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Abstract

Temporal action proposal generation is an challenging
and promising task which aims to locate temporal regions
in real-world videos where action or event may occur. Cur-
rent bottom-up proposal generation methods can generate
proposals with precise boundary, but cannot efficiently gen-
erate adequately reliable confidence scores for retrieving
proposals. To address these difficulties, we introduce the
Boundary-Matching (BM) mechanism to evaluate confi-
dence scores of densely distributed proposals, which de-
note a proposal as a matching pair of starting and ending
boundaries and combine all densely distributed BM pairs
into the BM confidence map. Based on BM mechanism,
we propose an effective, efficient and end-to-end proposal
generation method, named Boundary-Matching Network
(BMN), which generates proposals with precise temporal
boundaries as well as reliable confidence scores simultane-
ously. The two-branches of BMN are jointly trained in an
unified framework. We conduct experiments on two chal-
lenging datasets: THUMOS-14 and ActivityNet-1.3, where
BMN shows significant performance improvement with re-
markable efficiency and generalizability. Further, combin-
ing with existing action classifier, BMN can achieve state-
of-the-art temporal action detection performance.

1. Introduction
With the number of videos in Internet growing rapidly,

video content analysis methods have attracted widespread
attention from both academia and industry. Temporal action
detection is an important task in video content analysis area,
which aims to locate action instances in untrimmed long
videos with both action categories and temporal boundaries.
Akin to object detection, temporal action detection method
can be divided into two stages: temporal action proposal
generation and action classification. Although convincing
classification accuracy can be achieved by action recog-
nition methods, the detection performance is still low in
mainstream benchmarks [14, 5]. Therefore, many recent
methods work on improving the quality of temporal action

Figure 1. Overview of our method. Given an untrimmed video,
BMN can simultaneously generate (1) boundary probabilities se-
quence to construct proposals and (2) Boundary-Matching confi-
dence map to densely evaluate confidence of all proposals.

proposals. Besides being used in temporal action detection
task, temporal proposal generation methods also have wide
applications in many areas such as video recommendation,
video highlight detection and smart surveillance.

To achieve high proposal quality, a proposal genera-
tion method should (1) generate temporal proposals with
flexible duration and precise boundaries to cover ground-
truth action instances precisely and exhaustively; (2) gener-
ate reliable confidence scores so that proposals can be re-
trieved properly. Most existing proposal generation meth-
ods [3, 4, 8, 23] adopted a “top-down” fashion to gener-
ate proposals with multi-scale temporal sliding windows
in regular interval, and then evaluate confidence scores
of proposals respectively or simultaneously. The main
drawback of these methods is that generated proposals are
usually not temporally precise or not flexible enough to
cover ground-truth action instances of varies duration. Re-
cently, Boundary-Sensitive Network (BSN) [17] adopted a
“bottom-up” fashion to generate proposals in two stages:
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(1) locate temporal boundaries and combine boundaries as
proposals and (2) evaluate confidence score of each pro-
posal using constructed proposal feature. By exploiting lo-
cal clues, BSN can generate proposals with more precise
boundaries and more flexible duration than existing top-
down methods. However, BSN has three main drawbacks:
(1) proposal feature construction and confidence evalua-
tion procedures are conducted to each proposal respectively,
leading to inefficiency; (2) the proposal feature constructed
in BSN is too simple to capture enough temporal context;
(3) BSN is multiple-stage but not an unified framework.

Can we evaluate confidence for all proposals simultane-
ously with rich context? Top-down methods [18, 2] can
achieve this easily with anchor mechanism, where propos-
als are pre-defined as non-continuous distributed anchors.
However, since the boundary and duration of proposals are
much more flexible, anchor mechanism is not suitable for
bottom-up methods such as BSN. To address these difficul-
ties, we propose the Boundary-Matching (BM) mecha-
nism for confidence evaluation of densely distributed pro-
posals. In BM mechanism, a proposal is denoted as a
matching pair of its starting and ending boundaries, and
then all BM pairs are combined as a two dimensional BM
confidence map to represent densely distributed proposals
with continuous starting boundaries and temporal duration.
Thus, we can generate confidence scores for all proposals
simultaneously via the BM confidence map. A BM layer is
proposed to generate BM feature map from temporal fea-
ture sequence, and the BM confidence map can be obtained
from the BM feature map using a series of conv-layers. BM
feature map contains rich feature and temporal context for
each proposal, and gives the potential for exploiting context
of adjacent proposals.

In summary, our work has three main contributions:

1. We introduce the Boundary-Matching mechanism for
evaluating confidence scores of densely distributed
proposals, which can be easily embedded in network.

2. We propose an efficient, effective and end-to-end tem-
poral action proposal generation method Boundary-
Matching Network (BMN). Temporal boundary prob-
ability sequence and BM confidence map are gener-
ated simultaneously in two branches of BMN, which
are trained jointly as an unified framework.

3. Extensive experiments show that BMN can achieve
significantly better proposal generation performance
than other state-of-the-art methods, with remarkable
efficiency, great generalizability and great perfor-
mance on temporal action detection task.

2. Related Work
Action Recognition. Action recognition is a fundamen-
tal and important task of video understanding area. Hand-
crafted features such as HOG, HOF and MBH are widely

used in earlier works, such as improved Dense Trajec-
tory (iDT) [29, 30]. Recently, deep learning models have
achieved significantly performance promotion in action
recognition task. The mainstream networks fall into two
categories: two-stream networks [9, 24, 32] exploit appear-
ance and motion clues from RGB image and stacked optical
flow separately; 3D networks [27, 21] exploit appearance
and motion clues directly from raw video volume. In our
work, by convention, we adopt action recognition models
to extract visual feature sequence of untrimmed video.

Correlation Matching. Correlation matching algorithms
are widely used in many computer vision tasks, such as
image registration, action recognition and stereo matching.
Specifically, stereo matching aims to find corresponding
pixels from stereo images. For each pixel in left image
of a rectified image pair, the stereo matching method need
to find corresponding pixel in right image along horizon-
tal direction, or we can say finding right pixel with min-
imum cost. Thus, the cost minimization of all left pixels
can be denoted as a cost volume, which denotes each left-
right pixel pair as a point in volume. Based on cost vol-
ume, many recent works [26, 20, 16] achieve end-to-end
network via generating cost volume directly from combin-
ing two feature maps, using correlation layer [20] or feature
concatenation [6]. Inspired by cost volume, our proposed
BM confidence map contains pairs of temporal starting and
ending boundaries as proposals, thus can directly generate
confidence scores for all proposals using convolutional lay-
ers. We propose BM layer to efficiently generate BM fea-
ture map via sampling feature among starting and ending
boundaries of each proposal simultaneously.

Temporal Action Proposal Generation. As aforemen-
tioned, the goal of temporal action detection task is to detect
action instances in untrimmed videos with temporal bound-
aries and action categories, which can be divided into tem-
poral proposal generation and action classification stages.
These two stages are taken apart in most detection methods
[23, 25, 35], and are taken together as single model in some
methods [18, 2]. For proposal generation task, most previ-
ous works [3, 4, 8, 12, 23] adopt top-down fashion to gener-
ate proposals with pre-defined duration and interval, where
the main drawback is the lack of boundary precision and
duration flexibility. There are also some methods [35, 17]
adopt bottom-up fashion. TAG [35] generates proposals
using temporal watershed algorithm, but lack confidence
scores for retrieving. Recently, BSN [17] generates pro-
posals via locally locating temporal boundaries and glob-
ally evaluating confidence scores, and achieves significant
performance promotion over previous proposal generation
methods. In this work, we propose the Boundary-Matching
mechanism for proposal confidence evaluation, which can
largely simplify the pipeline of BSN and bring significant
promotion in both efficiency and effectiveness.



Figure 2. Illustration of BM confidence map. Proposals in the
same row have the same temporal duration, and proposals in the
same column have the same starting time. The ending boundaries
of proposals at right-bottom corner exceed the range of video, thus
these proposals are not considered during training and inference.

3. Our Approach
3.1. Problem Formulation

We can denote an untrimmed video X as frame se-
quence X = {xn}lvn=1 with lv frames, where xn is the
n-th RGB frame of video X . The temporal annotation set
of X is composed by a set of temporal action instances as
Ψg = {ϕn = (ts,n, te,n)}Ng

n=1, where Ng is the amount of
ground-truth action instances, ts,n is the starting time of ac-
tion instance ϕn and te,n is the ending time. Unlike tempo-
ral action detection task, categories of action instances are
not taken into account in proposal generation task. During
inference, proposal generation method should generate pro-
posals Ψp which cover Ψg precisely and exhaustively.

3.2. Feature Encoding.

Following recent proposal generation methods [3, 8, 12,
17], we construct BMN model upon visual feature sequence
extracted from raw video. In this work, we adopt two-
stream network [24] for feature encoding since it achieves
great action recognition precision and is widely used in
many video analysis methods [11, 18, 35]. Concatenating
the output scores of top fc-layer in two-stream network, we
can get encoded visual feature ftn ∈ RC around frame xtn ,
where C is the dimension of feature. Therefore, given an
untrimmed video X of length lv , we can extract a visual
feature sequence F = {ftn}

lf
n=1 ∈ RC×lf with length lf .

To reduce the computation cost, we extract feature in a reg-
ular frame interval σ, thus lf = lv/σ.

3.3. Boundary-Matching Mechanism

In this section, we introduce the Boundary-Matching
(BM) mechanism to generate confidence scores for densely
distributed proposals. First we denote a temporal proposal
ϕ as a matching pair of its starting boundary ts and ending
boundary te. Then, as shown in Fig 2, the goal of BM mech-
anism is to generate the two dimensional BM confidence

Figure 3. Illustration of BM layer. For each proposal, we conduct
dot product at T dimension between sampling weight and tempo-
ral feature sequence, to generate BM feature of shape C ×N .
.

map MC , which is constructed by BM pairs with different
starting boundary and temporal duration. In BM confidence
map, the value of point MC(i, j) is denoted as the confi-
dence score of proposal ϕi,j with starting boundary ts = tj ,
duration d = ti and ending boundary te = tj + ti. Thus,
we can generate confidence scores for densely distributed
proposals via generating BM confidence map.
Boundary-Matching Layer. How can we generate two di-
mensional BM confidence map from temporal feature se-
quence? In BM mechanism, we introduce the BM layer to
generate BM feature map MF ∈ RC×N×D×T from tem-
poral feature sequence SF ∈ RC×T , and then use MF to
generate BM confidence map MC ∈ RD×T with a series
of convolutional layers, where D are pre-defined maximum
proposal duration. The goal of BM layer is to uniformly
sample N points in SF between starting boundary ts and
ending boundary te of each proposal ϕi,j , and get proposal
featuremf

i,j ∈ RC×N with rich context. And we can gener-
ate BM feature map MF via conducting this sampling pro-
cedure for all proposals simultaneously.

There are two difficulties to achieve this feature sam-
pling procedure: (1) how to sample feature in non-integer
point and (2) how to sample feature for all proposals si-
multaneously. As shown in Fig 3, we achieve this via dot
product between temporal feature sequence SF ∈ RC×T

and sampling mask weight W ∈ RN×T×D×T in temporal
dimension. In detail, first, for each proposal ϕi,j , we con-
struct weight term wi,j ∈ RN×T via uniformly samplingN
points between expanded temporal region [ts − 0.25d, te +
0.25d]. For a non-integer sampling point tn, we define its
corresponding sampling mask wi,j,n ∈ RT as

wi,j,n[t] =


1− dec(tn) if t = floor(tn)

dec(tn) if t = floor(tn) + 1,

0 if t = others

(1)



Figure 4. The framework of Boundary-Matching Network. After
feature extraction, we use BMN to simultaneously generate tem-
poral boundary probability sequence and BM confidence map, and
then construct proposals based on boundary probabilities and get
corresponding confidence score from BM confidence map.

where dec and floor is decimal and integer fraction func-
tions separately. Thus, for proposal ϕi,j , we can get weight
term wi,j ∈ RN×T . Second, we conduct dot product in
temporal dimension between SF and wi,j

mf
i,j [c, n] =

T∑
t=1

Sf [c, t] · wi,j [n, t]. (2)

Via expanding wi,j ∈ RN×T to W ∈ RN×T×D×T

for all proposals in BM confidence map, we can generate
BM feature map MF ∈ RC×N×D×T using dot product.
Since the sampling mask weight W is the same for differ-
ent videos and can be pre-generated, the inference speed of
BM layer is very fast. BM feature map contains rich fea-
ture and temporal context for each proposal, and gives the
potential for exploiting context of adjacent proposals.
Boundary-Matching Label. During training, we denote
the BM label map as GC ∈ RD×T with the same shape
of BM confidence map MC , where gci,j ∈ [0, 1] represents
the maximum IoU between proposal ϕi,j and all ground-
truth action instances. Generally, in BM mechanism, we
use BM layer to efficiently generate BM feature map MF

from temporal feature sequence SF , and then use a series of
convolutional layers to generate BM confidence map MC ,
which is trained under supervision of BM label map GC .

Table 1. The detailed architecture of BMN, where the output fea-
ture sequence of base module is shared by temporal evaluation and
proposal evaluation modules. T and D are length of input feature
sequence and maximum proposal duration separately.

layer kernel stride dim act output size
Base Module

conv1d1 3 1 256 relu 256×T
conv1d2 3 1 128 relu 128×T

Temporal Evaluation Module
conv1d3 3 1 256 relu 256×T
conv1d4 3 1 2 sigmoid 2×T

Proposal Evaluation Module
BM layer N - 32 128×32×D×T
conv3d1 32,1,1 32,0,0 512 relu 512×1×D×T
squeeze 512×D×T
conv2d1 1,1 0,0 128 relu 128×D×T
conv2d2 3,3 1,1 128 relu 128×D×T
conv2d3 1,1 0,0 2 sigmoid 2×D×T

3.4. Boundary-Matching Network

Different with the multiple-stage framework of BSN
[17], BMN generates local boundary probabilities sequence
and global proposal confidence map simultaneously, while
the whole model is trained in an unified framework. As
demonstrated in Fig 4, BMN model contains three modules:
Base Module handles the input feature sequence, and out-
puts feature sequence shared by the following two modules;
Temporal Evaluation Module evaluates starting and ending
probabilities of each location in video to generate boundary
probability sequences; Proposal Evaluation Module con-
tains the BM layer to transfer feature sequence to BM fea-
ture map, and contains a series of 3D and 2D convolutional
layers to generate BM confidence map.
Base Module. The goal of the base module is to handle
the input feature sequence, expand the receptive field and
serve as backbone of network, to provide a shared feature
sequence for TEM and PEM. Since untrimmed videos have
uncertain temporal length, we adopt a long observation win-
dow with length lω to truncate the untrimmed feature se-
quence with length lf . We denote an observation window
as ω = {tω,s, tω,e,Ψω, Fω}, where tω,s and tω,e are the
starting and ending time of ω separately, Ψω and Fω are
annotations and feature sequence within the window sepa-
rately. The window length lω = tω,e− tω,s is set depending
on the dataset. The details of base module is shown in Table
1, including two temporal convolutional layers.
Temporal Evaluation Module (TEM). The goal of TEM is
to evaluate the starting and ending probabilities for all tem-
poral locations in untrimmed video. These boundary prob-
ability sequences are used for generating proposals during
post processing. The details of TEM are shown in Table
1, where conv1d4 layer with two sigmoid activated filters
output starting probability sequence PS,ω =

{
pstn
}lω
n=1

and



ending probability sequence PE,ω =
{
petn
}lω
n=1

separately
for an observation window ω.
Proposal Evaluation Module (PEM). The goal of PEM
is to generate Boundary-Matching (BM) confidence map,
which contains confidence scores for densely distributed
proposals. To achieve this, PEM contains BM layer and
a series of 3d and 2d convolutional layers.

As introduced in Sec. 3.3, BM layer transfers temporal
feature sequence S to BM feature map MF via matrix dot
product between S and sampling mask weight W in tem-
poral dimension. In BM layer, the number of sample points
N is set to 32, and the maximum proposal duration D is
set depending on dataset. After generating BM feature map
MF , first we conduct conv3d1 layer in sample dimension
to reduce dimension length from N to 1, and increase hid-
den units from 128 to 512. Then, we conduct conv2d1 layer
with 1 × 1 kernel to reduce the hidden units, and conv2d2
layer with 3 × 3 kernel to capture context of adjacent pro-
posals. Finally, we generate two types of BM confidence
map MCC ,MCR ∈ RD×T with sigmoid activation, where
MCC and MCR are trained using binary classification and
regression loss function separately.

3.5. Training of BMN

In BMN, TEM learns local boundary context and PEM
pattern global proposal context. To jointly learn local pat-
tern and global pattern, an unified multi-task framework is
exploited for optimization. The training details of BMN are
introduced in this section.
Training Data Construction. Given an untrimmed video
X , we can extract feature sequence F with length lf . Then,
we use observation windows with length lω to truncate fea-
ture sequence with 50% overlap, where windows containing
at least one ground-truth action instance are kept for train-
ing. Thus, a training set Ω = {ωn}Nω

n=1 is constructed with
Nω observation windows.
Label Assignment. For TEM, we need to generate tem-
poral boundary label sequence GS , GE ∈ RT . Following
BSN[17], for a ground-truth action instance ϕg = (ts, te)
with duration dg = te − ts in annotation set Ψω , we denote
its starting and ending regions as rS = [ts − dg/10, ts +
dg/10] and rE = [te−dg/10, te +dg/10] separately. Then,
for a temporal location tn within Fω , we denote its local re-
gion as rtn = [tn−df/2, tn+df/2], where df = tn−tn−1
is the temporal interval between two locations. Then we cal-
culate overlap ratio IoR of rtn with rS and rE separately,
and denote maximum IoR as gstn and getn separately, where
IoR is defined as the overlap ratio with groundtruth propor-
tional to the duration of this region. Thus we can generate
GS,ω =

{
gstn
}lω
n=1

andGE,ω =
{
getn
}lω
n=1

as label of TEM.
For PEM, we need to generate BM label map GC ∈

RD×T . For a proposal ϕi,j = (ts = tj , te = tj + ti),
we calculate its Intersection-over-Union (IoU ) with all ϕg

in Ψω , and denote the maximum IoU as gci,j . Thus we can

generate GC =
{
gci,j
}D,lω

i,j=1
as label of PEM.

Loss of TEM. With generated boundary probability se-
quence PS,ω , PE,ω and boundary label sequence GS,ω ,
GE,ω , we can construct the loss function of TEM as the
sum of staring and ending losses

LTEM = Lbl(PS , GS) + Lbl(PE , GE). (3)

Following BSN[17], we adopt weighted binary logistic
regression loss function Lbl for both starting and ending
losses, where Lbl(P,G) is denoted as:

1

lω

lω∑
i=1

(
α+ · bi · log(pi) + α− · (1− bi) · log(1− pi)

)
, (4)

where bi = sign(gi − θ) is a two-value function used to
convert gi from [0, 1] to {0, 1} based on overlap threshold
θ = 0.5. Denoting l+ =

∑
bi and l− = lω − l+, the

weighted terms are α+ = lw
l+ and α− = lw

l− .
Loss of PEM. With generated BM confidence map MCC ,
MCR and BM label map GC , we can construct the loss
function of PEM, which is the sum of binary classification
loss and regression loss:

LPEM = LC(MCC , GC) + λ · LR(MCR, GC). (5)

where we adopt Lbl for classification loss LC and L2 loss
for regression loss LR, and set the weight term λ = 10.
To balance the ratio between positive and negative samples
in LR, we take all points with gci,j > 0.6 as positive and
randomly sample gci,j < 0.2 as negative, and ensure the
ratio between positive and negative points nearly 1:1.
Training Objective. We train BMN in the form of a multi-
task loss function, including TEM loss, PEM loss and L2
regularization term:

L = LLEM + λ1 · LGEM + λ2 · L2(Θ), (6)

where weight term λ1 and λ2 are set to 1 and 0.0001 sepa-
rately to ensure different modules are trained evenly.

3.6. Inference of BMN

During inference, we use BMN to generate boundary
probability sequences GS , GE and BM confidence map
MCC , MCR. To get final results, we need to (1) generate
candidate proposals using boundary probabilities, (2) fuse
boundary probability and confidence score to generate fi-
nal confidence score, (3) and suppress redundant proposals
based on final confidence scores.
Candidate Proposals Generation. Following BSN [17],
we generate candidate proposals via combining temporal
locations with high boundary probabilities. First, to locate



high starting probability locations, we record all temporal
locations tn with starting pstn (1) higher than 0.5 ·max(p)
or (2) being a probability peak, where max(ps) is the max-
imum starting probability of this video. These candidate
starting locations are grouped as BS = {ts,i}NS

i=1. We can
generate ending locations set BE in the same way.

Then we match each starting location ts in BS and end-
ing location te in BE as a proposal, if its duration is smaller
than a pre-defined maximum duration D. The generated
proposal ϕ is denoted as ϕ = (ts, te, p

s
ts , p

e
te , pcc, pcr),

where psts , pete are starting and ending probabilities in ts
and te separately, and pcc, pcr are classification confidence
score and regression confidence score from [te−ts, ts] point
of BM confidence mapMCC andMCR separately. Thus we
can get candidate proposals set Ψ = {ϕi}

Np

i=1, where Np is
the number of candidate proposals.
Score Fusion. To generate more reliable confidence scores,
for each proposal ϕ, we fuse its boundary probabilities and
confidence scores by multiplication to generate the final
confidence score pf :

pf = psts · p
e
te ·
√
pcc · pcr. (7)

Thus, we can get candidate proposals set Ψp =

{ϕi = (ts, te, pf )}Np

i=1, where pf is used for proposals re-
trieving during redundant proposals suppression.
Redundant Proposals Suppression. After generating can-
didate proposals, we need to remove redundant proposals
to achieve higher recall with fewer proposals, where Non-
maximum suppression (NMS) algorithm is widely used
for this purpose. In BMN, we mainly adopt Soft-NMS
algorithm[1], since it has proven its effectiveness in pro-
posal generation task [17]. Soft-NMS algorithm suppresses
redundant results via decaying their confidence scores.
Soft-NMS generates suppressed final proposals set Ψ′p ={
ϕn = (ts, te, p

′
f )
}N ′p

n=1
, where N ′p is the final proposals

number. During experiment, we also try normal Greedy-
NMS for fair comparison.

4. Experiments
4.1. Dataset and Setup

Dataset. We conduct experiments on two challenging
datasets: THUMOS-14 [14] dataset contains 413 tem-
poral annotated untrimmed videos with 20 action cate-
gories; ActivityNet-1.3 [5] is a large-scale action under-
standing dataset, containing action recognition, temporal
detection, proposal generation and dense captioning tasks.
ActivityNet-1.3 dataset contains 19994 temporal annotated
untrimmed videos with 200 action categories, which are di-
vided into training, validation and testing sets by ratio 2:1:1.
Implementation Details. For feature encoding, following
previous works [17, 12], we adopt two-stream network [33]

Table 2. Comparison between our method and other state-of-the-
art temporal action proposal generation methods on validation set
of ActivityNet-1.3 dataset in terms of AR@AN and AUC.

Method [7] [13] [19] [10] [17] BMN
AR@100 (val) - - 73.01 73.17 74.16 75.01
AUC (val) 59.58 63.12 64.40 65.72 66.17 67.10
AUC (test) 61.56 64.18 64.80 - 66.26 67.19

Table 3. Comparison between our method with state-of-the-art
proposal generation methods SCNN [23], SST [3], TURN [12],
TAG [35], CTAP [10], BSN [17] on THUMOS-14 dataset in terms
of AR@AN, where SNMS stands for Soft-NMS.

Feature Method @50 @100 @200 @500 @1000
C3D SCNN-prop 17.22 26.17 37.01 51.57 58.20
C3D SST 19.90 28.36 37.90 51.58 60.27
C3D TURN 19.63 27.96 38.34 53.52 60.75
C3D BSN+NMS 27.19 35.38 43.61 53.77 59.50
C3D BSN+SNMS 29.58 37.38 45.55 54.67 59.48
C3D BMN+NMS 29.04 37.72 46.79 56.07 60.96
C3D BMN+SNMS 32.73 40.68 47.86 56.42 60.44

2Stream TAG 18.55 29.00 39.61 - -
Flow TURN 21.86 31.89 43.02 57.63 64.17

2Stream CTAP 32.49 42.61 51.97 - -
2Stream BSN+NMS 35.41 43.55 52.23 61.35 65.10
2Stream BSN+SNMS 37.46 46.06 53.21 60.64 64.52
2Stream BMN+NMS 37.15 46.75 54.84 62.19 65.22
2Stream BMN+SNMS 39.36 47.72 54.70 62.07 65.49

pre-trained on training set of ActivityNet-1.3, where spatial
and temporal sub-networks adopt ResNet and BN-Inception
network separately. The frame interval σ is set to 5 and 16
on THUMOS-14 and ActivityNet-1.3 separately.

On THUMOS-14, we set the length of observation win-
dow lω to 128 and the maximum duration length D to 64,
which can cover length of 98% action instances. On Activi-
tyNet, following [17, 19], we rescale each feature sequence
to the length of the observation window lω = 100 using
linear interpolation, and the duration of corresponding an-
notations to range [0,1]. The maximum duration length D
is set to 100, which can cover length of all action instances.
To train BMN from scratch, we set learning rate to 0.001,
batch size to 16 and epoch number to 10 for both datasets.

4.2. Temporal Action Proposal Generation

The goal of proposal generation task is to generate high
quality proposals to cover action instances with high recall
and high temporal overlap. To evaluate proposal quality,
Average Recall (AR) under multiple IoU thresholds are cal-
culated. Following conventions, IoU thresholds [0.5 : 0.05 :
0.95] and [0.5 : 0.05 : 1.0] are used for ActivityNet-1.3 and
THUMOS-14 separately. We calculate AR under different
Average Number of proposals (AN) as AR@AN, and calcu-
late the Area under the AR vs. AN curve (AUC) as metrics
on ActivityNet-1.3, where AN is varied from 0 to 100.



Table 4. Ablation comparison between BSN [17] and BMN in
validation set of ActivityNet-1.3 in terms of AR@AN, AUC and
inference speed. Inference speed here is the second (s) cost for
processing a 3-minute video using a Nvidia 1080-Ti graphic card,
including network inference time Tinf , proposal generation and
proposal-feature generation (for BSN) time Tpro and the total in-
ference time Tsum = Tinf + Tpro. e2e here means modules of
network are trained jointly.

Method Module e2e @100 AUC Tinf Tpro Tsum

BSN TEM - 73.57 64.80 0.002 0.034 0.036
BSN TEM+PEM × 74.16 66.17 0.005 0.624 0.629
BMN TEM - 73.72 65.17 0.003 0.032 0.035
BMN TEM+PEM × 74.36 66.43 0.007 0.062 0.069
BMN TEM+PEM X 75.01 67.10 0.005 0.047 0.052

Figure 5. Ablation comparison between BSN and BMN in terms
of relative AR improvement (%) vs AN curve on validation set
of ActivityNet-1.3, where relative AR improvement is calculated
based on BSN-TEM results.

Comparison with State-of-the-art Methods. Table 2
demonstrates the proposal generation performance compar-
ison on validation and testing set of ActivityNet-1.3, where
our method significantly outperforms other proposal gen-
eration methods. Especially, our method significantly im-
proves AUC of validation set from 66.17% to 67.10% by
0.93%, which demonstrates that our method can achieve
overall performance promotion.

Table 3 demonstrates the proposal generation perfor-
mance comparison on testing set of THUMOS-14. Since
different feature encoding methods and redundant proposal
suppression methods can affect performance largely, fol-
lowing BSN [17], we adopt both C3D and two-stream fea-
ture, both normal Greedy-NMS and Soft-NMS for fair com-
parison. Experiment results suggest that (1) based on ei-
ther C3D or two-stream feature, our method outperforms
other methods significantly when proposal number varies
from 10 to 1000; (2) no matter Greedy-NMS or Soft-NMS

Table 5. Generalizability evaluation of BMN on validation set of
ActivityNet-1.3 in terms of AR@AN and AUC.

Seen Unseen
Training Data AR@100 AUC AR@100 AUC
Seen+Unseen 72.96 65.02 72.68 65.05
Seen 72.47 64.37 72.46 64.47

is adopted, our method outperforms other methods signif-
icantly; (3) Soft-NMS can improve average recall perfor-
mance especially under small proposal number, which is
helpful for temporal action proposal generation task. These
results together suggest the effectiveness of our method and
its effectiveness mainly due to its own architecture. Quali-
tative results are shown in Fig 6.
Ablation Comparison with BSN. To confirm the effect
of the BM mechanism, we conduct more detailed ablation
study and comparison of effectiveness and efficiency be-
tween BSN [17] and BMN. To achieve this, we evaluate
the proposal quality and speed of BSN and BMN under
multiple ablation configuration. The experiment results are
shown in Table 4 and Fig 5, which demonstrate that:

1. Under similar network architecture and training objec-
tive, TEMs of BSN and BMN achieve similar proposal
quality and inference speed, which provides a reliable
comparison baseline;

2. Adding separately trained PEM, both BSN and BMN
obtain significant performance promotion, suggesting
that PEM plays an important role in the “local to
global” proposal generation framework;

3. Jointly trained BMN achieves higher recall and faster
speed than separately trained BMN, suggesting the ef-
fectiveness and efficiency of overall optimization;

4. Adding separately trained PEM, BMN achieves signif-
icant faster speed than BSN, since BM mechanism can
directly generate confidence scores for all proposals si-
multaneously, rather than one-by-one respectively in
BSN. Thus, PEM based on BM mechanism is more ef-
ficient than original PEM. Combining TEM and PEM
jointly can further improve the efficiency.

Thus, these ablation comparison experiments suggest
the effectiveness and efficiency of our proposed Boundary-
Matching mechanism and unified BMN network, which can
generate reliable confidence scores for all proposals simul-
taneously in fast speed.
Generalizability of Proposals. As a proposal generation
method, an important property is the ability of generating
high quality proposals for unseen action categories. To eval-
uate this property, following BSN [17], two un-overlapped
action subsets: “Sports, Exercise, and Recreation” and “So-
cializing, Relaxing, and Leisure” of ActivityNet-1.3 are
chosen as seen and unseen subsets separately. There are



Table 6. Action detection results on validation and testing set of
ActivityNet-1.3, where our proposals are combined with video-
level classification results generated by [36].

validation testing
Method 0.5 0.75 0.95 Average Average
CDC [22] 43.83 25.88 0.21 22.77 22.90
SSN [34] 39.12 23.48 5.49 23.98 28.28
Lin et al. [19] 44.39 29.65 7.09 29.17 32.26
BSN [17] + [36] 46.45 29.96 8.02 30.03 32.87
Ours + [36] 50.07 34.78 8.29 33.85 36.42

Table 7. Action detection results on testing set of THUMOS14,
where video-level classifier UntrimmedNet [31] and proposal-
level classifier SCNN-Classifier [23] are combined with proposals.

Method classifier 0.7 0.6 0.5 0.4 0.3
SST [3] SCNN-cls - - 23.0 - -
TURN[12] SCNN-cls 7.7 14.6 25.6 33.2 44.1
BSN [17] SCNN-cls 15.0 22.4 29.4 36.6 43.1
Ours SCNN-cls 17.0 24.5 32.2 40.2 45.7
SST [3] UNet 4.7 10.9 20.0 31.5 41.2
TURN[12] UNet 6.3 14.1 24.5 35.3 46.3
BSN [17] UNet 20.0 28.4 36.9 45.0 53.5
Ours UNet 20.5 29.7 38.8 47.4 56.0

87 and 38 action categories, 4455 and 1903 training videos,
2198 and 896 validation videos on seen and unseen subsets
separately. And we adopt C3D network [28] pre-trained
on Sports-1M dataset [15] for feature extraction, to guaran-
tee the validity of experiments. We train BMN with seen
and seen+unseen training videos separately, and evaluate
both BMN models on seen and unseen validation videos
separately. Results in Table 5 demonstrate that the perfor-
mance drop is very slight in unseen categories, suggesting
that BMN achieves great generalizability to generate high
quality proposals for unseen actions, and can learn a gen-
eral concept of when an action may occur.

4.3. Action Detection with Our Proposals

Another important aspect of evaluating the proposal
quality is to put proposals in temporal action detection
framework and evaluate its detection performance. Mean
Average Precision (mAP) is adopted as the evaluation met-
ric of temporal action detection task, where we calculate
Average Precision (AP) on each action category respec-
tively. mAP with IoU thresholds {0.5, 0.75, 0.95} and av-
erage mAP with IoU thresholds [0.5 : 0.05 : 0.95] are
used on ActivityNet-1.3, while mAP with IoU thresholds
{0.3, 0.4, 0.5, 0.6, 0.7} are used on THUMOS-14.

To achieve this, we adopt the two-stage “detection by
classifying proposals” temporal action detection framework
to combine BMN proposals with state-of-the-art action
classifiers. Following BSN [17], on ActivityNet-1.3, we
adopt top-1 video-level classification results generated by
method [36] and use confidence scores of BMN propos-

Figure 6. Visualization examples of proposals and BM map gen-
erated by BMN on THUMOS-14 and ActivityNet-1.3 dataset.

als for detection results retrieving. On THUMOS-14, we
use both top-2 video-level classification results generated
by UntrimmedNet [31], and proposal-level SCNN-classifier
to generate classification result for each proposal. For
ActivityNet-1.3 and THUMOS-14 datasets, we use first 100
and 200 temporal proposals per video separately.

The experiment results on ActivityNet-1.3 are shown in
Table 6, which demonstrate that BMN proposals based de-
tection framework significantly outperform other state-of-
the-art temporal action detection methods. The experiment
results on THUMOS-14 are shown in Table 7, which sug-
gest that: (1) no matter video-level or proposal-level ac-
tion classifier is used, our method achieves better detection
performance than other state-of-the-art proposal generation
methods; (2) using BMN proposals, video-level classifier
[31] achieves significant better performance than proposal-
level classifier [23], indicating that BMN can generate con-
fidence scores reliable enough for retrieving results.

5. Conclusion
In this paper, we introduced the Boundary-Matching

mechanism for evaluating confidence scores of densely dis-
tributed proposals, which is achieved via denoting proposal
as BM pair and combining all proposals as BM confidence
map. Meanwhile, we proposed the Boundary-Matching
Network (BMN) for effective and efficient temporal action
proposal generation, where BMN generates proposals with
precise boundaries and flexible duration via combining high
probability boundaries, and simultaneously generates reli-
able confidence scores for all proposals based on BM mech-
anism. Extensive experiments demonstrate that BMN out-
performs other state-of-the-art proposal generation methods
in both proposal generation and temporal action detection
tasks, with remarkable efficiency and generalizability.
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