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Abstract

The design of neural network architectures is frequently
either based on human expertise using trial/error and em-
pirical feedback or tackled via large scale reinforcement
learning strategies performed over distinct discrete archi-
tecture choices. In the latter case, the optimization is often
non-differentiable and also not very amenable to derivative-
free optimization methods. Most methods in use today re-
quire sizable computational resources. And if we want
networks that additionally satisfy resource constraints, the
above challenges are exacerbated because the search must
now balance accuracy with certain budget constraints on
resources. We formulate this problem as the optimization
of a set function – we find that the empirical behavior of
this set function often (but not always) satisfies marginal
gain and monotonicity principles – properties central to the
idea of submodularity. Based on this observation, we adapt
algorithms within discrete optimization to obtain heuristic
schemes for neural network architecture search, where we
have resource constraints on the architecture. This sim-
ple scheme when applied on CIFAR-100 and ImageNet,
identifies resource-constrained architectures with quantifi-
ably better performance than current state-of-the-art mod-
els designed for mobile devices. Specifically, we find high-
performing architectures with fewer parameters and com-
putations by a search method that is much faster.

1. Introduction

The design of state-of-the-art neural network architec-
tures for a given learning task typically involves exten-
sive effort: human expertise as well as significant compute
power. It is well accepted that the trial-and-error process
is tedious, often requiring iterative adjustment of models
based on empirical feedback – until one discovers the “best”
structure, often based on overall accuracy. In other cases it
may also be a function of the model’s memory footprint or
speed at test time. This architecture search process becomes

more challenging when we seek resource-constrained net-
works to eventually deploy on small form factor devices:
accuracy and resource-efficiency need to be carefully bal-
anced. Further, each type of mobile device has its own
hardware idiosyncrasies and may require different architec-
tures for the best accuracy-efficiency trade-off. Motivated
by these considerations, researchers are devoting effort into
the development of algorithms that automate the process
of architecture search and design. Many of the models
that have been identified via a judicious use of such archi-
tecture search schemes (often together with human exper-
tise) currently provide excellent performance in classifica-
tion [3, 31, 44] and object detection [31].

The superior performance of the architectures identified
via the above process notwithstanding, it is well known that
those search algorithms are time consuming and compute-
intensive. For reference, even for a smaller dataset such as
CIFAR-10, [44] requires 3150 GPU days for a reinforce-
ment learning (RL) model. A number of approaches have
been proposed to speed up architecture search algorithms.
Some of the strategies include adding a specific structure
to the search space to reduce search time [25, 36], sharing
weights across various architectures [5, 30], and imposing
weight or performance prediction constraints for each dis-
tinct architecture [3, 4, 26]. These ideas all help in various
specific cases, but the inherent issue of a large search space
and the associated difficulties of scalability still exists.

Notice that one reason why many search methods based
on RL, evolutionary schemes, MCTS [28], SMBO [25] or
Bayesian optimization [18] are compute intensive in gen-
eral is because architecture search is often set up as a black-
box optimization problem over a large discrete domain,
thus leading to a large number of architecture evaluations
during search. Further, many architecture search methods
[8, 25, 44] do not directly take into account certain resource
bounds (e.g., # of FLOPs) although the search space can be
pre-processed to filter out those regions of the search space.
As a result, few methods have been widely used for identi-
fying deployment-ready architectures for mobile/embedded
devices. When the resource of interest is memory, one
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choice is to first train a network and then squeeze or com-
press it for a target deployment device [2, 9, 12, 37, 40].

Key idea. Here, we take a slightly different line of attack
for this problem which is based loosely on ideas that were
widely used in computer vision in the early/mid 2000s [21].
First, we move away from black box optimization for archi-
tecture search, similar to strategies adopted in other recent
works [14, 18, 25, 28, 33]. Instead, we view the architecture
as being composed of primitive basic blocks. The “skele-
ton” or connectivity between the blocks is assumed fixed
whereas the actual functionality provided by each block is a
decision variable – this is precisely what our search will be
performed on. The goal then is to identify the assignment
of blocks so that the overall architecture satisfies two simple
properties: (a) it satisfies the user provided resource bounds
and (b) is accurate for the user’s task of interest.

While we will make the statement more formal shortly, it
is easy to see that the above problem can be easily viewed as
a set function. Each empty block can be assigned to a spe-
cific type of functional module. Once all blocks have been
assigned to some functional module, we have a “proposal”
network architecture whose accuracy can be evaluated —
either by training to completion or stopping early [24, 41].
A different assignment simply yields a different architec-
ture with a different performance profile. In this way, the
set function (where accuracy can be thought of as function
evaluation) can be queried/sampled. We find that empiri-
cally, when we evaluate the behavior of this set function,
it often exhibits nice marginal gain or diminishing returns
properties. Further, the performance (accuracy) typically
improves or stays nearly the same when adding functional
modules to a currently empty block (akin to adding an ele-
ment to a set). These properties are central to submodular-
ity, a key concept in many classical methods in computer
vision. Mathematically, of course, our set function is not
submodular. However, our empirical study suggests that the
set function generally behaves well. Therefore, similar to
heuristic application of convex optimization techniques to
nonconvex problems, we utilize submodular optimization
algorithms for architecture search algorithm design.

Main contributions and results. We adapt a simple
greedy algorithm with performance guarantees for submod-
ular optimization – in this case, we obtain a heuristic that is
used to optimize architecture search with respect to its vali-
dation set performance. This design choice actually enables
achieving very favorable performance relative to state-of-
the-art approaches using orders of magnitude less compu-
tation resources, while concurrently being competitive with
other recent efficient search methods, such as ENAS, Prox-
ylessNAS, DARTS and FBNet [6, 27, 30, 38]. This greedy
search is also far simpler to implement than many exist-
ing search methods: no controllers [3, 30, 43, 44], hyper-
networks [4], or performance predictors [25] are required.

It can be easily extended to a number of different resource
bounded architecture search applications.

Our contributions are: (1) We formulate Resource Con-
strained Architecture Search (RCAS) as a set function opti-
mization and design a heuristic based on ideas known to be
effective for constrained submodular optimization. (2) We
describe schemes by which the algorithm can easily sat-
isfy constraints imposed due to specific deployment plat-
forms (# of FLOPs, power/energy). (3) On the results side,
we achieve remarkable architecture search efficiency. On
CIFAR-100, our algorithm takes only two days on 2 GPUs
to obtain an architecture with similar complexity as Mo-
bileNetV2. On ImageNet, our algorithm runs in 8 days on
2 GPUs and identifies an architecture similar in complexity
and performance to MobileNetV2. (4) We show that the ar-
chitectures learned by RCAS on CIFAR-100 can be directly
transferred to ImageNet with good performance.

2. Preliminaries
2.1. Architecture Search

We aim to include computational constraints in the de-
sign of mobile Convolutional Neural Networks (MCNNs).
Consider a finite computational budget available for a spe-
cific prediction task, B. The problem of designing efficient
MCNNs can be viewed as seeking the most accurate CNN
model that fits within said budget B:

max
cnn

f(cnn) subject to Cost(cnn) ≤ B (1)

where f denotes a score function, typically the validation
accuracy on a held out set of samplesXvalid := (xi, yi)mi=1,
i.e., f(cnn) = 1

m

∑m
i=1 1[cnnw(xi)=yi]. The parameters w

are learned with a training setXtrain, often with a surrogate
cross-entropy loss and stochastic gradient descent.

Resource constraints. Model cost is typically measured
[10] in two ways, analogous to algorithmic space and time
complexities: first by the number of parameters, and second
by the number of computations, multiply-adds (MAdds) or
floating point operations per second (FLOPs). With this in
mind, we can more concretely define the budget constraint.
For a budget B, assume there is a corresponding maximum
number of MAdds Bm and number of parameters Bp:

max
cnn

f(cnn) (2)

s.t. MAdds(cnn) ≤ Bm, Param(cnn) ≤ Bp

where MAdds(cnn) denotes the number of multiply-adds
and Param(cnn) denotes the number of parameters of the
model cnn. Typical hardware constraints are given in these
formats, either through physical memory specifications or
processor speeds and cache limits.

Modern CNNs are built by constructing a sequence of
various types of basic blocks. In network design, one may



have a variety of options in types of basic blocks, block
order, and number of blocks. Examples include ResNet
blocks, 3x3 convolutional layers, batchnorm layers, etc.
[11]. Given a large set of various basic blocks, we would
like to find a subset S that leads to a well performing, low
cost CNN. Blocks may have different associated costs, both
in MAdds and in number of parameters.

2.2. Submodular Optimization

The search over the set of blocks that maximizes accu-
racy and remains within budget is NP-hard, even when the
cost of each block with respect to number of parameters and
computations is equal among all elements. However, using
ideas from submodular optimization we can derive heuris-
tics for architecture search.

Definition 1 A function F : 2V → R, where V is a finite
set and 2V denotes the power set of V , is submodular if for
every A ⊆ B ⊆ V and v ∈ V \ B it holds that

F (A ∪ {v})− F (A) ≥ F (B ∪ {v})− F (B) (3)

Intuitively, submodular functions have a natural diminishing
returns property. Adding additional elements to an already
large set is not as valuable as adding elements when the set
is small. A subclass of submodular functions are mono-
tone, where for any A ⊆ B ⊆ V, F (A) ≤ F (B). Submod-
ular functions enjoy a number of other properties, including
being closed under nonnegative linear combinations.

Typical submodular optimization maxS⊆V F (S) in-
volves finding a subset S ⊆ V given some constraints on
the chosen set: cardinality constraints |S| ≤ r being the
simplest. Formal optimization in these cases is NP-hard for
general forms of submodular functions F (S), and requires
complex and problem-specific algorithms to find good so-
lutions [19]. However, it has been shown that the greedy
algorithm can obtain good results in practice.

Starting with the empty set, the algorithm iteratively
adds an element vk to the set Sk−1 with the update:

vk = argmaxv∈V\Sk−1
F (Sk−1 ∪ {v})− F (Sk−1), (4)

where F (Sk−1 ∪{v})−F (Sk−1) is the marginal improve-
ment in F of adding v to the previous set Sk−1. Results
in [22] show that for a nonnegative monotone submodular
function, the greedy algorithm can find a set Sr such that
F (Sr) ≥ (1 − 1/e) max|S|≤r F (S). We use this result to
derive heuristics for finding good architectures.

3. Submodular Neural Architecture Search
Assume N block “positions” need to be filled for build-

ing an efficient CNN, and each block position has L types
that can be chosen from. Denote a block of type l ∈ L =

{1, . . . , L} at position n ∈ N = {1, . . . , N} as ln, V de-
note a finite set with N elements (blocks) and F a set func-
tion defined over the power set of V , F : LV → R.

Given a set of blocks, S ∈ LV (e.g., S = {32, 11}),
we build the model CNN cnn (e.g., the first block with
type 1 (11) and the second with type 3 (32)), and take
the validation accuracy of the CNN as the value of F (S),
F (S) = f(cnn). Then accuracy is exactly our map from
the set of blocks to reals, and for each S ∈ LV , a CNN is
built with the selected blocks based on S. Our total search
space size would be LN .

For each set of blocks S, the associated cost c(S) cannot
exceed the specified budget B. Using the above notions of
accuracy and cost, our goal is to solve the problem,

max
S⊆V

F (S) subject to c(S) ≤ B (5)

The accuracy objective F (S) has an important prop-
erty, given we can find the best possible parameter setting
(global optimum) during SGD training. F is monotone, i.e.,
F (A) ≤ F (B) for any A ⊆ B ⊆ V . Intuitively, adding
blocks (making the network larger) can only improve accu-
racy in general. For each S , we can obtain its corresponding
number of parameters Param(S) or number of multiply-
adds MAdds(S). In practice, training by SGD may not
reach the global optimum: in this case adding blocks may
not improve accuracy. However, our own empirical results
and those in existing literature suggest that this nondecreas-
ing behavior is typically true, i.e., in ResNet [11].

Denote each cost-accuracy pair at global optimality as
(ci, fi), i = 1, . . . , LN , and add three virtual points, (0, 0),
(cLN , 0), (cLN ,max{f1, . . . , fLN }). This set can be seen
as a convex hull, where for each cost we assign its associ-
ated positive value on the convex hull. If F (S) can always
reach its convex hull point with respect to c(S), the accu-
racy objective satisfies both nonnegativity and nondecreas-
ing monotonicity. This is exactly the diminishing returns
property associated with submodularity: adding a block to
a small set of selected blocks A improves accuracy at least
as much as if adding it to a larger selected block B ⊇ A.
If we let the accuracy of the CNN be 0 when no blocks are
selected, F (∅) = 0, then we immediately have that,

Lemma 1 For any selected blocks A ⊆ B ⊆ V and blocks
v ∈ V \ B, it holds that

F (A) ≥ 0 (6)
F (A ∪ {v})− F (A) ≥ 0 (7)
F (A ∪ {v})− F (A) ≥ F (B ∪ {v})− F (B) (8)

where F reaches its convex hull point w.r.t. the cost.

Thus the neural architecture search problem can be solved
as the problem of maximizing a nonnegative nondecreas-
ing function, subject to parameter and computational budget
constraints.



The simple greedy algorithm described in Section 2.2 (4)
assumes equal costs for all blocks. Naturally it can perform
arbitrarily badly in the case where c(S) =

∑
v∈S c(v), by

iteratively adding blocks until the budget is exhausted. A
block containing a very large number of parameters or ex-
pensive MAdds with accuracy fo will be preferred over a
cheaper block offering accuracy fo − ε. To deal with these
knapsack constraints, the marginal gain update in (4) can be
modified to the marginal gain ratio,

vk = argmaxv∈V\Sk−1

F (Sk−1 ∪ {v})− F (Sk−1)

c(v)
(9)

The modified greedy algorithm with marginal gain ratio rule
attempts to maximize the cost/benefit ratio, and stops when
the budget is exhausted. However, even with this modi-
fication, the greedy algorithm can still perform arbitrarily
poorly with respect to global optima. For example, con-
sider the parameter costs of picking between two blocks v1
and v2, Param(v1) = ε, Param(v2) = p. If we compute the
accuracy of adding the blocks as F (v1) = 3ε, F (v2) =

2p, then the cost/benefit ratios are F (v1)−F (∅)
Param(v1)

= 3 and
F (v2)−F (∅)
Param(v2)

= 2. The modified greedy algorithm will pick
block v1. If v1 is picked and added to current set, and we do
not have enough budget to next add v2, we only achieve ac-
curacy 3ε. However, the optimal solution is to pick v2 given
any budget less than p+ ε.

Fortunately, the greedy algorithm can be further adapted.
We compute S̃APR using the accuracy parameter ratio
(APR) with rule (9) and cost Params(v), use the accuracy
MAdds ratio (AMR) with the same and cost MAdds(v)
to get S̃AMR, and take the uniform cost (UC) greedy al-
gorithm with rule Eq. (4) to get S̃UC . The new modified
Cost-Effective Greedy (CEG) algorithm returns the model
which achieves maximum accuracy. With these rules, CEG
can still achieve a constant ratio approximation.

Theorem 1 If F is a nondecreasing set function satisfying
diminishing return property and F (∅) = 0, then the CEG
algorithm achieves a constant ratio 1

2 (1− 1
e ) of the optima:

max{F (S̃UC), F (S̃APR), F (S̃AMR)} (10)

≥ 1

2
(1− 1

e
) max
MAdds(S)≤BmParam(S)≤Bp

F (S)

The proof is in the supplement. If we consider the time-
cost of the accuracy function evaluation as O(T ) (T is the
time to train the network by SGD), then the running time
of CEG is O(|V|ΦT ), where |V| = LN is the total number
of blocks, Φ = max1≤k≤LN{ Bp

Param(ek)
, Bm

MAdds(ek)
}. The

CEG algorithm is at most O(T |V|2). While this is a sizable
improvement over our initial combinatorial approach, sim-
ple technical/empirical observations allow us to scale and
speed up the CEG algorithm by early stopping during train-
ing and with lazy function evaluation.

Algorithm 1 Cost-Effective Greedy CNN Search (CEG)

function CEG(V , F , B, c(·))
S ← arg maxv∈V

F (v)
c(v)

while c(S) ≤ B do
v? = arg maxv∈V\S

F (S∪{v})−F (S)
c(v)

S ← S ∪ {v?}
end while
return S

end function

Input Output
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Figure 1: An overview of our Lazy Cost-Effective Greedy Search. Col-
ors correspond to different basic block types, and empty boxes represent
positions in the network to be considered for filling block. Numbers be-
low blocks indicate marginal benefit of the block filled at that position.
Step 1 searches over all blocks. Step 2 selects the block with highest
marginal benefit, 13, for filling in position 3. Step 3 updates the next
highest marginal benefit with 13 added. Step 4 picks the highest marginal
benefit block, 21, for filling in position 1. Step 5 updates the next highest
marginal benefit with {13, 21} added, 3N . However, the marginal bene-
fit of 3N is not the highest, so we did not pick this block and the search
continues. The final architecture is obtained once the budget is exhausted
(unfilled blocks are replaced with identity operations).

3.1. Early Stop Training

The running time is linear with respect to function eval-
uation time. This time includes the full training time to
learn network weights by SGD in order to achieve test set
accuracy close to the global optimum. This is expensive,
and so even the “low” number of O(|V|2) number of CNNs
to search is prohibitive in practical situations in which one
may not have access to large GPU clusters or months of
training time. In this case, to reduce the time to learn the
weights of CNNs for accuracy function evaluation, we re-
duce the number of epochs and train the network with early
stopping. Our experiments indicate this leads to learned ar-
chitectures similar to those when trained to optimality.



3.2. Lazy Function Evaluation

With early stopping and caching, while we can quickly
evaluate the accuracy function F (S) when adding any
block, we still need to make a large number of function
evaluations in order to run CEG. The running time is at least
linear in the total number of blocks, and in the worst case
quadratic if the number of selected blocks can be as high
as total number of blocks LN . If we select K blocks for
building our CNN among |V| blocks, O(K|V|) evaluations
are needed. The submodularity property can be exploited
further to perform far fewer function evaluations.

The marginal benefit of adding any one block can be
written as, for all v ∈ V \S , ∆(v|S) = F (S∪{v})−F (S).
The key idea of exploiting submodularity is that, as the set
of our selected blocks grows, the marginal benefit can never
increase, which means that if A ⊆ B ⊆ V , it holds that
∆(v|A) ≥ ∆(v|B). Therefore we do not need to update
∆(v|S) for every network after adding a new block v′ and
we can perform lazy evaluation. This Lazy Cost Effective
Greedy algorithm (LCEG), Alg. 2, can be described as fol-
lows: 1. Apply rule Eq. 4 to search all LN blocks and
keep an ordered list of all marginal benefits with decreasing
order by priority queue. 2. Select the top element of the pri-
ority queue as the first selected block at the first iteration.
3. Reevaluate ∆(v|S) for the top element v in the prior-
ity queue. 4. If adding block v, ∆(v|S) is larger than the
top element in priority queue, so pick block v. Otherwise,
insert it with the updated ∆(v|S) back in the queue. 5. Re-
peat steps 2-4 until the budget is exhausted. An overview of
LCEG can be seen in Figure 1.

In many cases, the reevaluation of ∆(v|S) will result in
a new but not much smaller value, and the top element will
often stay at the top. In this way, we can often find the
next block to add without having to recompute all blocks.
This lazy evaluation thus leads to far fewer evaluations of
F and means we need to train much fewer networks when
trying to add one block. The final algorithm includes taking
advantage of our LCEG procedure. Resource Constrained
Architecture Search, RCAS is defined in Algorithm 3.

4. Experiments

It is expensive to search directly for CNN models on
ImageNet and it can take several days to find a network
architecture (even without resource constraints). Previous
works [31, 44] suggest that we can perform our architec-
ture search experiments on a smaller proxy task and then
transfer the top-performing architecture discovered during
search to the target task. However, [36] shows that it is not-
trivial to find a good proxy task under constraints. Exper-
iments on CIFAR-10 [23] and the Standford Dogs Dataset
[20] demonstrate these datasets are not good proxy tasks
for ImageNet when a budget constraint is taken into ac-

Algorithm 2 Lazy Cost-Effective Greedy Search

function LAZY-CEG(V , F , Bp, Bm, c(·))
S ← ∅
PriorityQueue Q← PriorityQueue()
for all v ∈ V do . First iteration

if Param(v) ≤ Bp AND MAdds(v) ≤ Bm then
Q.push({v, F (v)

c(v) })
end if

end for
S ← S ∪ {Q.pop()}
while ∃v ∈ Q :Param(S ∪ {v}) ≤ Bp AND

MAdds(S ∪ {v}) ≤ Bm do . Lazy update
v? ← Q.pop()
if v? ∈ V \ S then

if F (S∪{v?})−F (S)
c(v?) ≥ F (S∪{Q.top()})−F (S)

c(v)
then

S ← S ∪ {v?}
else

Q.push({v?, F (S∪{v?})−F (S)
c(v?) })

end if
end if

end while
return S

end function

Algorithm 3 Resource Constrained Architecture Search
(RCAS)

function RCAS(V , F , Bp, Bm)
S̃UC ← LAZY-CEG(V , F , Bp, Bm, const(·))
S̃APR ← LAZY-CEG(V , F , Bp, Bm, Param(·))
S̃AMR ← LAZY-CEG(V , F , Bp, Bm, MAdds(·))
return arg max{S̃UC , S̃APR, S̃AMR}

end function

count. RCAS shines in this problem setting, allowing us
to perform our architecture search on a much larger dataset,
CIFAR-100. Indeed, we also can directly perform our ar-
chitecture search on the ImageNet training set, to directly
evaluate and compare the architectures learned. In these
large scale cases, we train for fewer steps on CIFAR-100
and ImageNet.

Our experiments on CIFAR-100 and ImageNet have two
steps: architecture search and architecture evaluation. In
the first step, we search for block architectures using RCAS
and pick the best blocks based on their validation perfor-
mance. In the second step, the picked blocks are used to
build CNN models, which we train from scratch and evalu-
ate the performance on the test set. Finally, we extend the
network architecture learned from CIFAR-100 and evaluate
the performance on ImageNet, comparing with the architec-
ture learned through RCAS applied directly to ImageNet.



Layer Input Operator Output
Group-wise expansion layer H ×W × C1 1x1 gconv2d group= ge, ReLU6 H ×W × (C1 × t)

Depthwise layer H ×W × (C1 × t) 3x3 dwise stride = s, ReLU6 H/s×W/s× (C1 × t)
Group-wise projection layer H/s×W/s× (C1 × t) linear 1x1 gconv2d group = gp H/s×W/s× C2

Table 1: Parameter and performance efficient depth-wise based basic blocks used in Resource Constrained Architecture Search. The structure of basic
blocks derive from depth-wise based MobileNetV2 blocks, changing the expansion factor t and using group convolutions. Basic blocks transform from C1

to C2 channels with expansion factor t, expansion group ge and projection group gp with stride s.

4.1. Architecture Search

As our main purpose is to look for low cost mobile neural
networks, the following basic blocks (using depthwise con-
volution extensively) are included for architecture search,
varying from MobileNetV2 blocks by using different ex-
pansion ratios and group convolutions for expansion and
projection (see Table 1). Each type of block is shown in
Figure 2 and consists of different types of layers. We have
L = 6 different basic blocks to pick from and N = 36
number of positions can be filled for building networks un-
der parameter and MAdds constraints for our low cost ar-
chitecture search. An overview of picking basic blocks to
fill positions can be seen in Figure 1. During architecture
search, only one basic block can be picked to fill a position,
otherwise the procedure will not insert any block. The input

Gconv 1 × 1
ge = 1

H × W × C

Depthwise
Conv 3 × 3

H × W × 3C

Gconv 1 × 1
gp = 1

H × W × 3C

+

Gconv 1 × 1
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+
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ge = 2
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Depthwise
Conv 3 × 3

H × W × 6C
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Gconv 1 × 1
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+
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Depthwise
Conv 3 × 3

H × W × 12C

Gconv 1 × 1
gp = 4

H × W × 12C

+

Type 4 Type 5 Type 6

Figure 2: The 6 types depthwise-based basic blocks used in RCAS.

for the kth picked block is the output of the (k−1)th picked
block, naturally stacking and forming the network.

Standard practice in architecture search [31] suggests a
separate validation set be used to measure accuracy: we ran-
domly select 10 images per class from the training set as the
fixed validation set. During architecture search by RCAS,
we train each possible model (adding one basic block with
different options at every position) on 10 epochs of the
proxy training set using an aggressive learning rate sched-
ule, evaluating the model through the accuracy set function
F (S) on the fixed validation set. We use stocastic gradi-
ent descent (SGD) to train each possible model for training
with nesterov momentum set to 0.9. We employ a multi-
step learning rate schedule with initial learning rate 0.1 and
multiplicative decay rate g = 0.1 at epochs 4, 7 and 9 for
fast learning. We set the regularization parameter for weight
decay to 4.0e−5, following InceptionNet [34].

4.2. Architecture Evaluation

Applying our RCAS, we obtain a selected architecture
under the given parameter and MAdds budget. To evaluate
the selected architecture, we train it from scratch and evalu-
ate the computational efficiency and accuracy on the test set.
Given mobile budget constraints, we compare our selected
architecture with mobile baselines, MobileNetV2 and Shuf-
fleNet [13, 32]. We take the parameter number and MAdds
as the computational efficiency and report the latency and
model size on a typical mobile platform (iPhone 5s). We
evaluate the performance of our selected architecture on
both the CIFAR-100 dataset and ImageNet dataset. Follow-
ing prior work [34], we use the validation dataset as a proxy
for test set ImageNet classification accuracy. Our RCAS al-
gorithm and subsequent Resource Constrained CNN (RC-
Net) are implemented using PyTorch [29]. We use built-in
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Figure 3: Architectures along the search path over constraints are stored.
RCAS uses (∼ 45%) fewer parameters and (∼ 35%) fewer MAdds to
achieve similar accuracy.



Architecture Top-1 Accuracy Top-5 Accuracy Parameters MAdds Search Method Cost (GPU Days)

MobileNetv2 74.2 93.3 2.4M 91.1M manual -
ShuffleNet(1.5) 70.0 90.8 2.3M 91.0M manual -

NASNet-A 70.0 86.0 3.61M 132.0M RL 1800
DARTS (searched on CIFAR-10) 75.9 93.8 3.40M 198.0M gradient-based 4
RCNet (searched on CIFAR-100) 76.1 94.0 1.92M 87.3M RCAS 2

Table 2: Comparison with state-of-the-art image classifiers on CIFAR-100. Our searched model performs significantly better than other manual methods.
Given MobileNetV2 parameter and MAdds constraints, our model still outperforms DARTS with ∼ 44% fewer parameters and ∼ 50% fewer MAdds.
Additionally, both RCAS and RCNet run on CIFAR-100 much faster than DARTS.
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Figure 4: Search progress of RCAS on CIFAR-100. We keep track of
the most recent architecture over time, with MobileNetV2 and the final
DARTS architecture as reference.

1 × 1 convolution and group convolution implementations.
The methods are easy to reproduce in other deep learning
frameworks such as Caffe [17] and TensorFlow [1], using
built-in layers as long as 1 × 1 standard convolutions and
group convolutions are available. For CIFAR-100, we use
similar parameter settings as during search, with the excep-
tion of a maximum number of epochs of 200 and a learn-
ing rate schedule updating at epochs 60, 120, and 180. For
ImageNet, we use an initial learning rate 0.01, and decay
at epochs 200 and 300 with maximum training epoch 400.
We use the same default data augmentation module as in
ResNet for fair comparisons. Random cropping and hori-
zontal flipping are used for training images, and images are
resized or cropped to 224 × 224 pixels for ImageNet and
32 × 32 pixels for CIFAR-100. At test time, the trained
model is evaluated on center crops.

4.3. CIFAR-100

The CIFAR-100 dataset [23] consists of 50, 000 training
RGB images and 10, 000 test RGB images with 100 classes.
The image size is 32 × 32. We take the state-of-the-art
mobile network architecture MobileNetV2 as our baseline.
All the hyperparameters and preprocessing are set to be the
same in order to make a fair comparison. The 32 × 32 im-
ages are converted to 40×40 with zero-padding by 4 pixels
and then randomly cropped to 32× 32. Horizontal flipping
and RGB mean value substraction are applied as well.

We evaluate the top-1 and top-5 accuracy and compare
MAdds and the number of parameters for benchmarking.

The performance comparison between baseline models and
our RCNet is shown in Table 2. RCNet achieves signifi-
cant improvements over MobileNetV2 and ShuffleNet with
fewer computations and fewer parameters. Our RCNet
achieves similar accuracy with MobileNetV2 with ∼ 45%
parameter reduction and∼ 35% computation reduction (see
Figure 3). With ∼ 20% fewer parameters, RCNet achieves
a 1.9% accuracy improvement. Search progress on CIFAR-
100 can be seen in Figure 4.

Does submodular property with early stopping hold?
On CIFAR-100, we find that our procedure displays mono-
tonicity and diminishing returns over accuracy averaged
over 500 networks built on random block additions (out of
our 6 types) with early stopping: 56.96%, 57.98%, 58.81%,
59.47%, 59.94%, 60.35%, 60.70%, 60.72%. It may be the
case that with early stopping we may not be identifying the
absolute best block at a given step in the algorithm, but as
demonstrated, empirically we find that the final architecture
identified is competitive with state-of-the-art.

Does block diversity help? To show the gains from
block diversity, we use our method to search only with block
type 5. On CIFAR-100, we obtain a top-1 accuracy of
75.8%, worse than the original searched model with 76.1%,
under the same constraints. This points to the importance
of block diversity in resource constrained CNN models.

Does our search procedure help? To show the gains
from our search procedure, we use the searched solution and
replace the last several blocks with random blocks. With
∼ 1.8M parameters and ∼ 73.0M MAdds, the random-
block solution only yields 74.9% top-1 accuracy on CIFAR-
100, as opposed to the original searched solution, 76.1%.
Randomly adding one more block only gives 75.1% top-1
accuracy with ∼ 2.9M parameters and ∼ 88M MAdds.

4.4. ImageNet

There are 1.28M training images and 50K validation
images from 1, 000 classes in the ImageNet dataset [7]. Fol-
lowing the procedure for CIFAR-100, we learn the RCNet
architecture on the training set and report top-1 and top-5
validation accuracy with the corresponding parameters and
MAdds of the model. The details of our learned RCNet ar-
chitecture can be seen in the supplement. We compare our
models with other low cost models (e.g. ∼ 3.4M parame-
ters and ∼ 300M MAdds) in Table 3. RCNet achieves con-



Architecture Top-1 Accuracy Top-5 Accuracy Parameters MAdds Search Method Cost (GPU Days)

InceptionV1 [35] 69.8 89.9 6.6M 1448M manual -
MobileNetV1 [15] 70.6 88.2 4.2M 575M manual -

ShuffleNet(1.5) [42] 71.5 - 3.4M 292M manual -
CondenseNet(G=C=4) [16] 71.0 90.0 2.9M 274M manual -

MobileNetV2 [32] 72.0 91.0 3.4M 300M manual -
ANTNet [39] 73.2 91.2 3.7M 322M manual -

NASNet-A [44] 74.0 91.6 5.3M 564M RL 1800
AmoebaNet-A [31] 74.5 92 5.1M 555M RL 1800

MNasNet-92 (searched on ImageNet) [36] 74.8 92.1 4.4M 388M RL -
Proxyless-R [6] 74.6 92.2 - - RL 9
PNASNet [25] 74.2 91.9 5.1M 588M SMBO ∼255

DPP-Net-Panaca (searched on CIFAR-10) [8] 74.0 91.8 4.8M 523M SMBO 8†
DARTS (searched on CIFAR-10) [27] 73.1 91.0 4.9M 595M gradient-based 4†

FBNet-C [38] 74.9 - 5.5M 375M gradient-based 9
RCNet (searched on ImageNet) 72.2 91.0 3.4M 294M RCAS 8

RCNet-B (searched on ImageNet) 74.7 92.0 4.7M 471M RCAS 9

Table 3: Performance Results on ImageNet Classification. Given 3.4M parameters and 300M MAdds constraints, RCAS finds a model searching on
ImageNet using 8 GPU days, much faster than other automated methods and RCNet performs better than “manual” methods with similar complexity. With
5M parameters and 500M MAdds constraints, RCNet-B achieves comparable accuracy to MNasNet-92 with fewer computation resources. RCNet-B
outperforms DPP-Net-Panaca by 0.7% and DARTS by 1.6% with similar computation resources (The methods marked by † are searched on CIFAR-10,
while our method is searched on ImageNet directly).

sistent improvement over MobileNetV2 by 0.2% Top-1 ac-
curacy and ShuffleNet (1.5%) by 0.7%. Compared with the
most resource-efficient model, CondenseNet (G = C = 4),
our RCNet performs better with 1.2% accuracy gain.

Using the model found with CIFAR-100, we retrain the
same model with ImageNet. Performance is comparable to
MobileNetV2 with similar complexity, indicating that our
procedure can effectively transfer to new and challenging
datasets. Here, the adapted RCNet obtains favorable results
compared with state-of-the-art RL search methods, with
three orders of magnitude fewer computational resources.
More details can be found in the supplement. The final
model constructed by RCAS includes 18 basic blocks with
6 types in the following sequence:

[5, 1, 4, 5, 1, 5, 2, 4, 1, 6, 4, 6, 5, 3, 3, 6, 3, 6]

Remarks. There are a few interesting observations to be
made here. First, given the limited parameter and MAdds
budget, RCAS picks very few blocks with higher cost. Ad-
ditionally, picking too many high dimensional blocks de-
creases the performance of the model compared to select-
ing fewer more low dimensional blocks. Additional details
regarding the search path is in the supplement. Second,
with a specified maximum cost set to approximately the size
of MobileNetV2, we identify a similar number of blocks.
However, the blocks identified are diverse. Common mo-
bile architectures consist of replications of the same type of
block, e.g., MobileNetV2. This may suggest that block di-

Model MAdds CoreML Model Size Inference Time
MobileNetV2 300 M 14.7 MB 197.2 ms

RCNet 294 M 14.6 MB 183.5 ms

Table 4: Inference time running on an actual device, iPhone 5s. As
expected, our searched model, RCNet, use similar average inference time
as MobileNetV2 per image.

versity is a valuable component of designing resource con-
strained mobile neural networks.

4.5. Inference Time

We test the actual inference speed on an iOS-based
phone, iPhone 5s (1.3 GHz dual-core Apple A7 processor
and 1GB RAM), and compare with baseline model Mo-
bileNetV2. To run the models, we convert our trained model
to a CoreML model and deploy it using Apple’s machine
learning platform. We report the inference time of our mod-
els in Table 4 (average over 10 runs). As expected, RCNet
and MobileNetV2 have similar inference times.

5. Conclusion
Mobile architecture search is becoming an important

topic in computer vision, where algorithms are increasingly
being integrated and deployed on heterogenous small de-
vices. Borrowing ideas from submodularity, we propose
algorithms for resource constrained architecture search.
With resource constraints defined by model size and com-
plexity, we show that we can efficiently search for neu-
ral network architectures that perform quite well. On
CIFAR-100 and ImageNet, we identify mobile architec-
tures that match or outperform existing methods, but with
far fewer parameters and computations. Our algorithms
are easy to implement and can be directly extended to
identify efficient network architectures in other resource-
constrained applications. Code/supplement is available at
https://github.com/yyxiongzju/RCNet.
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