nevertheless,
the features are not decorrelated, hence their correlation
still exists.
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Figure 1. (a) SW outperforms its counterparts in a variety of
benchmarks. (b) SW learns to select appropriate whitening or stan-
dardization methods in different tasks and datasets. The CNNs are
ResNet50 for ImageNet and ADE20K, ResNet44 for CIFAR-10,
and VGG16 for GTA5—Cityscapes. GTA5—Cityscapes indicates
adapting from GTAS to Cityscapes using domain adaptation.

Another type of normalization methods is whitening,
which not only standardizes but also decorrelates fea-
tures. For example, Decorrelated Batch Normalization
(DBN) [17], or namely Batch Whitening (BW), whitens a
mini-batch using its covariance matrix, which gives rise to
better optimization efficiency than BN in image classifica-
tion. Moreover, whitening features of an individual image
is used in image style transfer [19] to filter out informa-
tion of image appearance. Here we refer to this operation
as instance whitening (IW). Despite their successes, exist-
ing works applied these whitening techniques separately to
different tasks, preventing them from benefiting each other.
Besides, whitening and standardization methods are typi-
cally employed in different layers of a CNN, which compli-
cates model design.

To address the above issues, we propose Switchable
Whitening (SW). SW provides a general form that integrates
different whitening techniques (e.g. BW, IW), as well as
standardization techniques (e.g. BN, IN and LN). SW con-
trols the ratio of each technique by learning their impor-
tance weights. It is able to select appropriate normalizers
with respect to various vision tasks, as shown in Fig.1(b).
For example, semantic segmentation prefers BW and BN,
while IW is mainly chosen to address image diversity in
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image classification. Compared to semantic segmentation,
domain adaptation selects more IW and IN, which allevi-
ates domain discrepancy in CNN features. In image style
transfer, IW dominates to handle image style variance.

SW can be inserted into advanced CNN architectures
and effectively boosts their performances. Owing to the
rich statistics and selectivity of SW, models trained with
SW consistently outperform other counterparts in a num-
ber of popular benchmarks, such as CIFAR-10/100 [16]
and ImageNet [5] for image classification, ADE20K [39]
and Cityscapes [4] for semantic segmentation, domain
adaptation between GTAS [27] and Cityscapes, and image
style transfer on COCO [22]. For example, when using
ResNet50 [9] for ImageNet, ADE20K, and Cityscapes, as
well as using VGG16 [29] for domain adaptation, SW sig-
nificantly outperforms the BN-based baselines by 1.51%,
3.2%, 4.1%, and 3.0% respectively.

SW serves as a useful tool for analyzing the characteris-
tics of these whitening or standardization techniques. This
work answers two questions: (1) Is IW beneficial for high-
level vision tasks like classification and domain adaptation?
(2) Is standardization still necessary when whitening is pre-
sented? Our experiments suggest that (1) IW works ex-
tremely well for handling image appearance diversity and
reducing domain gap, giving rise to better performance
in high-level vision tasks; (2) Using BW+IW in SW per-
forms comparably well compared to using all the normaliz-
ers mentioned above in SW, indicating that full whitening
generally works well, and the requirement for standardiza-
tion is marginal when whitening is presented.

Overall, our contributions are summarized as follows.
(1) We propose Switchable Whitening (SW), which unifies
existing whitening and standardization methods in a general
form and learns to switch among them during training. (2)
SW adapts to various tasks and is used as a new building
block in advanced CNNs. We show that SW outperforms
its counterparts in multiple challenging benchmarks. (3)
SW could be used as a tool to analyze the effects and char-
acteristics of different normalization methods, and the in-
teractions between whitening and standardization. We will
make the code of SW available and hope it would deepen
our understanding on various normalization methods.

2. Related Work

Normalization. Existing normalization techniques gener-
ally performs standardization. For example, Batch Nor-
malization (BN) [13] centers and scales activations using
the mean and variance estimated over a mini-batch, accel-
erating training and enhancing generalization. In contrast,
Instance Normalization (IN) [31] and Layer Normalization
(LN) [1] standardize activations with statistics computed
over each individual channel and all channels of a layer re-
spectively. IN is mainly used in image generation [11, 31]

while LN has been proved beneficial for training recurrent
neural networks [1]. The above three normalizers are com-
bined in Switchable Normalization (SN) [24] that learns the
ratio of each one. The combination of BN and IN is also
explored in IBN-Net [26] and Batch-Instance Normaliza-
tion [25]. Besides, there have been other attempts to im-
prove BN for small batch sizes such as Group Normaliza-
tion [33], Batch Renormalization [12], and Batch Kalman
Normalization [32]. All these normalization methods per-
form centering and scaling to the activations, whereas the
correlation between activations remains, leading to sub-
optimal optimization efficiency. Our work provides a gen-
eral form that integrates both whitening and standardization
techniques, having SN as a special case.

Whitening. Another paradigm towards improving opti-
mization is whitening. Desjardins et al. [6] proposes Nat-
ural Neural Network, which implicitly whitens the activa-
tions to improve conditioning of the Fisher Information Ma-
trix. This improves optimization efficiency of deep neural
networks. Decorrelated Batch Normalization (DBN) [17]
whitens features using covariance matrix computed over a
mini-batch. It extends BN by decorrelating features. In
this paper, we refer to DBN as Batch Whitening (BW) for
consistency. Moreover, in the field of image style transfer,
whitening and coloring operations are used to manipulate
the image appearance [19, 28]. This is because the appear-
ance of an individual image is well encoded in the covari-
ance matrix of its features. We call whitening of an indi-
vidual image as instance whitening (IW). In this work, we
make the first attempt to apply IW in high-level vision tasks
like image classification and semantic segmentation.

3. Switchable Whitening (SW)

We first present a general form of whitening as well as
standardization operations, and then introduce SW.

3.1. A General Form

Our discussion is mainly based on CNNs, where the data
have four dimensions. Let X € RE*NHW pe the data ma-
trix of a mini-batch, where N, C, H, W indicate the number
of samples, number of channels, height, and width respec-
tively. Here NV, H and W are viewed as a single dimension
for convenience. Let matrix X,, € RE*#W pe the nth
sample in the mini-batch, where n € {1,2,...,N}. Then
the whitening transformation ¢ : RE>*HW _ ROXHW for
a sample X, could be formulated as

(X,) =2V3(X, —p-17) (1)

where 1 and 3 are the mean vector and the covariance ma-
trix calculated from the data, and 1 is a column vector of
all ones. Note that different whitening methods could be
achieved by calculating p and X using different sets of pix-
els. We discuss them in detail as below.



Batch Whitening (BW). In BW [17], the statistics are
calculated in a mini-batch. Thus

1
p’bw—NHWX:l
1
S = X—p- 1Y X-p- 1T +ed 2

where € > 0 is a small positive number to prevent a singular
3. In this way, the whitening transformation ¢ whitens
the data of the entire mini-batch, i.e., p(X)p(X)T = 1.

Instance Whitening (IW). In contrast, for IW [19],
and X are calculated within each individual sample,

L
HW
X, —p- 10X, —p- 15T 4 eI (3)

Hiw = Xn -1

1
Eiw = Trtis
HW(
for nin {1, 2, ..., N}. IW whitens each samples separately,
ie, p(X,)p(X,)T =L

Note that Eq.(1) also naturally incorporates standardiza-
tion operations as its special cases. In the covariance matrix
3, the diagonal elements are the variance for each channel,
while the off-diagonal elements are the correlation between
channels. Therefore, by simply setting the off-diagonal el-
ements to zeros, the left multiplication of X~1/2 equals to
dividing the standard variance, so that Eq.(1) becomes stan-
dardization.

Batch Normalization (BN). BN[13] centers and scales
data using the mean and standard deviation of a mini-batch.
Hence its mean is the same as in BW i.e., iy, = tpw. AS
discussed above, since BN does not decorrelate data, the
covariance matrix becomes Xy, = diag(Xs,, ), which is a
diagonal matrix that only preserves the diagonal of X,,.

Instance Normalization (IN). Similarly, in IN [31] we
have pin, = piw and 3y, = diag(ziw)'

Layer Normalization (LN). LN [1] uses the mean and
variance of all channels in a sample to normalize. Let p,
and o;,, denote the mean and the variance, then p;, = pi,1
and X;, = o;,I. In practice p;, and o, could be calcu-
lated efficiently from p;,, and 33;,, using the results in [24].

In Eq.(1), the inverse square root of the covariance ma-
trix is typically calculated by using ZCA whitening,

»~1/2 = pA~1/2DT 4)

where A = diag(oy,...,0.) and D = [dy, ..., d,.] are the
eigenvalues and the eigenvectors of X, ie., 3 = DADT,
which is obtained via eigen decomposition.

So far we have formulated different whitening and nor-
malization transforms in a general form. In the next section,
we introduce switchable whitening based on this formula-
tion.

3.2. Formulation of SW

For a data sample X,, a natural way to unify the
aforementioned whitening and standardization transforms
is to combine the mean and covariance statistics of those
methods, and perform whitening using this unified statis-
tics, giving rise to

SW(X,) =2"*(X,, — - 17) )
where o= Z Wile, 2= Z Wi Xk (6)
keQ keQ

Here (2 is a set of statistics estimated in different ways. In
this work, we mainly focus on two cases, i.e., @ = {bw, iw}
and 2 = {bw, iw, bn, in, In}, where the former switches be-
tween two whitening methods, while the later incorporates
both whitening and standardization methods. wy, are impor-
tance ratios to switch among different statistics. In practice,
wy, are generated by the corresponding control parameters
A, via softmax function, i.e., wy = ﬁ
z€EQ

defined similarly using another group of control parame-
ters Aj,. This relieves the constraint of consistency between
mean and covariance, which is a more general form.

Note that the above formulation incorporates SN [24] as
its special case by letting 2 = {bn, in, In}. Our formula-
tion is more flexible and general in that it takes into account
the whole covariance matrix rather than only the diagonal.
This provides the possibility of producing decorrelated fea-
tures, giving rise to either better optimization conditioning
or style invariance. SW could be easily extended to incor-
porate some other normalization methods like Batch Renor-
malization [12] or Group Normalization [33], which is out
of the scope of this work.

. And wj, are

3.3. Training and Inference

Switchable Whitening could be inserted extensively into
a convolutional neural network (CNN). Let © be a set of
parameters of a CNN, and ® be a set of importance weights
in SW. The importance weights are initialized uniformly,
e.g. A\, = 1. During training, © and ® are optimized
jointly by minimizing a loss function £(©, ®) using back-
propagation. The forward calculation of our proposed SW
is presented in Algorithm 1 while the backward pass is pre-
sented in Appendix. For clearance, we use 2 = {bw, iw}
as an illustrative example.

In the training phase, fty,, and 3, are calculated within
each mini-batch and used to update the running mean and
running covariance as in Line 7 and 8 of Algorithm 1. Dur-
ing inference, the running mean and the running covariance
are used as pup,, and Xy, while p;,, and X, are calculated
independently for each sample.



Algorithm 1 Forward pass of SW for each iteration.
]RC XNHW

1: Input: mini-batch inputs X € , where the nth sam-
ple in the batch is X,, € RE*#W 5 € {1,2, ..., N}; importance
weights A\, and )}, k € {bw,iw}; expected mean pr and ex-
pected covariance X .

2: Hyperparameters: ¢, running average momentum cv.

3: Output: the whitened activations {X,,, n=12.,N }.

4: calculate: wyy, wiw = SoftmMar(Npw, Aiw); Whey, Wiy = Softmaz()\bu, fw)
5: calculate: ppw = p X - 1.

6: calculate: Sy =y (X —p - 17)(X — p - 17)7 + €L

7: update: pg + (1 — a)pe + appw.

8: update: Xg + (1 — )Xg + aXpw.

9: forn =1to N do

10: calculate: ;ﬁ") = 77 Xn L.

11:  calculate: =) = #(X —p 1T (X — - 1T)T el

12: calculate: fi, = 3, wrpl”, 3, = >k wp Bk € {bw, iw}.

13: execute eigenvalue decomposition: 3, = DAD”.

14 calculate ZCA-whitening matrix: U, = DA~'/?D7.

15:  calculate ZCA-whitened output: X,, = U, (X, — fin - 17).
16: end for

In practice, the scale and shift operations are usually
added right after the normalization or whitening transform
to enhance the model’s representation capacity. For SW, we
follow this design to introduce scale and shift parameters ~y
and 3 as in BN.

3.4. Accelerates SW via Newton’s Iteration

In practice, the GPU implementation of singular value
decomposition (SVD) in current deep learning frameworks
are inefficient, leading to much slower training and infer-
ence. To address this issue, we could resort to an alternative
way to calculate »-v 2 which is to use Newton’s iteration,
as in IterNorm [10]. Following [10], we normalize 3 via
Sn = 3/tr(2). Then calculate XA];,I/ ? via the following
iterations:

{PO =1 (7

P, =313Pr1 —P}_Ey), k=1,2,...,T

where T’ is the iteration number, and P will converge to

2&1/2. Finally, we have 3~1/2 = _1/2/\/tr( 3). In this
work, we set T = 5, which produces similar performance

with the SVD version.

3.5. Analysis and Discussion

We have introduced the formulation and training of SW.
Here we discuss some of its important properties and ana-
lyze its complexity.

Instance Whitening for Appearance Invariance. In style
transfer, researchers have found that image appearance in-
formation (i.e. color, contrast, style etc.) is well encoded in
the covariance matrix of features produced by CNNs [19].
In this work, we take the first attempt to induce appearance
invariance by leveraging IW, which is beneficial for domain

adaptation or high-level vision tasks like classification or
semantic segmentation. Although IN also introduces in-
variance by standardizing each sample separately, the dif-
ference in correlation could be easily enlarged in highly
non-linear deep neural networks. In IW, features of dif-
ferent samples are not only standardized but also whitened
individually, giving rise to the same covariance matrix, i.e.,
identity matrix. Therefore, IW has better invariance prop-
erty than IN.

Switching between Whitening and Standardization. Our
formulation of SW makes it possible to switch between
whitening and standardization. For example, considering
Q= {bW, bn}, ie, Y = WhwDpw +Whn Dbn, (wbw +wpy, =
1). As wp, grows larger, the diagonal of 3> would remain
the same, while the off-diagonal would be weaken. This
would make the features less decorrelated after whitening.
This is beneficial when the extent of whitening requires
careful adjustment, which is an important issue of BW as
pointed out in [17].

Group SW. Huang et al. [17] uses group whitening to re-
duce complexity and to address the inaccurate estimation
of large covariance matrices. In SW we follow the same
design, i.e., the features are divided into groups along the
channel dimension and SW is performed for each group.
The importance weights \; could be shared or independent
for each group. In this work we let groups of a layer share
the same )\, to simplify discussion.

Table 1. Comparisons of computational complexity. N,C, H, W
are the number of samples, number of channels, height, and width
of the input tensor respectively. G denotes the number of channels

for each group in group whitening.
Method Computational complexity
w/o0 group w/ group
BN,IN,LN,SN O(NCHW) O(NCHW)
BW O(C*max(NHW,C)) O(CGmax(NHW,G))
w O(NC2max(HW,C)) O(NCGmax(HW,G))
SW O(NC*max(HW,C)) O(NCGmax(HW,@))

Complexity Analysis. The computational complexities
for different normalization methods are compared in Ta-
ble 1. The flop of SW is comparable with IW. And ap-
plying group whitening could reduce the computation by
C/G times. Usually we have HW > @G, thus the compu-
tation cost of SW and BW would be roughly the same (i.e.,
O(CGNHW)).

4. Experiments

We evaluate SW on image classification (CIFAR-10/100,
ImageNet), semantic segmentation (ADE20K, Cityscapes),
domain adaptation (GTAS, Cityscapes), and image style
transfer (COCO). For each task, SW is compared with pre-
vious normalization methods. We also provide results of
instance segmentation in the Appendix.
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Figure 2. Training and validation error curve on CIFAR-10 and ImageNet. Models with different normalization methods are reported. Here

SW has = {bw, iw}.

Table 2. Test errors (%) on CIFAR-10/100 and ImageNet valida-
tion sets [ 16]. For each model, we evaluate different normalization
or whitening methods. SW* and SW correspond to = {bw, iw}
and Q = {bw, iw, bn, in, In} respectively. Results on CIFAR are
averaged over 5 runs.

Dataset | Method [BN SN BW SW* SW’
ResNet20 845 834 828 764 775

ResNetd4 701 675 683 627 635

CIFAR-I0 | ResNets6 688 657 662 607 625
ResNet110 621 597 599 569 578

ResNet20 32.09 3228 32.44 31.00 30.87
CIFAR-100 | g osNet1 10 27.32 2725 2776 26.64 2648
ImaceNer | RESNetS0 (topD) [23.58 23.10 2331 22.10 22.07
£ ResNet50 (top5) | 700 6.55 672 596 591

4.1. Classification

CIFAR-10, CIFAR-100 [16] and ImageNet [5] are stan-

dard image classification benchmarks. Our training policies
and settings are the same as in [9].
Implementation. We evaluate different normalization
methods based on standard ResNet [9]. Note that intro-
ducing whitening after all convolution layers of ResNet is
redundant and would incur a high computational cost, as
also pointed out in [17]. Hence we replace part of the BN
layers in ResNet to the desired normalization layers. For
CIFAR, we apply SW or other counterparts after the 1s¢ and
the {4n}sh (n = 1,2,3,...) convolution layers. And for Ima-
geNet, the normalization layers considered are those at the
Lst and the {6n}#h (n = 1,2,3,...) layers. The residual blocks
with 2048 channels are not considered to save computation.
More discussions for such choices could be found in sup-
plementary material.

The normalization layers studied here are BN, SN, BW,
and SW. For SW, we consider two cases: @ = {bw, iw}
and 2 = {bw, iw, bn, in, In}, which are denoted as SW*
and SW° respectively. In all experiments, we adopt group
whitening with group size G = 16 for SW and BW. Since
[23] shows that applying early stop to the training of SN
reduces overfitting, we stop the training of SN and SW at

the 80¢h epoch for CIFAR and the 30k epoch for ImageNet.
Results. The results are given in Table. 2 and the training
curves are shown in Fig. 2. In both datasets, SW* and SW?
show better results and faster convergence than BN, SN, and
BW over various network depth. Specifically, with only 7
Swt layers, the topl and top5 error of ResNet50 on Ima-
geNet is significantly reduced by 1.51% and 1.09%. This
performance is comparable with the original ResNetl52
which has 5.94% top5 error.

Our results reveal that combining different normalization

methods in a suitable manner surpasses every single nor-
malizer. For example, the superiority of SW' over SN at-
tributes to the better optimization conditioning brought out
by whitening. And the better performance of SW* over BW
shows that instance whitening is beneficial as it introduces
style invariance. Moreover, SW* and swb perform com-
parably well, which indicates that full whitening generally
performs well, and the need for standardization is marginal
while whitening is presented.
Discussions. SW has two groups of importance weights g
and Aj,. We observe that allowing A, and X}, to share weight
produces slightly worse results. For example, ResNet20 has
8.17% test error when using SW with shared importance
weights. We conjecture that mean and covariance have dif-
ferent impacts in training, and recommend to maintain in-
dependent importance weights for mean and covariance.

Note that IW is not reported here because it generally
produces worse results due to diminished feature discrimi-
nation. For example, ResNet20 with IW gives 12.57% test
error on CIFAR-10, which is worse than other normaliza-
tion methods. This also implies that SW borrows the bene-
fits of different normalizers so that it could outperform any
individual of them.

4.2. Semantic Segmentation

We further verify the scalability of our method on
ADE20K [39] and Cityscapes [4], which are standard and
challenging semantic segmentation benchmarks. We evalu-
ate SW based on ResNet and PSPNet [37].



Table 3. Results on Cityscapes and ADE20K datasets. ‘ss’ and
‘ms’ indicate single-scale and multi-scale test respectively.
ADE20K Cityscapes

mloUg mloUy, | mloUg, mloU
ResNet50-BN 36.6 37.9 72.1 73.4
ResNet50-SN 37.8 38.8 75.0 76.2
ResNet50-BW | 35.9 37.8 72.5 73.7
ResNet50-SW* | 39.8 40.8 76.2 77.1
ResNet50-SW’ | 39.8 40.7 76.0 71.0

Method

Table 4. Comparison with advanced methods on the ADE20K val-
idation set. * indicates our implementation.

Method ‘ mloU(%) Pixel Acc.(%)
DilatedNet [35] 32.31 73.55
CascadeNet [40] 34.90 74.52
RefineNet [21] 40.70 -
PSPNet101 [37] 43.29 81.39
SDDPN [20] 43.68 81.13
WiderNet [34] 43.73 81.17
PSANet101 [38] 43.77 81.51
EncNet [36] 44.65 81.69
PSPNet101* 43.59 81.41
PSPNet101-SW* | 45.33 82.05

Implementation. We adopt the same ResNet architec-
ture, training setting, and data augmentation scheme as in
[37]. The normalization layers considered are the 1st and
the {3n}th (n = 1,2,3,...) layers except those with 2048
channels, resulting in 14 normalization layers for ResNet50.
Since overfitting is not observed in these two benchmarks,
early stop is not used here. The BN and BW involved are
synchronized across multiple GPUs.

Results. Table.3 reports mloU on the validation sets of the
two benchmarks. For ResNet50, simply replacing part of
BN with SW would significantly boost mloUg by 3.2% and
4.1% for ADE20K and Cityscapes respectively. SW also
notably outperforms SN and BW, which is consistent with
the results of classification.

Furthermore, we show that SW could improve even the
most advanced models for semantic segmentation. We ap-
ply SW to PSPNet101 [37], and compare with other meth-
ods on the ADE20K dataset. The results are shown in Ta-
ble.4. Simply using some SW layers could improve the
strong PSPNet by 1.74% on mloU. And our final score,
45.33%, outperforms other more advanced semantic seg-
mentation methods like PSANet [38] and EncNet [36].
Computational cost. While the above implementation of
SW is based on SVD, they can be accelerated via New-
ton’s iteration, as discussed in section 3.4. As shown in Ta-
ble.5, the GPU running time is significantly reduced when
using iterative whitening, while the performance is com-
parable to the SVD version. Note that in this Table, the
ResNet-50-SW* in Cityscapes has the same configuration
as in ImageNet, i.e., has 7 SW layers. Compared with the
14 layer version, this further saves computation cost, while

Table 5. Performance and running time of ResNet50 with different
normalization layers on ImageNet and Cityscapes datasets. We
report the GPU running time per iteration during training. The
GPU we use is NVIDIA Tesla V100.

. ImageNet Cityscapes
Method | Whitening | e i me(s) [mIoU(%) time(s)
ResNet50-BN - 2358 027 | 721 052

ResNet50-BW svd 2331 0.79 724 1.09
ResNet50-SW* svd 22.10 1.04 75.7 1.24
ResNet50-SW*| iterative | 22.07 0.36 76.0 0.67
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Figure 3. MMD distance between Cityscapes and GTAS.

still achieves satisfactory results.

4.3. Domain Adaptation

The adaptive style invariance of SW making it suitable
for handling appearance discrepancy between two image
domains. To verify this, we evaluate SW on domain adap-
tation task. The datasets employed are the widely used
GTAS [27] and Cityscapes [4] datasets. GTAS is a street
view dataset generated semi-automatically from the com-
puter game Grand Theft Auto V (GTAS5), while Cityscapes
contains traffic scene images collected from the real world.
Implementation. We conduct our experiments based on
the AdaptSegNet [30] framework, which is a recent state-
of-the-art domain adaptation approach. It adopts adver-
sarial learning to shorten the discrepancy between two do-
mains with a discriminator. The segmentation network is
DeepLab-v2 [3] model with VGG16 [29] backbone. The
training setting is the same as in [30].

Note that the VGG16 model has five convolutional

groups, where the number of convolution layers for these
groups are {2,2,3,3,3}. We add SW or its counterparts af-
ter the first convolution layer of each group, and report the
results using different normalization layers.
Results. Table.6 reports the results of adapting GTAS to
Cityscapes. The models with SW achieve higher perfor-
mance when evaluated on a different image domain. Par-
ticularly, compared with BN, and SN, SW* improves the
mloU by 3.0%, and 1.6% respectively.

To understand how SW performs better under cross-
domain evaluation, we analyze the maximum mean discrep-
ancy (MMD)[7] of deep features between the two datasets.
MMD is a commonly used metric for evaluating domain
discrepancy. Specifically, we use the MMD with Gaussian



Table 6. Results of adapting GTAS to Cityscapes. mloU of models with different normalization layers are reported.
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Figure 4. Training loss in style transfer and the learned importance ratios of SW®. The importance ratios are averaged over all SW? layers

in the image stylizing network.

~style

content

Figure 5. Visualization of style transfer using different normaliza-
tion layers.

kernels as in [18]. We calculate the MMD for features of the
first 13 layers in VGG16 with different normalization lay-
ers. The results are shown in Fig.3. Compared with BN and
SN, SW significantly reduces MMD for both shallow and
deep features. This shows that the IW introduced effectively
reduces domain discrepancy in the CNN features, making
the model easier to generalize to other data domains.

4.4. Image Style Transfer

Thanks to the rich statistics, SW could work not only
in high-level vision tasks, but also in low-level vision tasks
like image style transfer. To show this, we employ a pop-
ular style transfer algorithm [15]. It has an image stylizing
network trained with the content loss and style loss calcu-
lated by a loss network. The MS-COCO dataset [22] is used
as content images while the style images selected are candy
and starry night. We follow the same training policy as in
[15], and adopt different normalization layers for the image
stylizing network.

Results. The training loss curve is shown in Fig.4. As re-
vealed in former works, IW and IN perform better than BN.
Besides, we observe that IW has smaller content loss and
style loss than IN, which verifies that IW works better in
manipulating image style. Although SW converges slower

than IW at the beginning, it soon catches up with IW as SW
learns to select IW as the normalizer. Moreover, SW has
smaller content loss than IW when the training converges,
as BW preserves important content information.
Qualitative examples of style transfer using different nor-
malization layers are shown in Fig.5. BN produces poor
stylization images, while IW gives satisfactory results. SW
works comparably well with IW, showing that SW is able
to select appropriate normalizer according to the task. More
examples are provided in supplementary material.

4.5. Analysis on SW

In order to understand the behavior of SW, in this section
we study its learning dynamics and the learned importance
ratios.

Learning Dynamics. The importance ratios of SW is ini-
tialized to have uniform values, i.e. 0.5 for Q = {bw, iw}
and 0.2 for 2 = {bw, iw, bn, in, In}. To see how the ratios
of SW in different layers change during training, we plot
the learning curves of wy, and wj, in Fig.6 and Fig.7. It can
be seen that the importance ratios shift quickly at the begin-
ning and gradually become stable. There are several inter-
esting observations. (1) The learning dynamics vary across
different tasks. In CIFAR-10, SW mostly selects IW and
occasionally selects BW, while in Cityscapes BW or BN is
mostly chosen. (2) The learning behaviours of SW across
different layers tend to be distinct rather than homogeneous.
For example, in Fig.7 (a), SW selects IW for layer {15, 21,
39}, and BW for the rest except for layer {6, 9} where the
ratios keep uniform. (3) The behaviors of wy, and wj, are
mostly coherent and sometimes divergent. For instance, in
layer {15, 21} of Fig.7, wy, chooses IW while wj}, chooses
BW or BN. This implies that & and ¥ are not necessarily
have to be consistent, as they might have different impacts
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We further analyze the learned importance ratios in SW
for various tasks, as shown in Fig.8. The results are ob-
tained by taking average over the importance ratios wj, of
all SW layers in a CNN. The models are ResNet50 for Im-
ageNet, ADE20K, and Cityscapes, ResNet44 for CIFAR-
10, VGG16 for GTA5—Cityscapes, and a ResNet-alike net-
work for style transfer as in [15]. Both Q = {bw, iw} and
Q = {bw, iw, bn, in, In} are reported.

We make the following remarks: (1) For semantic seg-
mentation, SW chooses mainly BW and BN, and partially
the rest, while in classification more IW are selected. This
is because the diversity between images is higher in classi-
fication datasets than in segmentation datasets. Thus more
IW is required to alleviate the intra-dataset variance. (2) Se-
mantic segmentation on Cityscapes tends to produce more
IW and IN under domain adaptation setting than in the nor-
mal setting. Since domain adaptation introduces a domain
discrepancy loss, more IW and IN would be beneficial for
reducing the feature discrepancy between the two domains,

i.e., GTAS and Cityscapes. (3) In image style transfer, SW
switches to IW aggressively. This phenomenon is consistent
with the common knowledge that IW is well suited for style
transfer, as image level appearance information is well en-
coded in the covariance of CNN features. Our experiments
also verify that IW is a better choice than IN in this task.

5. Conclusion

In this paper, we propose Switchable Whitening, which
integrates various whitening and standardization techniques
in a general form. SW adapts to various tasks by learn-
ing to select appropriate normalizers in different layers of
a CNN. Our experiments show that SW achieves consis-
tent improvements over previous normalization methods in
a number of computer vision tasks, including classification,
segmentation, domain adaptation, and image style transfer.
Investigation of SW reveals the importance of leveraging
different whitening methods in CNNs. We hope that our
findings in this work would benefit other research fields and
tasks that employ deep learning.
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Appendix

This appendix provides (1) back-propagation of SW, (2)
discussion for our network configurations, (3) results for in-
stance segmentation, and (4) some style transfer visualiza-
tion results.

A. Back-propagation of SW

The backward pass of our proposed SW is presented in
Algorithm 2.

Algorithm 2 Backward pass of SW for each iteration.

1: Input: mini-batch gradients respect to whitened outputs

%, n=1,2,..,N}. Other auxiliary data from respective
forward pass.

2: Output: the gradients respect to the inputs

j;(L ,n=1,2..,N}; the gradients respect to the im-
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Algorithm 2, where we start with the forward pass of ZCA

whitening.

Forward Pass. Let X ¢ REXHW be a sample of a mini-
batch. Here the subscript 7 is omitted for clearance. Given
the integrated mean £z and the integrated covariance X in
SW, the ZCA whitening is as follows:

S =DAD” ®)
V =A"?DT )
X=VX-j-17) (10)
X =DX (11)

where V and X are intermediate variables for clarity in
derivation.

Back-propagation. Based on the chain rule and the results

()  denotes Frobenius inner product.

in [14, 17], g)é i L can be calculated as follows:
% %D (12)
v - gg(x —A- 1! (13)
53 = DA (14)
55 = oA X (1)
% = D{[K" © (D" gé)] + (gi)dwq}DT (16)
o= ax V) am

where L is the loss calculated via a loss function K e
R®*“ is a O-diagonal matrix with K;; = _a] [i # 4],
and © is element-wise matrix multiplication.

B. Discussion for Network Configurations

In our experiments, we replace part of the BN layers in
ResNet to SW layers to save computation and to reduce re-
dundancy. In this section we discuss the network configura-
tions in detail.

CIFAR-10/100. For CIFAR, the ResNet has two convo-
lution layers in a residual module. Thus we apply SW or
other counterparts after the 1s¢ and the {4n}th (n=1,2,3,...)
convolution layers. For example, in ResNet20, the normal-
ization layers considered are the {1,4,8,12,16}th layers. We
consider the 1s7 layer because [17] shows that it is effective
to conduct whitening there. The last layer is not considered
because it is a classifier where normalization is not needed.

ADE20K and Cityscapes. For semantic segmentation, the
ResNet50 has a bottleneck architecture with a period of
three layers, where the second layer provides a compact em-
bedding of the input features. Therefore we apply SW after
the second convolution layer of the bottleneck. Then the
normalization layers considered are those at the 1st and the
{3n}th (n = 1,2,3,...) layers. The residual blocks with 2048
channels are not considered to save computation, which also
follows the rule in [26] that instance normalization should
not be added in deep layers. Thus in ResNet50, the nor-
malization layers considered are the {1,3,6,...,39}th layers,
containing 14 layers in total.

ImageNet. And for ImageNet, the network configuration is
similar to ResNet50 in semantic segmentation, except that
we consider the 1sz and the {6n}sh (n = 1,2,3,...) layers
to further save computation. Thus the normalization lay-
ers considered are the {1,6,12....,36}th layers, containing 7
layers in total.



content BN IN SN W sw? SwP

Figure 9. Visualization of style transfer using different normalization layers.

Table 7. Mask R-CNN using ResNet50 and FPN with 2x LR

schedule.
Backbone FPN & Head|APpo: APpask
FrozenBN - 385 351
SyncBN SyncBN 39.6  35.6
GN GN 39.6  35.8
SN SN 41.0 36.5

Sw* SyncBN | 41.2 37.0

C. Instance Segmentation

We further provide results on instance segmentation,
where Mask-RCNN [&] and COCO dataset [22] are used
to evaluate our method, and the implementation is based on
mmdetection [2]. We replace 7 normalization layers of the
ResNet50 backbone with SW following the same way as in
ImageNet, while the rest normalization layers of the back-
bone, FPN, and detection/mask head are SyncBN. The SW
layers are synchronized across multiple GPUs. As shown in
Fig.7, SW significantly outperforms SyncBN and GN [33],
and also outperforms SN reported by [24], which replaces
all normalization layers to SN.

D. Style Transfer Results

Fig.9 provides visualization examples for image style
transfer, where results of stylizing network with different
normalization techniques are shown. It can be observed that
the results of BN are worse than those of other methods, and
SW produces comparably well stylizing images with TW.
This shows that SW well adapts to the image style transfer
task.



