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Figure 1. Unsupervised 3D point clouds generated by our tree-GAN for multiple classes (e.g., Motorbike, Laptop, Table, Guitar,
Skateboard, Knife, Table, Pistol, and Car from top-left to bottom-right). Our tree-GAN can generate more accurate point clouds than
baseline (i.e., r-GAN [1]), and can also produce point clouds for semantic parts of objects, which are denoted by different colors.

Abstract

In this paper, we propose a novel generative adversar-
ial network (GAN) for 3D point clouds generation, which
is called tree-GAN. To achieve state-of-the-art performance
for multi-class 3D point cloud generation, a tree-structured
graph convolution network (TreeGCN) is introduced as a
generator for tree-GAN. Because TreeGCN performs graph
convolutions within a tree, it can use ancestor information
to boost the representation power for features. To eval-
uate GANs for 3D point clouds accurately, we develop a
novel evaluation metric called Fréchet point cloud distance
(FPD). Experimental results demonstrate that the proposed
tree-GAN outperforms state-of-the-art GANs in terms of
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both conventional metrics and FPD, and can generate point
clouds for different semantic parts without prior knowledge.

1. Introduction

Recently, 3D data generation problems based on deep
neural networks have attracted significant research interest
and have been addressed through various approaches, in-
cluding image-to-point cloud [11, 19], image-to-voxel [45],
image-to-mesh [40], point cloud-to-voxel [6, 50], and point
cloud-to-point cloud [47]. The generated 3D data has been
used to achieve outstanding performance in a wide range
of computer vision applications (e.g., segmentation [30,
37, 44], volumetric shape representation [46], object detec-
tion [4, 35], feature extraction [24], contour detection [15],
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classification [29, 34], and scene understanding [20, 43]).

However, little effort has been devoted to the develop-
ment of generative adversarial networks (GANs) that can
generate 3D point clouds in an unsupervised manner. To
the best of our knowledge, the only works on GANs for
transforming random latent codes (i.e., z vectors) into 3D
point clouds are [1] and [39]. The method in [1] generates
point clouds using only fully connected layers. The method
in [39] exploits local topology by using k-nearest neighbor
techniques to produce geometrically accurate point clouds.
However, it suffers from high computational complexity as
the number of dynamic graph updates increases. Addition-
ally, it can only generate a limited number of object cate-
gories (e.g., chair, airplane, and sofa) using point clouds.

In this paper, we present a novel method called tree-
GAN that can generate 3D point clouds from random la-
tent codes in an unsupervised manner. It can also gener-
ate multi-class 3D point clouds without training on each
class separately (e.g., [39]). To achieve state-of-the-art per-
formance in terms of both accuracy and computational ef-
ficiency, we propose a novel tree-structured graph convo-
lution network (TreeGCN) as a generator for tree-GAN.
The proposed TreeGCN preserves the ancestor information
of each point and utilizes this information to extract new
points via graph convolutions. A branching process and
loop term with K supports in TreeGCN further enhance the
representation power of points. These two properties en-
able TreeGCN to produce more accurate point clouds and
express more diverse object categories. Additionally, we
demonstrate that using the ancestors of features in TreeGCN
is more efficient computationally than using the neighbors
of features in traditional GCNs.. Fig.1 shows the effective-
ness of our tree-GAN.

The main contributions of this paper are fourfold.

• We present the novel tree-GAN method, which is a deep
generative model that can generate multi-class 3D point
clouds in unsupervised settings (Section 3).

• We introduce the TreeGCN based generator. The perfor-
mance of traditional GCNs can be improved significantly
by adopting the proposed tree structures for graph convolu-
tions. Based on the proposed tree structures, tree-GAN can
generate parts of objects by selecting particular ancestors
(Section 4).

• We mathematically interpret the TreeGCN and highlight
its desirable properties (Section 5).

•We present the Fréchet point cloud distance (FPD) metric
to evaluate GANs for 3D point clouds. FPD can be consid-
ered as a nontrivial extension of Fréchet inception distance
(FID) [17], which has been widely used for the evaluation
of GANs (Section 6).

2. Related Work
Graph Convolutional Networks: Over the past few years,
a number of works have focused on the generalization of
deep neural networks for graph problems [3, 9, 16, 25]. Def-
ferrard et al. [8] proposed fast-learning convolutional fil-
ters for graph classification problems. Using these filters,
they significantly accelerated the spectral decomposition
process, which was one of the main computational bottle-
necks in traditional graph convolution problmes with large
datasets. Kipf and Welling [22] introduced scalable GCNs
based on first-order approximations of spectral graph con-
volutions for semi-supervised classification, in which con-
volution filters only use the information from neighboring
vertices instead of the information from the entire network.

Because the aforementioned GCNs were originally de-
signed for classification problems, the connectivity of
graphs was assumed to be given as prior knowledge. How-
ever, this setting is not appropriate for problems of dynamic
model generation. For example, in unsupervised settings
for 3D point cloud generation, the typologies of 3D point
clouds are non-deterministic. Even for the same class (e.g.,
chairs), 3D point clouds can be represented by various ty-
pologies. To represent the diverse typologies of 3D point
clouds, our TreeGCN utilizes no prior knowledge regarding
object models.
GANs for 3D Point Clouds Generation: GANs [13] for
2D image generation tasks have been widely studied with
great success [10, 18, 23, 26, 31, 36, 41, 42, 48, 49], but
GANs for 3D point cloud generation have rarely been stud-
ied in the computer vision field. Recently, Achlioptas et
al. [1] proposed a GAN for 3D point clouds called r-GAN,
generator of which is based on fully connected layers. As
fully connected layers cannot maintain structural informa-
tion, the r-GAN has difficulty in generating realistic shapes
with diversity. Valsesia et al. [39] used graph convolutions
for generators for GANs. At each layer of graph convo-
lutions during training, adjacency matrices were dynami-
cally constructed using the feature vectors from each ver-
tex. Unlike traditional graph convolutions, the connectivity
of a graph was not assumed to be given as prior knowledge.
However, to extract the connectivity of a graph, computing
the adjacency matrix at a single layer incurs quadratic com-
putational complexity O(V 2) where V indicates the num-
ber of vertices. Therefore, this approach is intractable for
multi-batch and multi-layer networks.

Similar to the method in [39], our tree-GAN requires
no prior knowledge regarding the connectivity of a graph.
However, unlike the method in [39], the tree-GAN is com-
putationally efficient because it does not construct adja-
cency matrices. Instead, the tree-GAN uses ancestor infor-
mation from the tree to exploit the connectivity of a graph,
in which only a list of tree structure is needed.
Tree-structured Deep Networks: There have been several



Figure 2. Pipeline of the tree-GAN. Our tree-GAN contains two networks, namely, discriminator (Section 3) and generator (Section 4).
The generator takes a single point from a Gaussian distribution, z ∈ R96, as an input. At each layer of the generator, GraphConv (Section
4.1) and Branching (Section 4.2) operations are performed to generate the l-th set of points, pl. All points generated by previous layers are
stored and appended to the tree of the current layer. The tree begins from the root node z, splits into child nodes via Branching operations,
and modifies nodes by GraphConv operations. The generator produces 3D point clouds x′ = pL ∈ R3×n as outputs, where pL is the set of
points at the final layer L and n is the total number of points. The discriminator differentiates between real and generated point clouds to
force the generator to produce more realistic points. We use a discriminator similar to that in the r-GAN [1]. Please refer to supplementary
materials for detailed network architectures.

attempts to represent convolutional neural networks or long
short-term memory using tree structures [5, 21, 27, 28, 32].
However, to the best of our knowledge, no previous meth-
ods have used tree structures for either graph convolutions
or GANs. For example, Gadelha et al. [12] used tree-
structured networks to generate 3D point clouds via vari-
ational autoencoder (VAE). However, this method needed
the assumption that inputs are the 1D-ordered lists of
points obtained by space-partitioning algorithms such as K-
dimensional tree and random projection tree [7]. Thus, it
required additional preprocessing steps for valid implemen-
tations. Because its network only comprised 1D convolu-
tion layers, the method could not extract the meaningful
information from unordered 3D point clouds. In contrast,
the proposed tree-GAN can not only deal with unordered
points, but also extract semantic parts of objects.

3. 3D Point Cloud GAN
Fig.2 presents the pipeline of the proposed tree-GAN. To

generate 3D point clouds x′ from latent code z, we utilize
the objective function introduced in Wasserstein GAN [2].
The loss function of a generator, Lgen, is defined as

Lgen = −Ez∼Z [D(G(z))], (1)

where G and D denote the generator and discriminator, re-
spectively, and Z represents a latent code distribution. We
designZ with a Normal distribution, z ∈ N (0, I). The loss
function of a discriminator, Ldisc, is defined as

Ldisc = Ez∼Z [D(G(z))]− Ex∼R[D(x)]

+ λgpEx̂[(‖∇x̂D(x̂)‖2 − 1)2],
(2)

where x̂ are sampled from line segments between real and
fake point clouds, x′ ∼ G(z) and x denote generated and

real point clouds, respectively, and R represents a real data
distribution. In (2), we use a gradient penalty to satisfy the
1-Lipschitz condition [14], where λgp is a weighting param-
eter.

4. Proposed TreeGCN
To implement G in (1), we consider multi-layer graph

convolutions with first-order approximations of the Cheby-
shev expansion introduced by [22] as follows:

pl+1
i = σ

W lpli +
∑

qlj∈N(pli)

U lqlj + bl

 , (3)

where σ(·) is the activation unit, pli is the i-th node in the
graph (i.e., 3D coordinate of a point cloud) at the l-th layer,
qlj is the j-th neighbor of pli, and N(pli) is the set of all
neighbors of pli. Then, z and x′ in (2) can be represented by
[p01] and [pL1 pL2 · · · pLn ], respectively, where L is the final
layer and n is the number of points at L.

During training, GCNs find the best weights W l and U l

and best bias bl at each layer, then generate 3D coordinates
for point clouds by using these parameters to ensure simi-
larity to real point clouds. The first and second terms in (3)
are called the loop and neighbors terms, respectively.

To enhance a conventional GCN such as that used in
[22], we propose a novel GCN augmented with tree struc-
tures (i.e., TreeGCN). The proposed TreeGCN introduces a
tree structure for hierarchical GCNs by passing information
from ancestors to descendants of vertices. The main unique
characteristic of the TreeGCN is that each vertex updates its
value by referring to the values of its ancestors in the tree
instead of thosed of its neighbors. Traditional GCNs, such
as those defined in (3), can be considered as methods that



Figure 3. Loop term with K-supports. Left: a conventional loop
term uses a single parameter W l in (3) to learn the mapping from
pli to Sl+1

i . Right: our loop term introduces a fully connected
layer with K nodes (i.e., K supports, pli,1, · · · , pli,k) to learn a
more complex mapping from pli to Sl+1

i .

Figure 4. Ancestor term. Left: a conventional neighbor term uses
neighbors of pli (e.g., ql1, ql2, · · · ) to generate pl+1

i . Right: the pro-
posed ancestor term uses ancestors of pli (e.g., ql−1

1 , ql−2
2 , · · · ) to

generate pl+1
i .

only refer to neighbors at a single depth. Then, the proposed
graph convolution is defined as

pl+1
i = σ

FlK(pli) +
∑

qj∈A(pli)

U ljqj + bl

 , (4)

where there are two major differences compared to (3). One
is an improved conventional loop term using a subnetwork
FlK , where Sl+1

i is generated by K supports from FlK . We
call this term a loop with K-supports, as explained in Sec-
tion 4.1. The other difference is the consideration of values
from, all ancestors in the tree to update the value of a cur-
rent point, where A(pli) denotes the set of all ancestors of
pli. We call this term ancestors, as explained in Section 4.1.

4.1. Advanced Graph Convolution

The proposed tree-structured graph convolution (i.e.,
GraphConv in Fig.2) aims to modify the coordinates of
points using the loop with K-supports and ancestor terms.
Loop term with K-supports: The goal of the new loop
term in (4) is to propose the next point based on K sup-
ports instead of using only the single parameter W l in (3)

Figure 5. Example of branching with degree 2.

as follows:

Sl+1
i = FlK(pli), (5)

where FlK is a fully connected layer containingK nodes. A
conventional GCN using first-order approximations adopts
a single parameter in its loop term to generate the next point
from the current point. However, for large graphs, the rep-
resentation capacity of a single parameter is insufficient for
describing a complex point distribution. Therefore, our loop
term utilizes K supports to represent a more complex dis-
tribution of points, as illustrated in Fig.3.
Ancestor term: For graph convolution, knowing the con-
nectivity of a graph is very important because this infor-
mation allows a GCN to propagate useful information from
a vertex to other connected vertices. However, in our point
cloud generation setting, it is impossible to use prior knowl-
edge regarding connectivity because we must be able to
generate diverse typologies of point clouds, even for the
same object category. Therefore, the dynamic 3D point
generation problem cannot be addressed using traditional
GCNs because such networks assume that the connectivity
of a graph is given. As a replacement for the neighbor term
in (3), we define the ancestor term in (4) as follows:

∑
qj∈A(pli)

U ljqj , (6)

whereA(pli) denotes the set of all ancestors of pli. This term
combines all information from the ancestors qj through a
linear mapping U lj . Because each ancestor belongs to a dif-
ferent feature space at a different layer, our ancestor term
can fuse all information from previous layers and differ-
ent feature spaces. To generate the next point, the cur-
rent point refers to its ancestors in various feature spaces
to find the best mapping U lj to combine ancestor informa-
tion effectively. By using this new ancestor term, our tree-
GAN obtains several desirable mathematical properties, as
explained in Section 5. Fig.4 illustrates the graph convolu-
tion process with the ancestor term.



4.2. Branching

Branching is a procedure for increasing the total number
of points and is similar to up-sampling in 2D convolution.
In branching, V l+1

i transforms a single point pli ∈ R3 into
dl child points, where [V l+1

i · pli] ∈ R3×dl . Therefore,

pl+1
j = [V l+1

i · pli]j , for j = 1, · · · , dl (7)

where [A]j denotes the j-th column of matrix A. Then, the
total number of points in the (l + 1)-th layer is |pl| × dl,
where |pl| is the number of points in the l-th layer. In our
experiments, we use different branching degrees for differ-
ent layers (e.g., {dl}7l=1 = {1, 2, 2, 2, 2, 2, 64}). Note that
the number of points in the final layer is

∏7
l=1 dl = 2048.

Fig.5 presents an example of branching with degree 2.

5. Mathematical Properties
In this section, we mathematically analyze the geomet-

ric relationships between generated points and demonstrate
how these relationships are formulated in the output Eu-
clidean space via tree-structured graph convolutions.

Proposition 1. Let pLs and pLd in (4) be generated points
that share the same parents and different parents, respec-
tively, with pLi in the final layer L. Let Sli in (5) be the loop
of point pli at the l-th layer. Hereafter, we omit the super-
scripts of pls and Sli if the superscript l indicates the fianl
layer L. Then,

‖ps − pi‖2 = ‖Ss − Si‖2 , (8)

and

‖pd − pi‖2 ≤
L−1∑
l=1

∥∥∥SlAl(pd)
− SlAl(pi)

∥∥∥2 + ‖Sd − Si‖2 ,

(9)
where Al(p) are all ancestors of point p in the l-th layer.
For simplicity, we ignore the branch process and U lj in (5).

Based on Proposition 1, we can prove that following two
statements are true:
• The geometric distance between two points is de-
termined by the number of shared ancestors. If two
points pd and pi have different ancestors, then the geo-
metric distance between these points is calculated as the
sum of differences between their ancestors in each layer

l

(
i.e.,

∥∥∥SlAl(pd)
− SlAl(pi)

∥∥∥2 in (9)
)

and the differences

between their loops
(

i.e., ‖Sd − Si‖2 in (9)
)

. Thus, as
their ancestors become increasingly different, the geomet-
ric distance between two points increases.
•Geometrically related points share the same ancestors.
If two points ps and pi share the same ancestors, the ge-
ometric distance between these points is affected by only

their loops, as shown in (8). Thus, the geometric distance
between points with the same ancestors in (8) can decreases
compared to that between points with different ancestors in

(9) as
∥∥∥SlAl(ps)

− SlAl(pi)

∥∥∥2 = 0.
Based on these two properties, our tree-GAN can gen-

erate semantic parts of objects, as shown in Fig.6, where
points with the same ancestors are assumed to belong to the
same parts of objects. We will explore this part generation
problem for the proposed tree-GAN in Section 7.1.

6. Fréchet Point Cloud Distance
For quantitative comparisons between GANs, we require

evaluation metrics that can accurately measure the quality
of the 3D point clouds generated by GANs. In the case of
2D data generation problems, FID [17] is the most common
metric. FID adopts pre-trained inception V3 models [38] to
utilize their feature spaces for evaluation. Although the con-
ventional metrics proposed by Achlioptas et al. [1] can be
used to evaluate the quality of generated points by directly
measuring matching distances between real and generated
point clouds, they can be considered as sub-optimal metrics
because the goal of a GAN is not to generate the similar
samples (e.g., MMD or CD) but to generate synthetic prob-
ability measures that are as close as possible to real proba-
bility measures. This perspective has been explored in un-
supervised 2D image generation tasks using GANs [33, 17].
Therefore, we propose a novel evaluation metric for gener-
ated 3D point clouds called FPD.

Similar to FID, the proposed FPD calculates the 2-
Wasserstein distance between real and fake Gaussian mea-
sures in the feature spaces extracted by PointNet [29] as
follows:

FPD(P,Q) = ‖mP −mQ‖22 + Tr(ΣP + ΣQ− 2(ΣPΣQ)
1
2 ),

(10)
where mP and ΣP are the mean vector and covariance ma-
trix of the points calculated from real point clouds {x}, re-
spectively, and mQ,ΣQ are the mean vector and covariance
matrix calculated from generated point clouds {x′}, respec-
tively, where x ∼ P and x′ = G(z) ∼ Q. In (10), Tr(A)
is the sum of the elements along the main diagonal of ma-
trix A. In this paper, for evaluation purposes, we use both
conventional evaluation metrics [1] and the proposed FPD.

7. Experimental Results
Implementation details: We used the Adam optimizer
for both the generator and discriminator networks with a
learning rate of α = 10−4 and other coefficients of β1 =
0 and β2 = 0.99. In generator, we used LeakyReLU as
a nonlinearity function without batch normalization. The
network architecture of discriminator was the same as that
in r-GAN [1]. The gradient penalty coefficient was set to 10



Figure 6. Semantic part generation and interpolation results of our tree-GAN. Red and blue point clouds are generated from different
ancestors in the tree, which form geometrically different families of points. The leftmost and rightmost point clouds of the airplanes were
generated from different noise inputs. The middle airplanes were obtained by interpolating between the leftmost and rightmost point clouds
based on latent space representations.

and the discriminator was updated five times per iteration,
while the generator was updated one time per iteration. As
shown in Fig.2, a latent vector z ∈ R96 was sampled from
a normal distribution N (0, I) ) to act as an input. Seven
layers (L = 7) were used for the TreeGCN. The loop term
of the TreeGCN in (5) had K = 10 supports. The total
number of points in the final layer was set to n = 2048.
Comparison: There are only two conventional GANs for
3D point cloud generation: r-GAN [1] and the GAN pro-
posed by Valsesia et al. [39]. Thus, the proposed tree-GAN
was compared to these two GANs. While the conventional
GANs in [39, 1] train separate networks for each class, our
tree-GAN trains only a single network for multiple classes
of objects.
Evaluation metrics: We evaluated the tree-GAN using
ShapeNet1, which is a large-scale dataset of 3D shapes,
containing 16 object classes. Evaluations were conducted
in terms of the proposed FPD (Section 6) and the metrics
used by Achlioptas et al [1]. As a reference model for
FPD, we used the classification module of PointNet [29] be-
cause it can handle partial inputs of objects. This property is
suitable for FPD because generated point clouds gradually
form shapes, meaning point clouds can be partially com-
plete during training. For the implementation of FPD, we
first trained a classification module for 40 epochs to attain
an accuracy of 98% for classification tasks. We then ex-
tracted a 1808-dimensional feature vector from the output
of the dense layers to calculate the mean and covariance in
(10).

7.1. Ablation Study

We analyze the proposed tree-GAN and examine its
useful properties, namely unsupervised semantic part gen-
eration, latent space representation via interpolation, and
branching.
Unsupervised semantic part generation: Our tree-GAN
can generate point clouds for different semantic parts, even
with no prior knowledge regarding those parts during train-
ing. The tree-GAN can perform this semantic generation

1https://www.shapenet.org/

owing to its tree-structured graph convolution, which is a
unique characteristic among GAN-based 3D point cloud
methods. As stated in Proposition 1, the geometric distance
between points is determined by their ancestors in the tree.
Different ancestors imply geometrically different families
of points. Therefore, by selecting different ancestors, our
tree-GAN can generate semantically different parts of point
clouds. Note that these geometric families of points are con-
sistent between different latent code inputs. For example,
let z1, z2 ∼ N (0, I) be sampled latent codes. Let G(z1) =
[p1 p2 . . . p2048] and G(z2) = [q1 q2 . . . q2048] be their
corresponding generated point clouds. Let J be a certain
subset of 2048 point indices. Then, GJ(z1) = [pj ]j∈J de-
notes the subset of G(z1) from the indices J . As shown
in Fig. 6, if we select the same subsets of indices of point
clouds, it results in the same semantic parts, even though the
latent code inputs are different. For example, all red points
indexed by Jh (e.g., GJh(z1) and GJh(z2)) represent the
cockpits of airplanes, while all blue points indexed by Jt
(e.g., GJt(z1) and GJt(z2)) represent the tails of airplanes.

From this ablation study, we can verify that the differ-
ences between ancestors determine the semantic differences
between points and that two points with the same ancestor
(e.g., green and purple points in the left wings in Fig. 6)
maintain their relative distances for different latent codes.

Interpolation: We interpolated 3D point clouds by setting
the input latent code to zα = (1− α)z1 + αz2 based on six
alphas α = [α1, . . . , α6]. The leftmost and rightmost point
clouds of the airplanes in Fig.6 were generated by G(z1)
and G(z2), respectively. Our tree-GAN can also generate
realistic interpolations between two point clouds.

Branching strategy: We conducted the experiments
to show that the convergence dynamics of the proposed
metric is not sensitive to different branching strategies.
Like other experiments, the total number of the gener-
ated points are 2048 but different branching degrees were
set (e.g., {dl}71 = {1, 2, 2, 2, 2, 2, 64}, {1, 2, 4, 16, 4, 2, 2},
{1, 32, 4, 2, 2, 2, 2}). Please refer to convergence graphs in
supplementary materials.

https://www.shapenet.org/


Table 1. Quantitative comparison in terms of the metrics used by Achlioptas et al. [1]. Red and blue values denote the best and
the second-best results, respectively. Because the original paper by Valsesia et al. [39] only presented point cloud results for chair and
airplane classes, our tree-GAN was compared to [39] based on these classes. However, we additionally evaluated the proposed tree-GAN
quantitatively for all 16 classes, as shown below. For networks with ?, we used results reported in [39]. Higher COV-CD and COV-EMD,
and lower JSD, MMD-CD, and MMD-EMD indicate better methods.

Class Model JSD ↓ MMD-CD ↓ MMD-EMD ↓ COV-CD ↑ COV-EMD ↑
r-GAN (dense)? 0.238 0.0029 0.136 33 13
r-GAN (conv)? 0.517 0.0030 0.223 23 4

Valsesia et al. (no up.)? 0.119 0.0033 0.104 26 20
Valsesia et al. (up.)? 0.100 0.0029 0.097 30 26

Chair

tree-GAN (Ours) 0.119 0.0016 0.101 58 30
r-GAN (dense)? 0.182 0.0009 0.094 31 9
r-GAN (conv)? 0.350 0.0008 0.101 26 7

Valsesia et al. (no up.)? 0.164 010010 0.102 24 13
Valsesia et al. (up.)? 0.083 0.0008 0.071 31 14

Airplane

tree-GAN (Ours) 0.097 0.0004 0.068 61 20

All (16 classes)
r-GAN (dense) 0.171 0.0021 0.155 58 29

tree-GAN (Ours) 0.105 0.0018 0.107 66 39

Table 2. Quantitative comparison in terms of the proposed
FPD. The FPD for the real point clouds was almost nearly zero.
This value can serve as the lower bound for the generated point
clouds. Note that we could not evaluate the GAN proposed by
Valsesia et al. [39] in terms of FPD because the source code was
not available. Better methods have smaller values of FPD.

+
Class Model FPD ↓

r-GAN 1.860Chair tree-GAN (Ours) 0.809
r-GAN 1.016Airplane tree-GAN (Ours) 0.439
r-GAN 4.726

All (16 classes) tree-GAN (Ours) 3.600
Real (Low bound) 0

7.2. Comparisons with Other GANs

The proposed tree-GAN was quantitatively and qualita-
tively compared to other state-of-the-art GANs for point
cloud generation, in terms of both accuracy and computa-
tional efficiency. Supplementary materials contain more re-
sults and comparisons for 3D point clouds generation.
Comparisons: Tables 1 and 2 contain quantitative compar-
isons in terms of the metrics used by Achlioptas et al. [1]
(i.e., JSD, MMD-CD, MMD-EMD, COV-CD, and COV-
EMD) and the proposed FPD, respectively. The proposed
tree-GAN consistently outperforms other GANs at a large
margin in terms of all metrics, demonstrating the effective-
ness of the proposed treeGCN.

For qualitative comparisons, we equally divided the en-
tire index set into four subsets and painted the points in
each subset with the same color. Although the real 3D point

clouds were unordered as shown in Figs.1 and 7, our tree-
GAN successfully generated 3D point clouds with intuitive
semantic meaning without any prior knowledge, whereas r-
GAN failed to generate semantically ordered point clouds.
Additionally, our tree-GAN could generate detailed and
complex parts of objects, whereas r-GAN generated more
dispersed point distributions. Fig.7 presents qualitative re-
sults of our tree-GAN. The tree-GAN generated realistic
point clouds for multi-object categories and produced very
diverse typologies of point clouds for each class.
Computational cost: In methods using static links for
graph convolution, adjacency matrices are typically used
for the convolution of vertices. Although these methods are
known to produce good results for graph data, prior knowl-
edge regarding connectivity is required. In other methods
that use dynamic links for graph convolution, adjacency ma-
trices must be constructed from vertices to derive connec-
tivity information for every convolution layer instead of us-
ing prior knowledge. For example, let L,B, Vl denote the
number of layers, batch size, and induced vertex size of an
output graph at the l-th layer, respectively. The methods
described above require additional computations to utilize
connectivity information. These computations require time
and memory resources on the order of

∑L
l=1B × Vl × Vl.

However, our TreeGCN does not require any prior con-
nectivity information like static link methods and does not
require additional computation like dynamic link methods.
Therefore, our network can use time and memory resources
much more efficiently and requires less resources on the or-
der of

∑L
l=1B × Vl.



Figure 7. Unsupervised 3D point cloud generation results of baseline (i.e. r-GAN [1]) and our tree-GAN. The proposed tree-GAN
generates more accurate and detailed point clouds of objects as comparison with r-GAN, and produces point clouds for each part of the
objects even with no prior knowledge on that part. The point clouds generated by the tree-GAN can represent a variety of geometrical
typologies for each class. The first, second, and third columns show point clouds of ground truth, baseline, and tree-GAN, respectively.



8. Conclusion
In this paper, we proposed a generative adversarial net-

work called the tree-GAN that can generate 3D point clouds
in an unsupervised manner. The proposed generator for
tree-GAN, which is called tree-GCN, preforms graph con-
volutions based on tree structures. The tree-GCN utilizes
ancestor information from a tree and employs multiple sup-
ports to represent 3D point clouds. Thus, the proposed tree-
GAN outperforms other GAN based point cloud genera-
tion methods in terms of accuracy and computational effi-
ciency. Through various experiments, we demonstrated that
the tree-GAN can generate semantic parts of objects with-
out any prior knowledge and can represent 3D point clouds
in latent spaces via interpolation.
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