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Abstract

Recently, convolutional neural networks (CNNs) have
shown great success on the task of monocular depth esti-
mation. A fundamental yet unanswered question is: how
CNNs can infer depth from a single image. Toward answer-
ing this question, we consider visualization of inference of
a CNN by identifying relevant pixels of an input image to
depth estimation. We formulate it as an optimization prob-
lem of identifying the smallest number of image pixels from
which the CNN can estimate a depth map with the minimum
difference from the estimate from the entire image. To cope
with a difficulty with optimization through a deep CNN, we
propose to use another network to predict those relevant im-
age pixels in a forward computation. In our experiments, we
first show the effectiveness of this approach, and then apply
it to different depth estimation networks on indoor and out-
door scene datasets. The results provide several findings
that help exploration of the above question.

1. Introduction

Enabling computers to perceive depth from monocular
images has attracted a lot of attention over the past decades.
It was shown recently [6] that employment of deep convolu-
tional neural networks (CNNs) achieves promising perfor-
mance. Since then, a number of studies [25, 5, 2, 3, 16, 40,
26, 8, 19] have been published on this approach, leading to
significant improvement of estimation accuracy.

On the other hand, it is largely unknown why and how
CNNs can estimate depth of a scene from its monocular im-
age; they are basically black boxes as in other tasks. This
will be an obstacle for this method to be employed in real-
world applications, such as vision for self-driving cars and
service robots, although it could be a cheap alternative so-
lution to existing 3D sensors. In these applications, inter-
pretability is essential for safety reasons.

Long-term studies in psychophysics have revealed that

1. Linear perspective

2. Relative size

3. Texture gradient

4. Interposition

5. Aerial perspective 

6. Light and shades

2
3

4

5

6
2

1

Figure 1. The upper row shows six monocular cues that are consid-
ered to be used for depth perception in human vision. The lower
row shows the mask predicted by our method.

human vision uses several cues for monocular depth estima-
tion, such as linear perspective, relative size, interposition,
texture gradient, light and shades, aerial perspective, etc.
[24, 13, 23, 32, 30, 18]; an example is given in Figure 1. A
natural question arises, do CNNs utilize these cues? Explor-
ing this question will help our understanding of why CNNs
can (or cannot) estimate depth from a given scene image. To
the best of our knowledge, the present study is the first at-
tempt to analyze how CNNs work on the task of monocular
depth estimation.

It is, however, hard to find direct answers to the above
questions; after all, it is still difficult even with human vi-
sion. Thus, as the first step toward this end, we consider vi-
sualization of CNNs on the task. To be specific, as in previ-
ous studies of visualization of CNNs for object recognition,
we attempt to identify the image pixels that are relevant to
depth estimation. To do this, we hypothesize that the CNNs
can infer depths fairly accurately from only a selected set
of image pixels. An underlying idea is an observation with
human vision that most of the cues are considered to be as-
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Figure 2. Diagram of the proposed approach. The target of visualization is the trained depth estimation net N . To identify the pixels of the
input image I that N uses to estimate its depth map Y , we input I to the network G for predicting the set of relevant pixels, or the mask
M . The output M is element-wise multiplied with I and inputted to N , yielding an estimate Ŷ of the depth map. G is trained so that Ŷ
will be as close to the original estimate Y from the entire image I and M will be maximally sparse. Note that N is fixed in this process.

sociated with small regions in the visual field.
We then formulate the problem of identifying relevant

pixels as a problem of sparse optimization. Specifically, we
estimate an image mask that selects the smallest number of
pixels from which the target CNN can provide the maxi-
mally similar depth map to that it estimates from the orig-
inal input. This optimization requires optimization of the
output of the CNN with respect to its input. As is shown in
previous studies of visualization, such optimization through
a CNN in its backward direction sometimes yields unex-
pected results, such as noisy visualization [35, 37] at best
and even phenomenon similar to adversarial examples [7]
at worst. To avoid this issue, we use an additional CNN
to estimate the mask from the input image in the forward
computation; this CNN is independent of the target CNN of
visualization. Our method is illustrated in Figure 2.

We conduct a number of experiments to evaluate the ef-
fectiveness of our approach. We apply our method to CNNs
trained on indoor scenes (the NYU-v2 dataset) and those
trained on outdoor scenes (the KITTI dataset). We confirm
through the experiments that

• CNNs can infer the depth map from only a sparse set
of pixels in the input image with similar accuracy to
those they infer from the entire image;

• The mask selecting the relevant pixels can be predicted
stably by a CNN. This CNN is trained to predict masks
for a target CNN for depth estimation.

The visualization of CNNs on the indoor and outdoor scenes
provides several findings including the following, which we
think contribute to understanding of how CNNs works on
the monocular depth estimation task.

• CNNs frequently use some of the edges in input im-
ages but not all of them. Their importance depends not
necessarily on their edge strengths but more on useful-
ness for grasping the scene geometry.

• For outdoor scenes, large weights tend to be given

to distant regions around the vanishing points in the
scene.

2. Related work
There are many studies that attempt to interpret inference

of CNNs, most of which have focused on the task of image
classification [1, 43, 37, 36, 44, 31, 33, 17, 7, 28, 38]. How-
ever, there are only a few methods that have been recog-
nized to be practically useful in the community [11, 20, 21].

Gradient based methods [36, 28, 38] compute a saliency
map that visualizes sensitivity of each pixel of the input im-
age to the final prediction, which is obtained by calculating
the derivatives of the output of the model with respect to
each image pixel.

There are many methods that mask part of the input im-
age to see its effects [42]. General-purpose methods devel-
oped for interpreting inference of machine learning models,
such as LIME [31] and Prediction Difference Analysis [44],
may be categorized in this class, when they are applied to
CNNs classifying an input image.

The most dependable method as of now for visualiza-
tion of CNNs for classification is arguably the class activa-
tion map (CAM) [43], which calculate the linear combina-
tion of the activation of the last convolutional layers in its
channel dimension. Its extension, Grad-CAM [33], is also
widely used, which integrates the gradient-based method
with CAM to enable to use general network architectures
that cannot be dealt with by CAM.

However, the above methods, which are developed
mainly for explanation of classification, cannot directly
be applied to CNNs performing depth estimation. In the
case of depth estimation, the output of CNNs is a two-
dimensional map, not a score for a category. This imme-
diately excludes gradient based methods as well as CAM
and its variants. The masking methods that employ fixed-
shape masks [44] or super-pixels obtained using low-level
image features [31] are not fit for our purpose, either, since
there is no guarantee that their shapes match well with the
depth cues in input images that are utilized by the CNNs.
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3. Method
3.1. Problem Formulation

Suppose a network N that predicts the depth map of a
scene from its single RGB image as

Y = N(I), (1)

where Y is an estimated depth map and I is the normalized
version of the input RGB image. Following previous stud-
ies, we normalize each image by the z-score normalization.
This model N is the target of visualization.

Human vision is considered to use several cues to infer
depth information, most of which are associated with re-
gions with small areas in the visual field. Thus, we make
an assumption here that CNNs can infer depth map equally
well from a selected set of sparse pixels of I , as long as they
are relevant to depth estimation. To be specific, we denote a
binary mask selecting pixels of I by M and a masked input
by I ⊗M , where ⊗ denotes element-wise multiplication.
The depth estimate Ŷ provided by our network N for the
masked input is

Ŷ = N(I ⊗M). (2)

Our assumption is that Ŷ can become very close to the orig-
inal estimate Y = N(I), when the mask M is chosen prop-
erly.

Now, we wish to find such a mask M for a given input
I that Ŷ = N(I ⊗M) will be as close to Y = N(I) as
possible. As our purpose is to understand depth estimation,
we also wantM that is as sparse as possible (i.e., having the
smallest number of non-zero pixels). To do so, we relax the
condition that M is binary, i.e., its element is either 0 or 1.
We instead assume each element of M to have a continuous
value in the range of [0, 1]. We will validate this relaxation
in our experiments, where we also check the validity of the
above assumption of depth estimation from sparse pixels.

Finally, we formulate our problem as the following opti-
mization:

min
M

ldif(Y, Ŷ ) + λ
1

n
‖M‖1 (3)

where ldif is a measure of difference between Y and Ŷ ;
λ is a control parameter for the sparseness of M ; n is the
number of pixels; and ‖M‖1 is the `1 norm (of a vectorized
version) of M .

3.2. Learning to Predict Mask

Now we consider how to perform the optimization (3).
The network N appears in the objective function through
the variable Ŷ = N(I ⊗M). We need carefully consider
such optimization associated with the output of a CNN with
respect to its input, because it often provides unexpected
results, as is shown in previous studies.

(a) (b) (c) (d)
Figure 3. Form left to right, (a) RGB images (b) M obtained by
solving (3), (c) M obtained by solving (4), (d) M obtained by
solving (5).

In [35], the optimal inputs to CNNs trained on object
recognition are computed that maximize the score of a se-
lected object class for the purpose of visualization. Al-
though they provide some insights into what the CNNs have
learned, the images thus computed are unstable (e.g., sensi-
tive to initial values); they are distant from natural images
and not so easy to interpret. To obtain more visually in-
terpretable images, researchers have employed several con-
straints on the input images to be optimized, e.g., the one
making them appear to be natural images [10, 29]. In addi-
tion, optimization of (a function of) network outputs some-
times yield unpredictable results; typical examples are the
adversarial examples [7].

Thus, instead of minimizing (3) with respect to individ-
ual elements of M , we use an additional network G to pre-
dict M ≈ G(I) that minimizes (3). More specifically, we
consider the following optimization:

min
G

ldif(Y,N(I ⊗G(I))) + λ
1

n
‖G(I)‖1, (4)

where ‖G(I)‖1 indicates `1 norm of vectorized G(I). We
employ the sigmoid activation function for the output layer
of G, which constrain its output in the range of [0, 1]. The
details of our method for training G are shown in Algo-
rithm 1. Figure 3 shows comparison of M computed by
different methods. It is seen that the direct optimization of
(3) (Fig.3(b)) yields noisy, less interpretable maps than our
approach (Fig.3(c)).

We have considered removing as many unimportant pix-
els of I as possible while maximally maintaining the origi-
nal prediction Y = N(I). There is yet another approach to
identify important/unimportant pixels, which is to identify
the most important pixels of I , without which the predic-
tion will maximally deteriorate. This is formulated as the
following optimization problem:

min
G
−ldif(Y,N(I ⊗G(I))) + λ

1

n
‖(1−G(I))‖1. (5)
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This formulation is similar to that employed in [7], a study
for visualization of CNNs for object recognition, in which
the most important pixels in the input image are identified
by masking the pixels that maximally lower the score of a
selected object class. Unlike our method, the authors di-
rectly optimize M ; to avoid artifacts that will emerge in
the optimization, they employ additional constraints on M
other than its sparseness1. The results obtained by the op-
timization of (5) are shown in Fig. 3(d). It is seen that this
approach cannot provide useful results.

Algorithm 1 Algorithm for training the network G for pre-
diction of M .
Input: N : a target, fully-trained network for depth estima-

tion; ψ: a training set, i.e., pairs of the RGB image and
depth map of a scene; λ: a parameter controlling the
sparseness of M .

Hyperparameters: Adam optimizer, learning rate: 1e−4,
weight decay: 1e−4, training epochs: K.

Output: G: a network for predicting M .
1: Freeze N ;
2: for j = 1 to K do
3: for i = 1 to T do
4: Select RGB batch ψi from ψ;
5: Set gradients of G to 0;
6: Calculate depth maps for ψi:
7: Yψi = N(ψi);
8: Calculate the value (L) of objective function:
9: L = ldif(Yψi

, N(ψi ⊗G(ψi)) +λ 1
n‖G(ψi)‖1;

10: Backpropagate L;
11: Update G;
12: end for
13: end for

4. Experiments
4.1. Experimental Setup

Datasets We use two datasets NYU-v2 [34] and KITTI
datasets [39] for our analyses, which are the most widely
used in the previous studies of monocular depth estimation.
The NYU-v2 dataset contains 464 indoor scenes, for which
we use the official splits, 249 scenes for training and 215
scenes for testing. We obtain approximately 50K unique
pairs of an image and its corresponding depth map. Follow-
ing the previous studies, we use the same 654 samples for
testing. The KITTI dataset contains outdoor scenes and is
collected by car-mounted cameras and a LIDAR sensor. We
use the official training/validation splits; there are 86K im-
age pairs for training and 1K image pairs from the official
cropped subsets for testing. As the dataset only provides

1In our experiments, we confirmed that their method works well for
VGG networks but behaves unstably for modern CNNs such as ResNets.

sparse depth maps, we use the depth completion toolbox
of the NYU-v2 dataset to interpolate pixels with missing
depth.

Target CNN models There are many studies for monoc-
ular depth estimation, in which a variety of architectures
are proposed. Considering the purpose here, we choose
models that show strong performance in estimation accu-
racy with a simple architecture. One is an encoder-decoder
network based on ResNet-50 proposed in [16], which out-
performs previous ones by a large margin as of the time
of publishing. We also consider more recent ones pro-
posed in [14], for which we choose three different backbone
networks, ResNet-50 [12], DenseNet-161 [9], and SENet-
154 [15]. For better comparison, all the models are im-
plemented in the same experimental conditions. Following
their original implementation, the first and the latter three
models are trained using different losses. To be specific, the
first model is trained using `1 norm of depth errors2. For
the latter three models, sum of three losses are used, i.e.,
ldepth = 1

n

∑n
i=1 F (ei), lgrad = 1

n

∑n
i=1(F (∇x(ei)) +

F (∇y(ei))), and lnormal = 1
n

∑n
i=1 (1− cos θi) , where

F (ei) = ln(ei + 0.5); ei = ‖yi − ŷi‖1; yi and ŷi are true
and estimated depths; and θi is the angle between the sur-
face normals computed from the true and estimated depth
map.

Network G for predicting M We employ an encoder-
decoder structure for G. For the encoder, we use the dilated
residual network (DRN) proposed in [41], which preserves
local structures of the input image due to a fewer counts of
down-sampling. Specifically, we use a DRN with 22 lay-
ers (DRN-D-22) pre-trained on ImageNet [4], from which
we remove the last fully connected layer. It yields a feature
map with 512 channels and 1/8 resolution of the input im-
age. For the decoder, we use a network consisting of three
up-projection blocks [16] yielding a feature map with 64
channels and the same size as the input image, followed by
a 3× 3 convolutional layer outputting M . The encoder and
decoder are connected to form the network G, which has
25.3M parameters in total. For the loss used to train G, we
use ldif = ldepth + lgrad + lnormal.

4.2. Estimating Depth from Sparse Pixels

As explained above, our approach is based on the as-
sumption that the network N can accurately estimate depth
from only a selected set of sparse pixels. We also relaxed
the condition on the binary mask, allowing M to have con-
tinuous values in the range of [0,1]. To validate the assump-
tion as well as this relaxation, we check how the accuracy

2We have found that `1 performs better than the berhu loss originally
used in [16], which agree with [27].
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(a) RGB
images

(b) Ground
truth

(c) Ŷ when
λ=1

(d) Ŷ when
λ=3

(e) Ŷ when
λ=5

(f) M when λ=1 (g) M when λ=3 (h) M when λ=5

Figure 4. Visual comparison of approximated depth maps and estimated masks (M ’s) for different values of the sparseness parameter λ.

Table 1. Accuracy of depth estimation for different values of the
sparseness parameter λ. Results on the NYU-v2 dataset by the
ResNet-50 model of [14]. Sparseness in the table indicates the
average number of non-zero pixels in M ′.

λ RMSE (M ) RMSE (M ′) Sparseness
original 0.555 0.555 1.0
λ = 1 0.605 0.568 0.920
λ = 2 0.668 0.617 0.746
λ = 3 0.699 0.668 0.589
λ = 4 0.731 0.733 0.425
λ = 5 0.740 0.758 0.361
λ = 6 0.772 0.882 0.215

of depth estimation will change when binarizing the contin-
uous mask M predicted by G.

To be specific, computing M = G(I) for I , we binarize
M into a binary map M ′ using a threshold ε = 0.025. We
then compare accuracy of the predicted depth maps N(I ⊗
M ′) and N(I ⊗M). As the sparseness of M is controlled
by the parameter λ as in Eq.(4), we evaluate the accuracy
for different λ’s. We use the NYU-v2 dataset and a ResNet-
50 based model of [14]. We train it for 10 epochs on the
training set and measure its accuracy by RMSE.

Table 1 shows the results. It is first observed that there is
trade-off between accuracy of depth estimation and sparse-
ness of the mask M . Figure 4 shows examples of pairs of
the mask M and estimated depth map Ŷ for different λ’s
for four different input images. It is also observed from Ta-
ble 1 that the estimated depth with the binarized mask M ′

is mostly the same as that with the continuous M when λ
is not too large; it is even more accurate for small λ’s. This
validates our relaxation allowingM to have continuous val-

0.20.30.40.50.60.70.80.91.0
Sparseness

0.6

0.8

1.0

1.2

1.4

1.6

1.8

RM
SE

Edge map
M

Figure 5. Comparison of accuracy of depth estimation when se-
lecting input image pixels using M and using the edge map of
input images.

ues. Considering the trade-off between estimation accuracy
and λ as well as the difference between prediction with M
and M ′, we choose λ = 5 in the analyses shown in what
follows.

4.3. Analyses of Predicted Mask

4.3.1 NYU-v2 dataset

Figure 6 shows predicted masks for different input images
and different depth prediction networks. It is first observed
that there are only small differences among different net-
works. This will be an evidence that the proposed visual-
ization method can stably identify relevant pixels to depth
estimation. For the sake of comparison, edge maps of I are
also shown in Figure 6. It is seen from comparison with
them that M tends to have non-zero values on the image
edges; some non-zero pixels indeed lie exactly on image
edges (e.g., the vertical edge on the far side in (1)).

However, a closer observation reveals that there is also a
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(a) RGB
images

(b) Edge maps (c) M for [16]
(ResNet-50)

(d) M for [14]
(ResNet-50)

(e) M for [14]
(DenseNet-

161)

(f) M for [14]
(SENet-154)

Figure 6. Predicted masks for different input images for different depth estimation networks, ResNet-50-based model of [16] and three
models of [14] whose backbones are ResNet-50, DenseNet-161, and SENet-154, respectively. The edge map of the input I is also shown
for comparison.

difference between M and the edge map; M tends to have
non-zero pixels over the filled regions of objects, not on
their boundaries, as with the table in (5), the chairs in (7)
etc. Moreover, very strong image edges sometimes disap-

pear in M , as is the case with a bottom edge of the cabinet
in (2); instead, M has non-zero pixels along a weaker im-
age edge emerging on the border of the cabinet and the wall.
This is also the case with the intersecting lines between the
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RGB images

Edge maps

M for [16]
(ResNet-50)

M for [14]
(ResNet-50)

M for [14]
(DenseNet-161)

M for [14]
(SENet-154)

Figure 7. Predicted masks for different networks trained on the KITTI dataset for different input images from the test split.

floor and the bed in (6); M has large values along them,
whereas their edge strength is very weak.

To further investigate (dis)similarity between M and the
edge map, we compare them by setting the edge map to M
and evaluate the accuracy of the predicted depthN(I⊗M).
Figure 5 shows the results. It is seen that the use of edge
maps yields less accurate depth estimation, which clearly
indicates the difference of the edge maps and the masks pre-
dicted by G.

Not boundary alone but filled region is highlighted for
small objects. We conjecture that the CNNs recognize the
objects and somehow utilize it for depth estimation.

4.3.2 KITTI dataset

Figure 7 shows the predicted masks on the KITTI dataset
for three randomly selected images along with their edge
maps. More examples are given in the supplementary mate-
rial. As with the NYU-v2 dataset, the predicted masks tend
to consist of edges and filled regions, and are clearly dif-
ferent from the edge maps. It is observed that some image
edges are seen in the masks but some are not. For exam-
ple, in the first image, the guard rail on the left has strong
edges, which are also seen in the mask. On the other hand,
the white line on the road surface provides strong edges in
the edge map but is absent in the mask. This indicates that
the CNNs utilizes the guard rail but does not use the white
line for depth estimation for some reason. This is also the
same as the white vertical narrow object on the roadside in
the second image.

A notable characteristic of the predicted masks on this
dataset is that the region around the vanishing point of the
scene is strongly highlighted in the predicted masks. This is
the case with all the images in the dataset, not limited to the
three shown here. Our interpretation of this phenomenon
will be given in the discussion below.

4.3.3 Summary and Discussion

In summary, there are three findings from the above visual-
ization results.

Important/unimportant image edges Some of the im-
age edges are highlighted in M and some are not. This im-
plies that the depth prediction network N selects important
edges that are necessary for depth estimation. The selec-
tion seems to be more or less independent of the strength of
edges. We conjecture that those selected are essential for in-
ferring the 3D structure (e.g., orientation, perspective etc.)
of a room and a road.

Attending on the regions inside objects As for objects
in a scene, not only the boundary but the inside region of
them tend to be highlighted. This is the case more with
smaller objects, although this may be partly attributable to
the use of sparseness constraint. Unlike the image edges
providing the geometric structure of the scene, we conjec-
ture that the depth estimation network N may ‘recognize’
the objects and use their sizes to infer absolute or relative
distance to them.

7



(a) RGB
images

(b) ldepth (c) ldepth
+lgrad

(d) ldepth
+lgrad

+lnormal

Figure 8. Comparison of the estimated mask M for the three com-
binations of loss functions.

Vanishing points In the case of outdoor scenes of KITTI,
the regions around vanishing points (or simply far-away
regions) are always highlighted almost without exception.
This shows that these regions are important for N to pro-
vide accurate depths. This may be attributable to the fact
that distant scene points tend to yield large errors because
of the loss evaluating the difference in absolute depths; then
such distant scene regions will be given more weights than
others. Another possible explanation is that this is due to the
natural importance of vanishing points; they are naturally a
strong cue to understand geometry of a scene. Although
these two explanations appear to be orthogonal, they could
be coupled with each other in practice. A possible hypoth-
esis is that CNNs (and/or human vision) learn to look at the
vanishing points as they are distant and given more weights.
Further investigation will be a direction of future studies.

4.4. Evaluation of Training Losses

There are several discussions in recent studies on how we
should measure accuracy of estimated depth maps [22, 14]
and what losses we should use for training CNNs [14].
We compare the impact of losses by visualizing a network
N trained on different losses. Following [14], we con-
sider three losses, ldepth (the most widely used one mea-
suring difference in depth values); lgrad (difference in gra-
dients of scene surfaces); and lnormal (difference in orien-
tation of normal to scene surfaces). We train a ResNet-
50 based model of [14] on NYU-v2 using different com-

binations of the three losses, i.e., ldepth, ldepth + lgrad, and
ldepth+lgrad+lnormal. Figure 8 shows the generated masks
for networks trained using the three loss combinations. It is
observed that the inclusion of lgrad highlights more on the
surface of objects. The further addition of lnormal highlight
more on small objects and makes edges more straight if they
should be.

5. Summary and Conclusion

Toward answering the question of how CNNs can infer
the depth of a scene from its monocular image, we have
considered their visualization. Assuming that CNNs can in-
fer a depth map accurately from a small number of image
pixels, we considered the problem of identifying these pix-
els, or equivalently a mask concealing the other pixels, in
each input image. We formulated the problem as an opti-
mization problem of selecting the smallest number of pix-
els from which the CNN can estimate a depth map with the
minimum difference to that it estimates from the entire im-
age. Pointing out that there are difficulties with optimiza-
tion through a deep CNN, we propose to use an additional
network to predict the mask for an input image in forward
computation.

We have confirmed through several experiments that the
above assumption holds well and the proposed approach can
stably predict the mask for each input image with good ac-
curacy. We then applied the proposed method to a number
of monocular depth estimation CNNs on indoor and out-
door scene datasets. The results provided several findings,
such as i) the behaviour of CNNs that they seem to select
edges in input images depending not on their strengths but
on importance for inference of scene geometry; ii) the ten-
dency of attending not only on the boundary but the inside
region of each individual object; iii) the importance of im-
age regions around the vanishing points for depth estima-
tion on outdoor scenes. We also show an application of the
proposed method, which is to visualize the effect of using
different losses for training a depth estimation CNN.

We think these findings contribute to moving forward our
understanding of CNNs on the depth estimation task, shed-
ding some light on the problem that has not been explored
so far in the community.
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[43] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Tor-
ralba. Learning deep features for discriminative localization.
CVPR, pages 2921–2929, 2016.

[44] L. M. Zintgraf, T. Cohen, T. Adel, and M. Welling. Visu-
alizing deep neural network decisions: Prediction difference
analysis. ICLR, 2017.

10


