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Abstract

We tackle the problem of automatically reconstructing
a complete 3D model of a scene from a single RGB im-
age. This challenging task requires inferring the shape of
both visible and occluded surfaces. Our approach utilizes
viewer-centered, multi-layer representation of scene geom-
etry adapted from recent methods for single object shape
completion. To improve the accuracy of view-centered
representations for complex scenes, we introduce a novel
“Epipolar Feature Transformer” that transfers convolu-
tional network features from an input view to other virtual
camera viewpoints, and thus better covers the 3D scene ge-
ometry. Unlike existing approaches that first detect and
localize objects in 3D, and then infer object shape us-
ing category-specific models, our approach is fully convo-
lutional, end-to-end differentiable, and avoids the resolu-
tion and memory limitations of voxel representations. We
demonstrate the advantages of multi-layer depth represen-
tations and epipolar feature transformers on the reconstruc-
tion of a large database of indoor scenes.

1. Introduction
When we examine a photograph of a scene, we not only

perceive the 3D shape of visible surfaces, but effortlessly
infer the existence of many invisible surfaces. We can make
strong predictions about the complete shapes of familiar ob-
jects despite viewing only a single, partially occluded as-
pect, and can infer information about the overall volumetric
occupancy with sufficient accuracy to plan navigation and
interactions with complex scenes. This remains a daunting
visual task for machines despite much recent progress in
detecting individual objects and making predictions about
their shape. Convolutional neural networks (CNNs) have
proven incredibly successful as tools for learning rich rep-
resentations of object identity which are invariant to intra-
category variations in appearance. Predicting 3D shape
rather than object category has proven more challenging
since the output space is higher dimensional and carries
more structure than simple regression or classification tasks.

Figure 1: Given a single input view of a scene (top left), we
would like to predict a complete geometric model. Depth
maps (top right) provide an efficient representation of scene
geometry but are incomplete, leaving large holes (e.g., the
wardrobe). We propose multi-layer depth predictions (bot-
tom left) that provide complete view-based representations
of shape, and introduce an epipolar transformer network
that allows view-based inference and prediction from vir-
tual viewpoints (like overhead views, bottom right).

Early successes at using CNNs for shape prediction
leveraged direct correspondences between the input and
output domain, regressing depth and surface normals at ev-
ery input pixel [8]. However, these so-called 2.5D represen-
tations are incomplete: they don’t make predictions about
the back side of objects or other occluded surfaces. Sev-
eral recent methods instead manipulate voxel-based repre-
sentations [41] and use convolutions to perform translation-
covariant computations in 3D. This provides a more com-
plete representation than 2.5D models, but suffers from sub-
stantial storage and computation expense that scales cubi-
cally with resolution of the volume being modeled (with-
out specialized representations like octrees [31]). Other
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Figure 2: Overview of our system for reconstructing a complete 3D scene from a single RGB image. We first predict a
multi-layer depth map that encodes the depths of front and back object surfaces as seen from the input camera. Given the
extracted feature map and predicted multi-layer depths, the epipolar feature transformer network transfers features from the
input view to a virtual overhead view, where the heights of observed objects are predicted. Semantic segmentation masks are
inferred and inform our geometry estimates, but explicit detection of object instances is not required, increasing robustness.

approaches represent shape as an unstructured point cloud
[29, 42], but require development of suitable convolutional
operators [11, 49] and fail to capture surface topology.

In this paper, we tackle the problem of automatically re-
constructing a complete 3D model of a scene from a single
RGB image. As depicted in Figures 1 and 2, our approach
uses an alternative shape representation that extends view-
based 2.5D representations to a complete 3D representation.
We combine multi-layer depth maps that store the depth to
multiple surface intersections along each camera ray from
a given viewpoint, with multi-view depth maps that record
surface depths from different camera viewpoints.

While multi-view and multi-layer shape representations
have been explored for single object shape completion, for
example by [36], we argue that multi-layer depth maps
are particularly well suited for representing full 3D scenes.
First, they compactly capture high-resolution details about
the shapes of surfaces in a large scene. Voxel-based rep-
resentations allocate a huge amount of resources to simply
modeling empty space, ultimately limiting shape fidelity to
much lower resolution than is provided by cues like occlud-
ing contours in the input image [41]. A multi-layer depth
map can be viewed as a run-length encoding of dense rep-
resentations that stores only transitions between empty and
occupied space. Second, view-based depths maintain ex-
plicit correspondence between input image data and scene
geometry. Much of the work on voxel and point cloud rep-
resentations for single object shape prediction has focused
on predicting a 3D representation in an object-centered co-
ordinate system. Utilizing such an approach for scenes re-
quires additional steps of detecting individual objects and
estimating their pose in order to place them back into some

global scene coordinate system [45]. In contrast, view-
based multi-depth predictions provide a single, globally co-
herent scene representation that can be computed in a “fully
convolutional” manner from the input image.

One limitation of predicting a multi-layer depth repre-
sentation from the input image viewpoint is that the repre-
sentation cannot accurately encode the geometry of surfaces
which are nearly tangent to the viewing direction. In ad-
dition, complicated scenes may contain many partially oc-
cluded objects that require a large number of layers to rep-
resent completely. We address this challenge by predicting
additional (multi-layer) depth maps computed from virtual
viewpoints elsewhere in the scene. To link these predictions
from virtual viewpoints with the input viewpoint, we intro-
duce a novel Epipolar Feature Transformer (EFT) network
module. Given the relative poses of the input and virtual
cameras, we transfer features from a given location in the
input view feature map to the corresponding epipolar line
in the virtual camera feature map. This transfer process is
modulated by predictions of surface depths from the input
view in order to effectively re-project features to the correct
locations in the overhead view.

To summarize our contributions, we propose a view-
based, multi-layer depth representation that enables fully
convolutional inference of 3D scene geometry and shape
completion. We also introduce EFT networks that provide
geometrically consistent transfer of CNN features between
cameras with different poses, allowing end-to-end train-
ing for multi-view inference. We experimentally character-
ize the completeness of these representations for describing
the 3D geometry of indoor scenes, and show that models
trained to predict these representations can provide better
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recall and precision of scene geometry than existing ap-
proaches based on object detection.

2. Related Work
The task of recovering 3D geometry from 2D images has

a rich history dating to the visionary work of Roberts [32].

Monocular Object Shape Prediction. Single-view 3D
shape reconstruction is challenging because the output
space is under-constrained. Large-scale datasets like
ShapeNet [1, 53] facilitate progress in this area, and re-
cent methods have learned geometric priors for object cat-
egories [22, 52], disentangled primitive shapes from ob-
jects [13, 61], or modeled surfaces [15, 36, 56]. Other work
aims to complete the occluded geometric structure of ob-
jects from a 2.5D image or partial 3D scan [33, 6, 51, 55].
While the quality of such 3D object reconstructions con-
tinues to grow [23, 49], applications are limited by the as-
sumption that input images depict a single, centered object.

3D Scene Reconstruction. We seek to predict the geom-
etry of full scenes containing an unknown number of ob-
jects; this task is significantly more challenging than ob-
ject reconstruction. Tulsiani et al. [45] factorize 3D scenes
into detected objects and room layout by integrating sep-
arate methods for 2D object detection, pose estimation,
and object-centered shape prediction. Given a depth im-
age as input, Song et al. [41] propose a volumetric recon-
struction algorithm that predicts semantically labeled 3D
voxels. Another general approach is to retrieve exemplar
CAD models from a large database and reconstruct parts
of scenes [18, 60, 14], but the complexity of CAD models
may not match real-world environments. While our goals
are similar to Tulsiani et al., our multi-layered depth esti-
mates provide a denser representation of complex scenes.

Representations for 3D Shape Prediction. Most recent
methods use voxel representations to reconstruct 3D geom-
etry [3, 41, 38, 47, 37], in part because they easily integrate
with 3D CNNs [53] for high-level recognition tasks [25].
Other methods [9, 24] use dense point clouds representa-
tions. Classic 2.5D depth maps [8, 2] recover the geome-
try of visible scene features, but do not capture occluded
regions. Shin et al. [36] empirically compared these repre-
sentations for object reconstruction. We extend these ideas
to whole scenes via a multi-view, multi-layer depth repre-
sentation that encodes the shape of multiple objects.

Learning Layered Representations. Layered represen-
tations [48] have proven useful for many computer vision
tasks including segmentation [12] and optical flow predic-
tion [44]. For 3D reconstruction, decomposing scenes into
layers enables algorithms to reason about object occlusions
and depth orderings [16, 39, 50]. Layered 2.5D represen-
tations such as the two-layer decompositions of [46, 7] in-
fer the depth of occluded surfaces facing the camera. Our

multi-layer depth representation extends this idea by includ-
ing the depth of back surfaces (equiv. object thickness). We
also infer depths from virtual viewpoints far from the input
view for more complete coverage of 3D scene geometry.
Our use of layers generalizes [30], who used multiple in-
tersection depths to model non-convexities for constrained
scenes containing a single, centered object. Concurrently
to our work, [27] predicts object-level thicknesses for volu-
metric RGB-D fusion and [10] estimates 3D human shape.

Multi-view Shape Synthesis. Many classic 3D recon-
struction methods utilize multi-view inputs to synthesize 3D
shapes [17, 40, 4]. Given monocular inputs, several recent
methods explore ways of synthesizing object appearance or
image features from novel viewpoints [59, 54, 20, 3, 28, 43].
Other work uses unsupervised learning from stereo or video
sequences to reason about depths [58, 21]. Instead of simply
transferring the pixel colors associated with surface points
to novel views, we transfer whole CNN feature maps over
corresponding object volumes, and thereby produce more
accurate and complete 3D reconstructions.

3. Reconstruction with Multi-Layer Depth
Traditional depth maps record the depth at which a ray

through a given pixel first intersects a surface in the scene.
Such 2.5D representations of scene geometry accurately de-
scribe visible surfaces, but cannot encode the shape of par-
tially occluded objects, and may fail to capture the complete
3D shape of unoccluded objects (due to self-occlusion). We
instead represent 3D scene geometry by recording multiple
surface intersections for each camera ray. As illustrated in
Figure 3(a), some rays may intersect many object surfaces
and require several layers to capture all details. But as the
number of layers grows, multi-layer depths completely rep-
resent 3D scenes with multiple non-convex objects.

We use experiments to empirically determine a fixed
number of layers that provides good coverage of typical nat-
ural scenes, while remaining compact enough for efficient
learning and prediction. Another challenge is that surfaces
that are nearly tangent to input camera rays are not well
represented by a depth map of fixed resolution. To address
this, we introduce an additional virtual view where tangent
surfaces are sampled more densely (see Section 4).

3.1. Multi-Layer Depth Maps from 3D Geometry

In our experiments, we focus on a five-layer model de-
signed to represent key features of 3D scene geometry for

D̄1 D̄1,2 D̄1,2,3 D̄1..4 D̄1..5 D̄1..5 +Ovh.
0.237 0.427 0.450 0.480 0.924 0.932

Table 1: Scene surface coverage (recall) of ground truth
depth layers with a 5cm threshold. Our predictions cover
93% of the scene geometry inside the viewing frustum.
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Figure 3: Epipolar transfer of features from the input image
to a virtual overhead view. Given multi-layer depth predic-
tions of surface entrances and exits, each pixel in the input
view is mapped to zero, one, or two segments of the corre-
sponding epipolar line in the virtual view.

typical indoor scenes. To capture the overall room layout,
we model the room envelope (floors, walls, ceiling, win-
dows) that defines the extent of the space. We define the
depth D5 of these surfaces to be the last layer of the scene.

To model the shapes of observed objects, we trace rays
from the input view and record the first intersection with a
visible surface in depth map D1. This resembles a standard
depth map, but excludes the room envelope. If we continue
along the same ray, it will eventually exit the object at a
depth we denote byD2. For non-convex objects the ray may
intersect the same object multiple times, but we only record
the last exit in D2. As many indoor objects have large con-
vex parts, the D1 and D2 layers are often sufficient to accu-
rately reconstruct a large proportion of foreground objects

Figure 4: A volumetric visualization of our predicted multi-
layer surfaces and semantic labels on SUNCG. We project
the center of each voxel into the input camera, and the voxel
is marked occupied if the depth value falls in the first object
interval (D1, D2) or the occluded object interval (D3, D4).

in real scenes. While room envelopes typically have a very
simple shape, the prediction of occluded structure behind
foreground objects is more challenging. We define layer
D3 > D2 as the depth of the next object intersection, and
D4 as the depth of the exit from that second object instance.

We let (D̄1, D̄2, D̄3, D̄4, D̄5) denote the ground truth
multi-layer depth maps derived from a complete 3D model.
Since not all viewing rays intersect the same number of ob-
jects (e.g., when the room envelope is directly visible), we
define a binary mask M̄` which indicates the pixels where
layer ` has support. Note that M̄1 = M̄2, and M̄3 = M̄4,
since D2 (first instance exit) has the same support as D1.
Experiments in Section 5 evaluate the relative importance
of different layers in modeling realistic 3D scenes.

3.2. Predicting Multi-Layer Depth Maps

To learn to predict five-channel multi-layer depths D =
(D1, D2, D3, D4, D5) from images, we train a standard
encoder-decoder network with skip connections, and use
the Huber loss ρh(., .) to measure prediction errors:

Ld(D) =

5∑
`=1

(
M̄`

||M̄`||1

)
· ρh(D`, D̄`). (1)

We also predict semantic segmentation masks for the first
and third layers. The structure of the semantic segmenta-
tion network is similar to the multi-layer depth prediction
network, except that the output has 80 channels (40 object
categories in each of two layers), and errors are measured
via the cross-entropy loss. To reconstruct complete 3D ge-
ometry from multi-layer depth predictions, we use predicted
masks and depths to generate meshes corresponding to the
front and back surfaces of visible and partially occluded ob-
jects, as well as the room envelope. Without the back sur-
faces [35], ground truth depth layers D̄1,3,5 cover only 82%
of the scene geometry inside the viewing frustum (vs. 92%
including back surfaces of objects, see Table 1).

4. Epipolar Feature Transformer Networks
To allow for richer view-based scene understanding, we

would like to relate features visible in the input view to
feature representations in other views. To achieve this, we
transfer features computed in input image coordinates to the
coordinate system of a “virtual camera” placed elsewhere in
the scene. This approach more efficiently covers some parts
of 3D scenes than single-view, multi-layer depths.

Figure 2 shows a block diagram of our Epipolar Feature
Transformer (EFT) network. Given features F extracted
from the image, we choose a virtual camera location with
transformation mapping T and transfer weights W , and
use these to warp F to create a new “virtual view” feature
map G. Like spatial transformer networks (STNs) [19] we
perform a parametric, differentiable “warping” of a feature
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map. However, EFTs incorporate a weighted pooling oper-
ation informed by multi-view geometry.

Epipolar Feature Mapping. Image features at spatial lo-
cation (s, t) in an input view correspond to information
about the scene which lies somewhere along the rayxy

z

 = zKI
−1

st
1

 , z ≥ 0,

where KI ∈ R3×3 encodes the input camera intrinsic pa-
rameters, as well as the spatial resolution and offset of the
feature map. z is the depth along the viewing ray, whose
image in a virtual orthographic camera is given by

[
u(s, t, z)
v(s, t, z)

]
= KV

zRKI
−1

st
1

+ t

 , z ≥ 0.

Here KV ∈ R2×3 encodes the virtual view resolution and
offset, and R and t the relative pose.1 Let T (s, t, z) =
(u(s, t, z), v(s, t, z)) denote the forward mapping from
points along the ray into the virtual camera, and Ω(u, v) =
{(s, t, z) : T (s, t, z) = (u, v)} be the pre-image of (u, v).

Given a feature map computed from the input view
F (s, t, f), where f indexes the feature dimension, we syn-
thesize a new feature map G corresponding to the virtual
view. We consider general mappings of the form

G(u, v, f) =

∑
(s,t,z)∈Ω(u,v) F (s, t, f)W (s, t, z)∑

(s,t,z)∈Ω(u,v)W (s, t, z)
,

where W (s, t, z) ≥ 0 is a gating function that may depend
on features of the input image.2 When Ω(u, v) is empty,
we set G(u, v, f) = 0 for points (u, v) outside the viewing
frustum of the input camera, and otherwise interpolate fea-
ture values from those of neighboring virtual-view pixels.

Choice of the Gating Function W . By design, the trans-
formed features are differentiable with respect to F and W .
Thus in general we could assign a loss to predictions from
the virtual camera, and learn an arbitrary gating functionW
from training data. However, we instead propose to leverage
additional geometric structure based on predictions about
the scene geometry produced by the frontal view.

Suppose we have a scene depth estimate D1(s, t) at ev-
ery location in the input view. To simplify occlusion rea-
soning we assume that relative to the input camera view, the
virtual camera is rotated around the x-axis by θ < 90◦ and
translated in y and z to sit above the scene so that points

1For a perspective model the righthand side is scaled by z′(s, t, z), the
depth from the virtual camera of the point at location z along the ray.

2For notational simplicity, we have written G as a sum over a discrete
set of samples Ω. To make G differentiable with respect to the virtual
camera parameters, we perform bilinear interpolation.
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Figure 5: Single image scene reconstruction via multi-layer
depth maps. Estimates of the front (green) and back (cyan)
surfaces of objects, as seen from the input view, are comple-
mented by heights estimated by a virtual overhead camera
(dark green) via our epipolar feature transform. Room en-
velope estimates are rendered in gray.

which project to larger t in the input view have larger depth
in the virtual view. Setting the gating function as

W 1
surf(s, t, z) = δ[D1(s, t) = z]

t−1∏
t̂=0

δ[D1(s, t̂)+(t−t̂) cos θ 6= z]

yields an epipolar feature transform that re-projects each
feature at input location (s, t) into the overhead view via
the depth estimate D1, but only in cases where it is not oc-
cluded by a patch of surface higher up in the scene. In our
experiments we computeW `

surf for eachD`, ` ∈ {1, 2, 3, 4},
and use Wsurf = max`W

`
surf to transfer input view features

to both visible and occluded surfaces in the overhead feature
map. We implement this transformation using a z-buffering
approach by traversing the input feature map from bottom
to top, and overwriting cells in the overhead feature map.

Figure 3(b) illustrates this feature mapping applied to
color features using the ground-truth depth map for a scene.
In some sense, this surface-based reprojection is quite con-
servative because it leaves holes in the interior of objects
(e.g., the interior of the orange wood cabinet). If the frontal
view network features at a given spatial location encode the
presence, shape, and pose of some object, then those fea-
tures really describe a whole volume of the scene behind the
object surface. It may thus be preferable to instead transfer
the input view features to the entire expected volume in the
overhead representation.

To achieve this, we use the multi-layer depth representa-
tion predicted by the frontal view to define a range of scene
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Figure 6: Evaluation of 3D reconstruction on the
NYUv2 [26] dataset. Tulsiani et al. [45] are sensitive to
the performance of 2D object detectors, and their voxelized
output is a coarse approximation of the true 3D geometry.

depths to which the input view feature should be mapped.
If D1(s, t) is the depth of the front surface and D2(s, t) is
the depth at which the ray exits the back surface of an object
instance, we define a volume-based gating function:

Wvol(s, t, z) = δ[z ∈ (D1(s, t), D2(s, t))].

As illustrated in Figure 3(a), volume-based gating copies
features from the input view to entire segments of the epipo-
lar line in the virtual view. In our experiments we use this
gating to generate features for (D1, D2) and concatenate
them with a feature map generated using (D3, D4).

Overhead Viewpoint Generation. For cluttered indoor
scenes, there may be many overlapping objects in the input
view. Overhead views of such scenes typically have much
less occlusion and should be simpler to reason about geo-
metrically. We thus select a virtual camera that is roughly
overhead and covers the scene content visible from the ref-
erence view. We assume the input view is always taken with
the gravity direction in the y, z plane. We parameterize the
overhead camera relative to the reference view by a trans-
lation (tx, ty, tz) which centers it over the scene at fixed
height above the floor, a rotation θ which aligns the over-
head camera to the gravity direction, and a scale σ that cap-
tures the radius of the orthographic camera frustum.

5. Experiments
Because we model complete descriptions of the ground-

truth 3D geometry corresponding to RGB images, which is

not readily available for natural images, we learn to predict
multi-layer and multi-view depths from physical renderings
of indoor scenes [57] provided by the SUNCG dataset [41].

5.1. Generation of Training Data

The SUNCG dataset [41] contains complete 3D meshes
for 41,490 houses that we render to generate our training
data. For each rendered training image, we extract the sub-
set of the house model that is relevant to the image content,
without making assumptions about the room size. We trans-
form the house mesh to the camera’s coordinate system and
truncate polygons that are outside the left, top, right, bot-
tom, and near planes of the perspective viewing frustum.
Objects that are projected behind the depth image of the
room envelope are also removed. The final ground truth
mesh that we evaluate against contains all polygons from
the remaining objects, as well as the true room envelope.

For each rendered training image, we generate target
multi-depth maps and segmentation masks by performing
multi-hit ray tracing on the ground-truth geometry. We sim-
ilarly compute ground-truth height maps for a virtual ortho-
graphic camera centered over each scene. To select an over-
head camera viewpoint for training that covers the relevant
scene content, we consider three heuristics: (i) Convert the
true depth map to a point cloud, center the overhead cam-
era over the mean of these points, and set the camera ra-
dius to 1.5 times their standard deviation; (ii) Center the
overhead camera so that its principal axis lies in the same
plane as the input camera, and offset in front of the input
view by the mean of the room envelope depths; (iii) Select
a square bounding box in the overhead view that encloses

Precision Recall
D1,2,3,4,5 & Overhead 0.221 0.358
Tulsiani et al. [45] 0.132 0.191

Table 2: We quantitatively evaluate the synthetic-to-real
transfer of 3D geometry prediction on the ScanNet [4]
dataset (threshold of 10cm). We measure recovery of true
object surfaces and room layouts within the viewing frus-
tum.
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Figure 7: Qualitative comparison of our viewer-centered,
end-to-end scene surface prediction (left) and the object-
based detection and voxel shape prediction of [45] (right).
Object-based reconstruction is sensitive to detection and
pose estimation errors, while our method is more robust.

all points belonging to objects visible from the input view.
None of these heuristics worked perfectly for all training
examples, so we compute our final overhead camera view
via a weighted average of these three candidates.

5.2. Model Architecture and Training

As illustrated in Figure 2, given an RGB image, we first
predict a multi-layer depth map as well as a 2D seman-
tic segmentation map. Features used to predict multi-layer
depths are then mapped through our EFT network to syn-
thesize features for a virtual camera view, and predict an
orthographic height map. We then use the multi-layer depth
map, semantic segmentation map, and overhead height map
to predict a dense 3D reconstruction of the imaged scene.

We predict multi-layer depth maps and semantic seg-
mentations via a standard convolutional encoder-decoder
with skip connections. The network uses dilated convolu-
tion and has separate output branches for predicting each
depth layer using the Huber loss specified in Section 3.2.
For segmentation, we train a single branch network using a
softmax loss to predict 40 semantic categories derived from
the SUNCG mesh labels (see supplement for details).

Our overhead height map prediction network takes as in-
put the transformed features of our input view multi-layer
depth map. The overhead model integrates 232 channels
(see Figure 2) including epipolar transformations of a 48-
channel feature map from the depth prediction network,
a 64-channel feature map from the semantic segmentation
network, and the RGB input image. These feature maps are
extracted from the frontal networks just prior to the predic-
tive branches. Other inputs include a “best guess” overhead
height map derived from frontal depth predictions, and a
mask indicating the support of the input camera frustum.
The frustum mask can be computed by applying the epipo-
lar transform with F = 1,W = 1. The best-guess overhead
depth map can be computed by applying an unnormalized
gating function W (s, t, z) = z · δ[D1(s, t) = z] to the y-
coordinate feature F (s, t) = t.

We also train a model to predict the virtual camera pa-
rameters which takes as input feature maps from our multi-
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Figure 8: Precision and recall of scene geometry as a func-
tion of match distance threshold. Left: Reconstruction qual-
ity for different model layers. Dashed lines are the per-
formance bounds provided by ground-truth depth layers
(D̄1, D̄2, D̄3, D̄4, D̄5). Right: Accuracy of our model rel-
ative to the state-of-the-art, evaluated against objects only.
The upper and lower band indicate 75th and 25th quantiles.
The higher variance of Tulsiani et al. [45] may be explained
in part by the sensitivity of the model to having the correct
initial set of object detections and pose estimates.

depth prediction network, and attempts to predict the target
overhead viewpoint (orthographic translation (tx, ty) and
frustum radius σ) chosen as in Section 5.1. While the EFT
network is differentiable and our final model can in prin-
ciple be trained end-to-end, in our experiments we simply
train the frontal model to convergence, freeze it, and then
train the overhead model on transformed features without
backpropagating overhead loss back into the frontal-view
model parameters. We use the Adam optimizer to train all
of our models with batch size 24 and learning rate 0.0005
for 40 epochs. The Physically-based Rendering [57] dataset
uses a fixed downward tilt camera angle of 11 degrees, so
we do not need to predict the gravity angle. At test time, the
height of the virtual camera is the same as the input frontal
camera and assumed to be known. We show qualitative 3D
reconstruction results on the SUNCG test set in Figure 5.

5.3. Evaluation
To reconstruct 3D surfaces from predicted multi-layer

depth images as well as the overhead height map, we first
convert the depth images and height maps into a point cloud
and triangulate vertices that correspond to a 2×2 neighbor-
hood in image space. If the depth values of two adjacent
pixels is greater than a threshold δ · a, where δ is the foot-
print of the pixel in camera coordinates and a = 7, we do
not create an edge between those vertices. We do not pre-
dict the room envelope from the virtual overhead view, so
only pixels with height values higher than 5 cm above the
floor are considered for reconstruction and evaluation.
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Precision Recall
D1 0.525 0.212
D1 & Overhead 0.553 0.275
D1,2,3,4 0.499 0.417
D1,2,3,4 & Overhead 0.519 0.457

Table 3: Augmenting the frontal depth prediction with the
predicted virtual view height map improves both precision
and recall (match threshold of 5cm).

Metrics. We use precision and recall of surface area as
the metric to evaluate how closely the predicted meshes
align with the ground truth meshes, which is the native
format for SUNCG and ScanNet. Coverage is determined
as follows: We uniformly sample points on surface of the
ground truth mesh then compute the distance to the clos-
est point on the predicted mesh. We use sampling den-
sity ρ = 10000/meter2 throughout our experiments. Then
we measure the percentage of inlier distances for given a
threshold. Recall is the coverage of the ground truth mesh
by the predicted mesh. Conversely, precision is the cover-
age of the predicted mesh by the ground truth mesh.

3D Scene Surface Reconstruction. To provide an upper-
bound on the performance of our multi-layer depth repre-
sentation, we evaluate how well surfaces reconstructed from
ground-truth depths cover the full 3D mesh. This allows us
to characterize the benefits of adding additional layers to the
representation. Table 1 reports the coverage (recall) of the
ground-truth at a threshold of 5cm. The left panels of Fig-
ure 8 show a breakdown of the precision and recall for the
individual layers of our model predictions along with the
upper bounds achievable across a range of inlier thresholds.

Since the room envelope is a large component of many
scenes, we also analyze performance for objects (excluding
the envelope). Results summarized in Table 3 show that the
addition of multiple depth layers significantly increases re-
call with only a small drop in precision, and the addition of
overhead EFT predictions boosts both precision and recall.

Ablation Study on Transformed Features. To further
demonstrate the value of the EFT module, we evaluate the
accuracy of the overhead height map prediction while in-
crementally excluding features. We first exclude channels
that correspond to the semantic segmentation network fea-
tures and compare the relative pixel-level L1 error. We then
exclude features from the depth prediction network, using
only RGB, frustum mask and best guess depth image. This
baseline corresponds to taking the prediction of the input
view model as an RGB-D image and re-rendering it from
the virtual camera viewpoint. The L1 error increases re-
spectively from 0.132 to 0.141 and 0.144, which show that
applying the EFT to the whole CNN feature map outper-
forms simple geometric transfer.

Comparison to the State-of-the-art. Finally, we compare

the scene reconstruction performance of our end-to-end ap-
proach with the object-based Factored3D [45] method us-
ing their pre-trained weights, and converting voxel outputs
to surface meshes using marching cubes. We evaluated
on 3960 examples from the SUNCG test set and compute
precision and recall on objects surfaces (excluding enve-
lope). As Figure 8 shows, our method yields roughly 3x
improvement in recall and 2x increase in precision, pro-
viding estimates which are both more complete and more
accurate. Figure 7 highlights some qualitative differences.
To evaluate with an alternative metric, we voxelized scenes
at 2.5cm3 resolution (shown in Figure 4). Using the voxel
intersection-over-union metric, we see significant perfor-
mance improvements over Tulsiani et al. [47] (0.102 to
0.310) on objects (see supplement for details).

Reconstruction on Real-world Images. Our network
model is trained entirely on synthetically generated im-
ages [57]. We test the ability of the model to generalize
to the NYUv2 dataset [26] via the promising comparison to
Tulsiani et al. [45] in Figure 6.

We additionally test our model on images from the Scan-
Netv2 dataset [4]. The dataset contains RGB-D image se-
quences taken in indoor scenes, as well as 3D reconstruc-
tions produced by BundleFusion [5]. For each video se-
quence from the 100 test scenes, we randomly sample 5%
of frames, and manually select 1000 RGB images to com-
pare our algorithm to Tulsiani et al. [45]. We select images
where the pose of the camera is almost perpendicular to the
gravity orientation, the amount of motion blur is small, and
the image does not depict a close-up view of a single object.
We treat the provided 3D reconstructions within each view-
ing frustum as ground truth annotations. As summarized in
Table 2, our approach has significantly improved precision
and recall to Tulsiani et al. [45].

6. Conclusion
Our novel integration of deep learning and perspective

geometry enables complete 3D scene reconstruction from
a single RGB image. We estimate multi-layer depth maps
which model the front and back surfaces of multiple ob-
jects as seen from the input camera, as well as the room
envelope. Our epipolar feature transformer network geo-
metrically transfers input CNN features to estimate scene
geometry from virtual viewpoints, providing more complete
coverage of real-world environments. Experimental results
on the SUNCG dataset [41] demonstrate the effectiveness
of our model. We also compare with prior work that pre-
dicts voxel representations of scenes, and demonstrate the
significant promise of our multi-view and multi-layer depth
representations for complete 3D scene reconstruction.
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Appendix

A. System Overview
We provide an overview of our 3D reconstruction system

and additional qualitative examples in our supplementary
video (see project website).

B. Training Data Generation
As we describe in Section 5.1 of our paper, we generate

the target multi-layer depth maps by performing multi-hit
ray tracing on the ground-truth 3D mesh models. If an ob-
ject instance is completely occluded (i.e. not visible at all
from the first-layer depth map), it is ignored in the subse-
quent layers. The Physically-based Rendering [57] dataset
ignores objects in “person” and “plant” categories, so those
categories are also ignored when we generate our depth
maps. The complete list of room envelope categories (ac-
cording to NYUv2 mapping) are as follows: wall, floor,
ceiling, door, floor mat, window, curtain, blinds, picture,
mirror, fireplace, roof, and whiteboard. In our experiments,
all room envelope categories are merged into a single “back-
ground” category. In Figure 9, we provide a layer-wise 3D
visualization of our multi-layer depth representation. Fig-
ure 11 illustrates our surface precision-recall metrics.

C. Representing the Back Surfaces of Objects
Without the back surfaces, ground truth depth layers

(D̄1,3,5) cover only 82% of the scene geometry inside the
viewing frustum (vs. 92% including frontal surfaces — re-
fer to Table 1 in our paper for full comparison). Figure 10(a)
visualizes D̄1,3,5, without the back surfaces. This repre-
sentation, layered depth image (LDI) [35], was originally
developed in the computer graphics community [35] as an
algorithm for rendering textured depth images using paral-
lax transformation. Works based on prediction of LDI or
its variants [46, 59] therefore do not represent the invisible
back surfaces of objects. Prediction of back surfaces en-
ables volumetric inference in our epipolar transformation.

D. Multi-layer Depth Prediction
See Figure 17 for network parameters of our multi-layer

depth prediction model. All batch normalization layers have
momentum 0.005, and all activation layers are Leaky Re-
LUs layers with α = 0.01. We use In-place Activated
BatchNorm [34] for all of our batch normalization layers.
We trained the network for 40 epochs.

E. Multi-layer Semantic Segmentation
See Figure 18 for network parameters of multi-layer se-

mantic segmentation. We construct a binary mask for all

Figure 9: Layer-wise illustration of our multi-layer depth
representation in 3D. Table 1 in our paper reports an empir-
ical analysis which shows that the five-layer representation
(D̄1,2,3,4,5) covers 92% of the scene geometry inside the
viewing frustum.

Figure 10: Illustration of ground-truth depth layers. (a, b):
2.5D depth representation cannot accurately encode the ge-
ometry of surfaces which are nearly tangent to the viewing
direction. (b): We model both the front and back surfaces
of objects as seen from the input camera. (c): The tangent
surfaces are sampled more densely in the additional virtual
view (dark green). Table 3 in our paper shows the effect
of augmenting the frontal predictions with the virtual view
predictions.

foreground objects, and define segmentation mask Ml as
all non-background pixels at layer l. As mentioned in sec-
tion 3.1, D1 and D2 have the same segmentation due to
symmetry, so we only segment layers 1 and 3. The purpose
of the foreground object labels is to be used as a supervisory
signal for feature extraction Fseg, which is used as input to
our Epipolar Feature Transformer Networks.
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Figure 11: Illustration of our 3D precision-recall metrics.
Top: We perform a bidirectional surface coverage evalu-
ation on the reconstructed triangle meshes. Bottom: The
ground truth mesh consists of all 3D surfaces within the
viewing frustum and in front of the room envelope. We take
the union of the predicted meshes from different views in
world coordinates. This allows us to perform a layer-wise
evaluation (e.g. Figure 8 in our paper).
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Figure 12: Evaluation of 3D reconstruction on the Scan-
Net [4] dataset, where green regions are detected objects
and pink regions are ground truth.

F. Virtual-view Prediction

See Figure 20 and 21 for network parameters of our
virtual-view height map prediction and segmentation mod-
els. The height map prediction network is trained to mini-
mize foreground pixel losses. At test time, the background
mask predicted by the segmentation network is used to zero
out the floor pixels. The floor height is assumed to be zero
in world coordinates. An alternate approach is minimizing
both foreground and background losses and thus allowing
the height map predictor to implicitly segment the floor by
predicting zeros. We experimented with both architectures
and found the explicit segmentation approach to perform
better.

Figure 13: Volumetric evaluation of our predicted multi-
layer depth maps on the SUNCG [41] dataset.
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Figure 14: Distribution of voxel intersection-over-union on
SUNCG (excluding room layouts). We observe that object-
based reconstruction is sensitive to detection failure and
misalignment on thin structures.

G. Voxelization of Multi-layer Depth Predic-
tion

Given a 10m3 voxel grid of resolution 400 (equivalently,
2.5cm3) with a bounding box ranging from (-5,-5,-10) to
(5,5,0) in camera space, we project the center of each voxel
into the predicted depth maps. If the depth value for the
projected voxel falls in the first object interval (D1, D2) or
the occluded object interval (D3, D4), the voxel is marked
occupied. We evaluate our voxelization against the SUNCG
ground truth object meshes inside the viewing frustum, vox-
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Figure 15: Evaluation of 3D scene reconstruction on the
NYUv2 [26] dataset.

elized using the Binvox software which implements z-buffer
based carving and parity voting methods. We also voxelize
the predicted Factored3D [45] objects (same meshes evalu-
ated in Figure 8 of our paper) using Binvox under the same
setting as the ground truth. We randomly select 1800 ex-
amples from the test set and compute the intersection-over-
union of all objects in the scene. In addition to Figure 4
of our paper, Figure 13 shows a visualization of our voxels,
colored according to the predicted semantic labeling. Fig-
ure 14 shows a histogram of voxel intersection-over-union
values.

H. Predictions on NYU and SUNCG
Figures 16 and 15 show additional 3D scene reconstruc-

tion results. We provide more visualizations of our network
outputs and error maps on the SUNCG dataset in the last
few pages of the supplementary material.
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Figure 16: Evaluation of 3D scene reconstruction on the
SUNCG [41] dataset.
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Figure 17: Network architecture for multi-layer depth prediction. The horizontal arrows in the network represent skip
connections. This figure, along with following figures, is best viewed in color and on screen.
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Figure 18: Network architecture for multi-layer semantic segmentation network. (Best viewed in color and on screen)
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Figure 19: Network architecture for virtual camera pose proposal network. (Best viewed in color and on screen)
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Figure 20: Network architecture for virtual view surface prediction network. (Best viewed in color and on screen)
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Figure 21: Network architecture for virtual view segmentation network. (Best viewed in color and on screen)
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